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1. Given a hidden Markov model (HMM, page 610) and observations
Y1, --,Yi—1, show that the predictive distribution of the observations y;
at time point ¢ follows a mixture distribution.

Solution:
Let us first write the joint distribution of all variables:
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Then we can manipulate the predictive distribution:
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which is clearly a mixture distribution with the posterior distribution of
the latent variable P(z; | y1,...y;—1) as the mixture coefficients and P(y; |
z¢) as the component distributions.

2. Show how a second-order Markov chain (page 608) of 3 symbols can be
transformed to a hidden Markov model with 9 states and 3 symbols.

Solution:
A second order Markov chain has a model for P(y; | y—2, Y1)
P(y:t | yt—2,y1—1) |aa ab ac ba bb bc ca cb «cc

gi z Z By setting
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the hidden state z; to contain both y; 1 and y; as a concatenated sym-
bol, we can emulate the second order Markov chain by a hidden Markov
model using the following tables:



P(ys |zt) |aa ab ac ba bb bc ca cb «cc
Yr=a 1 0 0 1 O O 1 0 O
w=b |0 1 0 0 1 0 0 1 0
Yt =¢ o 0 1 0 O 1 0 0 1

P(z¢|z1) |aa ab ac ba bb bc ca b cc
Zy = aa . o o - 0 O 0 O
zy = ab . 0O O 0 O 0 O
Zy = ac . 0O O . o o0 - 0 O
Z ; ZZ 8 8 8 ' 8 8 . 8 where the val-
z; = be o - 0 O . o o - 0
Zy = ca 0 O 0O O . o o0 -
zt =cb 0 O 0O O 0O 0
Zy = CC 0 O . 0O O . 0O 0

ues - are copied from the table of the second order Markov chain.
This shows that a hidden Markov model is more general than a second
order Markov chain (and similarly of a Markov chain of any order).

3. Let us consider a HMM with a discrete hidden variable z with 6 states
and a Gaussian observation (emission) probability density function. The
dimension of the data vectors xy,...,xr is 5 and the covariance function
of the Gaussian distribution is diagonal. (a) Quantify the number of pa-
rameters in the model, (b) write the joint probability density, (c) and write
the Q-function of the EM-algorithm Q(8, 8°'9) (page 440). Assume that the
E-step is done, that is, y(z;) = P(zs | X,0°9) and &(z_1,21) = P(z¢_1,2 |
X, 6°!9) are given.

Solution:

(a) Parameters 6 include the starting distribution P(z1) = 7 = P(z |
zo) with 6 parameters of which 5 are free, transition matrix A with 36 pa-
rameters of which 30 are free, and parameters y;; and O'I-Zj for the emission
distribution (60 parameters, all of them free). That makes altogether 102
parameters of which 95 are free.

(b) A Gaussian distribution with a diagonal covariance can be repre-



sented as a product of 1-dimensional Gaussians.
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where the division into two parts Q. + Qy will be useful in Problem 4.

4. In the setting of Problem 3, (a) derive the M-step for the Gaussian
means p;;, where i = 1...6 denotes the state and k = 1...5 denotes the
data dimension. (b) Derive the M-step for updating the 6 x 6 transition
matrix A.

Solution:

(a) As we maximize the Q-function w.r.t. a particular pj, the part Q, is

constant, and from the sums over i and k, all the other terms are constant



except the one we are interested in. Therefore we only need:

) « —(xy — Vik)z _

W;’Y(th)T—O (13)
x — uik
Z'y zi) S 0 (14)
‘Tzk
Zt:l ’Y(th‘)xtk

Hik = == (15)

l Y y(zw)

that is, u# will be the weighted average of the data points assigned to the
cluster (or state) i, the weights being the probabilities v that this point
belongs to this cluster.

(b) Next we should maximize Q w.r.t. an element of the transition ma-
trix a;j. This time Qy is a constant that can be ignored. If we simply try
to find the zero of the gradient, we notice that increasing a;j will always
increase Q so there is no zero of the gradient. We need to take into account
the constraint 2]6:1 aj; = 1Vi. One way to do this is to introduce Lagrange
multipliers A; > 0 for each constraint i. We will now maximize
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instead. The intuition behind this is to introduce a “counter-force” that
balances the ever increasing a;;s. When the force A; is just right, it will set
the constraint to be true, and the modified cost function in Eq. ([I6) will be

equal to Q; since (Z?:l ajj — 1) =0.
Let us try to maximize ([8) by finding the zero of the gradient:
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Thus, A; turned out to be a normalization constant, whose value we can
compute from
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