T.61.5140 Machine Learning: Advanced Probablistic Methods

Hollmén, Raiko (Spring 2008)
Problem session, 28th of March, 2008
http:/ /www.cis.hut.fi/Opinnot/T-61.5140/

1. Given a hidden Markov model (HMM, page 610) and observations $\mathbf{y}_{1}, \ldots, \mathbf{y}_{t-1}$, show that the predictive distribution of the observations \mathbf{y}_{t} at time point t follows a mixture distribution.

Solution:
Let us first write the joint distribution of all variables:

$$
\begin{equation*}
P\left(y_{1}, \ldots, y_{t}, z_{1}, \ldots, z_{t}\right)=P\left(z_{1}\right) P\left(y_{1} \mid z_{1}\right) \prod_{\tau=2}^{t} P\left(z_{\tau} \mid z_{\tau-1}\right) P\left(y_{\tau} \mid z_{\tau}\right) \tag{1}
\end{equation*}
$$

Then we can manipulate the predictive distribution:

$$
\begin{align*}
P\left(y_{t} \mid y_{1}, \ldots, y_{t-1}\right) & =\sum_{z_{t}} P\left(y_{t}, z_{t} \mid y_{1}, \ldots y_{t-1}\right) \tag{2}\\
& =\sum_{z_{t}} P\left(z_{t} \mid y_{1}, \ldots y_{t-1}\right) P\left(y_{t} \mid z_{t}, y_{1}, \ldots y_{t-1}\right) \tag{3}\\
& =\sum_{z_{t}} P\left(z_{t} \mid y_{1}, \ldots y_{t-1}\right) P\left(y_{t} \mid z_{t}\right), \tag{4}
\end{align*}
$$

which is clearly a mixture distribution with the posterior distribution of the latent variable $P\left(z_{t} \mid y_{1}, \ldots y_{t-1}\right)$ as the mixture coefficients and $P\left(y_{t} \mid\right.$ z_{t}) as the component distributions.
2. Show how a second-order Markov chain (page 608) of 3 symbols can be transformed to a hidden Markov model with 9 states and 3 symbols.

Solution:
A second order Markov chain has a model for $P\left(y_{t} \mid y_{t-2}, y_{t-1}\right)$.

$P\left(y_{t} \mid y_{t-2}, y_{t-1}\right)$	aa	ab	ac	ba	bb	bc	ca	cb	cc
$y_{t}=a$	\cdot								
$y_{t}=b$	\cdot								
$y_{t}=c$	\cdot								

the hidden state z_{t} to contain both y_{t-1} and y_{t} as a concatenated symbol, we can emulate the second order Markov chain by a hidden Markov model using the following tables:

$P\left(y_{t} \mid z_{t}\right)$		ab	b	ac	ba	,	bb	bc	ca	a	cb			where the val-
$y_{t}=a$	1	0			1		0	0			0		0	
$y_{t}=b$	0	1		0	0		1	0	0	0	1			
$y_{t}=c$	0	0			0		0	1	0		0		1	
$P\left(z_{t} \mid z_{t-1}\right)$		aa	ab		ac	ba	bb	bb	bc	ca	a cb	cb	cc	
$z_{t}=a a$		-	0		0	.		0	0			0	0	
$z_{t}=a b$			0		0	.	0	0	0	-	0	0	0	
$z_{t}=a c$			0		0	-	0	0	0	.	0	0	0	
$z_{t}=b a$		0	.			0			0	0	0 .		0	
$z_{t}=b b$		0			0	0				0			0	
$z_{t}=b c$		0	-		0	0		-	0	0		.	0	
$z_{t}=c a$		0	0			0		0		0	0	0	.	
$z_{t}=c b$		0	0			0		0	.	0	0	0	.	
$z_{t}=c c$		0	0		-	0		0		0	0	0		

ues - are copied from the table of the second order Markov chain.
This shows that a hidden Markov model is more general than a second order Markov chain (and similarly of a Markov chain of any order).
3. Let us consider a HMM with a discrete hidden variable z with 6 states and a Gaussian observation (emission) probability density function. The dimension of the data vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{T}$ is 5 and the covariance function of the Gaussian distribution is diagonal. (a) Quantify the number of parameters in the model, (b) write the joint probability density, (c) and write the Q-function of the EM-algorithm $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)$ (page 440). Assume that the E-step is done, that is, $\gamma\left(z_{t}\right)=P\left(z_{t} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$ and $\xi\left(z_{t-1}, z_{t}\right)=P\left(z_{t-1}, z_{t} \mid\right.$ $\left.\mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$ are given.

Solution:
(a) Parameters $\boldsymbol{\theta}$ include the starting distribution $P\left(z_{1}\right)=\pi=P\left(z_{1} \mid\right.$ z_{0}) with 6 parameters of which 5 are free, transition matrix \AA with 36 parameters of which 30 are free, and parameters $\mu_{i j}$ and $\sigma_{i j}^{2}$ for the emission distribution (60 parameters, all of them free). That makes altogether 102 parameters of which 95 are free.
(b) A Gaussian distribution with a diagonal covariance can be repre-
sented as a product of 1-dimensional Gaussians.

