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1. Given a hidden Markov model (HMM, page 610) and observations
y1, . . . , yt−1, show that the predictive distribution of the observations yt

at time point t follows a mixture distribution.

Solution:
Let us first write the joint distribution of all variables:

P(y1, . . . , yt, z1, . . . , zt) = P(z1)P(y1 | z1)
t

∏
τ=2

P(zτ | zτ−1)P(yτ | zτ). (1)

Then we can manipulate the predictive distribution:

P(yt | y1, . . . , yt−1) = ∑
zt

P(yt, zt | y1, . . . yt−1) (2)

= ∑
zt

P(zt | y1, . . . yt−1)P(yt | zt, y1, . . . yt−1) (3)

= ∑
zt

P(zt | y1, . . . yt−1)P(yt | zt), (4)

which is clearly a mixture distribution with the posterior distribution of
the latent variable P(zt | y1, . . . yt−1) as the mixture coefficients and P(yt |
zt) as the component distributions.

2. Show how a second-order Markov chain (page 608) of 3 symbols can be
transformed to a hidden Markov model with 9 states and 3 symbols.

Solution:
A second order Markov chain has a model for P(yt | yt−2, yt−1).

P(yt | yt−2, yt−1) aa ab ac ba bb bc ca cb cc
yt = a · · · · · · · · ·
yt = b · · · · · · · · ·
yt = c · · · · · · · · ·

By setting

the hidden state zt to contain both yt−1 and yt as a concatenated sym-
bol, we can emulate the second order Markov chain by a hidden Markov
model using the following tables:



P(yt | zt) aa ab ac ba bb bc ca cb cc
yt = a 1 0 0 1 0 0 1 0 0
yt = b 0 1 0 0 1 0 0 1 0
yt = c 0 0 1 0 0 1 0 0 1

P(zt | zt−1) aa ab ac ba bb bc ca cb cc
zt = aa · 0 0 · 0 0 · 0 0
zt = ab · 0 0 · 0 0 · 0 0
zt = ac · 0 0 · 0 0 · 0 0
zt = ba 0 · 0 0 · 0 0 · 0
zt = bb 0 · 0 0 · 0 0 · 0
zt = bc 0 · 0 0 · 0 0 · 0
zt = ca 0 0 · 0 0 · 0 0 ·
zt = cb 0 0 · 0 0 · 0 0 ·
zt = cc 0 0 · 0 0 · 0 0 ·

where the val-

ues · are copied from the table of the second order Markov chain.
This shows that a hidden Markov model is more general than a second

order Markov chain (and similarly of a Markov chain of any order).

3. Let us consider a HMM with a discrete hidden variable z with 6 states
and a Gaussian observation (emission) probability density function. The
dimension of the data vectors x1, . . . , xT is 5 and the covariance function
of the Gaussian distribution is diagonal. (a) Quantify the number of pa-
rameters in the model, (b) write the joint probability density, (c) and write

the Q-function of the EM-algorithm Q(θ, θ
old) (page 440). Assume that the

E-step is done, that is, γ(zt) = P(zt | X, θ
old) and ξ(zt−1, zt) = P(zt−1, zt |

X, θ
old) are given.

Solution:
(a) Parameters θ include the starting distribution P(z1) = π = P(z1 |

z0) with 6 parameters of which 5 are free, transition matrix Å with 36 pa-
rameters of which 30 are free, and parameters µij and σ2

ij for the emission

distribution (60 parameters, all of them free). That makes altogether 102
parameters of which 95 are free.

(b) A Gaussian distribution with a diagonal covariance can be repre-



sented as a product of 1-dimensional Gaussians.

p(X, Z | θ) =
T

∏
t=1

P(zt | zt−1, θ)p(xt | zt, θ) (5)

=
T

∏
t=1

azt−1,zt

5

∏
k=1

1
√

2πσ2
zt,k

exp

[

−(xtk − µztk)
2

2σ2
ztk

]

(6)

(c)

Q(θ, θ
old) = ∑

Z

P(Z | X, θ
old) ln p(X, Z | θ) (7)

= ∑
Z

P(Z | X, θ
old) [ln P(Z | θ) + ln p(X | Z, θ)] (8)

=

[

T

∑
t=1

6

∑
i=1

6

∑
j=1

ξ(zt−1,i , ztj) ln ai j

]

(9)

+





T

∑
t=1

6

∑
i=1

5

∑
k=1

γ(zti) ln





1
√

2πσ2
ik

exp

[

−(xtk − µik)
2

2σ2
ik

]







 (10)

= Qz +
T

∑
t=1

6

∑
i=1

5

∑
k=1

γ(zti)

[

−
(xtk − µik)

2

2σ2
ik

−
1

2
ln(2πσ2

ik)

]

(11)

= Qz + Qx, (12)

where the division into two parts Qz + Qx will be useful in Problem 4.

4. In the setting of Problem 3, (a) derive the M-step for the Gaussian
means µik, where i = 1 . . . 6 denotes the state and k = 1 . . . 5 denotes the
data dimension. (b) Derive the M-step for updating the 6 × 6 transition
matrix A.
Solution:

(a) As we maximize the Q-function w.r.t. a particular µik, the part Qz is
constant, and from the sums over i and k, all the other terms are constant



except the one we are interested in. Therefore we only need:

∂

∂µik

T

∑
t=1

γ(zti)
−(xtk − µik)2

2σ2
ik

= 0 (13)

T

∑
t=1

γ(zti)
xtk − µik

σ2
ik

= 0 (14)

µik =
∑

T
t=1 γ(zti)xtk

∑
T
t=1 γ(zti)

, (15)

that is, µ will be the weighted average of the data points assigned to the
cluster (or state) i, the weights being the probabilities γ that this point
belongs to this cluster.

(b) Next we should maximize Q w.r.t. an element of the transition ma-
trix ai j. This time Qx is a constant that can be ignored. If we simply try
to find the zero of the gradient, we notice that increasing ai j will always
increase Q so there is no zero of the gradient. We need to take into account
the constraint ∑

6
j=1 aij = 1∀i. One way to do this is to introduce Lagrange

multipliers λi > 0 for each constraint i. We will now maximize

Qz − λi

(

6

∑
j=1

aij − 1

)

(16)

instead. The intuition behind this is to introduce a “counter-force” that
balances the ever increasing aijs. When the force λi is just right, it will set
the constraint to be true, and the modified cost function in Eq. (16) will be

equal to Qz since
(

∑
6
j=1 aij − 1

)

= 0.

Let us try to maximize (16) by finding the zero of the gradient:

0 =
∂

∂aij

[

T

∑
t=1

ξ(zt−1,i , ztj) ln aij − λi(
6

∑
j′=1

aij′ − 1)

]

(17)

=
∑

T
t=1 ξ(zt−1,i , ztj)

aij
− λi (18)

aij =
∑

T
t=1 ξ(zt−1,i , ztj)

λi
. (19)



Thus, λi turned out to be a normalization constant, whose value we can
compute from

6

∑
j=1

aij =
6

∑
j=1

∑
T
t=1 ξ(zt−1,i , ztj)

λi
= 1 (20)

λi =
6

∑
j=1

T

∑
t=1

ξ(zt−1,i , ztj). (21)