$$
\begin{align*}
p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) & =\prod_{t=1}^{T} P\left(z_{t} \mid z_{t-1}, \boldsymbol{\theta}\right) p\left(\mathbf{x}_{t} \mid z_{t}, \boldsymbol{\theta}\right) \tag{5}\\
& =\prod_{t=1}^{T} a_{z_{t-1}, z_{t}} \prod_{k=1}^{5} \frac{1}{\sqrt{2 \pi \sigma_{z_{t}, k}^{2}}} \exp \left[\frac{-\left(x_{t k}-\mu_{z_{t} k}\right)^{2}}{2 \sigma_{z_{t} k}^{2}}\right] \tag{6}
\end{align*}
$$

(c)

$$
\begin{align*}
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right) & =\sum_{\mathbf{Z}} P\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \tag{7}\\
& =\sum_{\mathbf{Z}} P\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}}\right)[\ln P(\mathbf{Z} \mid \boldsymbol{\theta})+\ln p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\theta})] \tag{8}\\
& =\left[\sum_{t=1}^{T} \sum_{i=1}^{6} \sum_{j=1}^{6} \xi\left(z_{t-1, i}, z_{t j}\right) \ln a_{i} j\right] \tag{9}\\
& +\left[\sum_{t=1}^{T} \sum_{i=1}^{6} \sum_{k=1}^{5} \gamma\left(z_{t i}\right) \ln \left(\frac{1}{\sqrt{2 \pi \sigma_{i k}^{2}}} \exp \left[\frac{-\left(x_{t k}-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}\right]\right)\right] \tag{10}\\
& =Q_{z}+\sum_{t=1}^{T} \sum_{i=1}^{6} \sum_{k=1}^{5} \gamma\left(z_{t i}\right)\left[-\frac{\left(x_{t k}-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}-\frac{1}{2} \ln \left(2 \pi \sigma_{i k}^{2}\right)\right] \tag{11}\\
& =Q_{z}+Q_{x} \tag{12}
\end{align*}
$$

where the division into two parts $Q_{z}+Q_{x}$ will be useful in Problem 4.
4. In the setting of Problem 3, (a) derive the M-step for the Gaussian means $\mu_{i k}$, where $i=1 \ldots 6$ denotes the state and $k=1 \ldots 5$ denotes the data dimension. (b) Derive the M-step for updating the 6×6 transition matrix \mathbf{A}.
Solution:
(a) As we maximize the Q-function w.r.t. a particular $\mu_{i k}$, the part Q_{z} is constant, and from the sums over i and k, all the other terms are constant
except the one we are interested in. Therefore we only need:

$$
\begin{array}{r}
\frac{\partial}{\partial \mu i k} \sum_{t=1}^{T} \gamma\left(z_{t i}\right) \frac{-\left(x_{t k}-\mu i k\right)^{2}}{2 \sigma_{i k}^{2}}=0 \\
\sum_{t=1}^{T} \gamma\left(z_{t i}\right) \frac{x_{t k}-\mu i k}{\sigma_{i k}^{2}}=0 \\
\mu_{i k}=\frac{\sum_{t=1}^{T} \gamma\left(z_{t i}\right) x_{t k}}{\sum_{t=1}^{T} \gamma\left(z_{t i}\right)} \tag{15}
\end{array}
$$

that is, μ will be the weighted average of the data points assigned to the cluster (or state) i, the weights being the probabilities γ that this point belongs to this cluster.
(b) Next we should maximize Q w.r.t. an element of the transition matrix $a_{i} j$. This time Q_{x} is a constant that can be ignored. If we simply try to find the zero of the gradient, we notice that increasing $a_{i} j$ will always increase Q so there is no zero of the gradient. We need to take into account the constraint $\sum_{j=1}^{6} a_{i j}=1 \forall i$. One way to do this is to introduce Lagrange multipliers $\lambda_{i}>0$ for each constraint i. We will now maximize

$$
\begin{equation*}
Q_{z}-\lambda_{i}\left(\sum_{j=1}^{6} a_{i j}-1\right) \tag{16}
\end{equation*}
$$

instead. The intuition behind this is to introduce a "counter-force" that balances the ever increasing $a_{i j}$. When the force λ_{i} is just right, it will set the constraint to be true, and the modified cost function in Eq. (16) will be equal to Q_{z} since $\left(\sum_{j=1}^{6} a_{i j}-1\right)=0$.

Let us try to maximize (16) by finding the zero of the gradient:

$$
\begin{align*}
0 & =\frac{\partial}{\partial a_{i j}}\left[\sum_{t=1}^{T} \xi\left(z_{t-1, i}, z_{t j}\right) \ln a_{i j}-\lambda_{i}\left(\sum_{j^{\prime}=1}^{6} a_{i j^{\prime}}-1\right)\right] \tag{17}\\
& =\frac{\sum_{t=1}^{T} \xi\left(z_{t-1, i}, z_{t j}\right)}{a_{i j}}-\lambda_{i} \tag{18}\\
a_{i j} & =\frac{\sum_{t=1}^{T} \xi\left(z_{t-1, i,}, z_{t j}\right)}{\lambda_{i}} . \tag{19}
\end{align*}
$$

Thus, λ_{i} turned out to be a normalization constant, whose value we can compute from

$$
\begin{align*}
\sum_{j=1}^{6} a_{i j} & =\sum_{j=1}^{6} \frac{\sum_{t=1}^{T} \xi\left(z_{t-1, i}, z_{t j}\right)}{\lambda_{i}}=1 \tag{20}\\
\lambda_{i} & =\sum_{j=1}^{6} \sum_{t=1}^{T} \xi\left(z_{t-1, i}, z_{t j}\right) . \tag{21}
\end{align*}
$$

