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These are programming excercises that are discussed on 4th of April
and demonstrated on 11th of April. The Matlab files are on the course
webpage.

Let us use a notation N(x | µ, σ2) to denote a Gaussian distribution of
x with mean µ and variance σ2.

1. Study the unknown distribution pu(x) by drawing samples from it.
You can get values of pu(x) by calling the Matlab function unknown p.m
with the argument x which may be a scalar or a vector. Use rejection sam-
pling (page 528) with a proposal distribution q(x) = N(0, 2) (Gaussian
with mean 0 and variance 2) and scaling k=1.5 (You get values of kq(x) as
1.5*gaussian(x,0,2)). (a) Plot a figure that shows the accepted samples with
a black dot (’.k’) and rejected samples with a cyan dot (’.c’). Use both 100
and 1000 samples. (b) Estimate the expected values E(x) and E(tanh(x))
over distribution pu(x) by using the accepted samples.

Solution:

% Problem 1(a)

figure(1); clf;

xx=-5:0.01:5;

k=1.5;

yy=k*gaussian(xx,0,2);

for i=1:2,

nsamples = 100*(i==1) + 1000*(i==2);

x = randn(1,nsamples)*sqrt(2);

y = k*rand(1,nsamples).*gaussian(x,0,2);

accepted = find(y<unknown_p(x));

subplot(1,2,i);

plot(xx,[unknown_p(xx);yy]);

hold on;

plot(x,y,’.c’);

plot(x(accepted),y(accepted),’.k’);



end;
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Figure 1: Problem 1. Left: 100 samples, Right: 1000 samples.

Solution of 1(b) is given with 2(b) and 2(c).
2. Study the same distribution pu(x) by using importance sampling (page
532). (a) Plot the importance weights pu(x)/q(x). (b) Estimate E(x) and
E(tanh(x)) over distribution pu(x) by weighting all samples. (c) Was it
more accurate than rejection sampling?

Solution:

% Problem 2(a)

figure(2); clf;

importance = unknown_p(xx)./gaussian(xx,0,2);

plot(xx,[importance; unknown_p(xx); gaussian(xx,0,2)]);

legend(’importance p_u/q’,’unknown p_u’,’proposal q’);

2(b). For estimating E(x) and E(tanh(x)), and to compare the accuracy,
both sampling methods were tested 1000 times. By finding the mean and
the standard deviation of these repetitions for each method, we can esti-
mate the accuracy. The means were close to E(x) = −0.04 and E(tanh(x)) =
−0.007 for both methods, but the standard deviations were 15%–20% larger
for rejection sampling than importance sampling.

% accuracy comparison 1(b),2(b),2(c)

% repeat the estimation a thousand times

for i=1:1000,
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Figure 2: Problem 2(a). Importance weight pu(x)/q(x) as a function of x.

nsamples = 100;

x = randn(1,nsamples)*sqrt(2);

y = k*rand(1,nsamples).*gaussian(x,0,2);

accepted = find(y<unknown_p(x));

importance = unknown_p(x)./gaussian(x,0,2);

Ex1(i) = mean(x(accepted));

Etanhx1(i) = mean(tanh(x(accepted)));

Ex2(i) = sum(x.*importance)/sum(importance);

Etanhx2(i) = sum(tanh(x).*importance)/sum(importance);

end;
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3. Let us study a model with two variables: x1 ∼ N(x1 | 0, 1.0) and
x2 ∼ N(x1 | x1, 0.1) where the two Gaussians are independent. (a) Solve



p(x1 | x2). (b) Initialize x
(0)
1 = x

(0)
2 = 0 and plot 50 samples from the

model by Gibbs sampling (page 542) with a line connecting consequtive
samples.

Solution:
(a) Let us first prove a lemma, the product of two independent Gaus-

sians (ignoring normalization constants). Let us use the logarithmic scale:
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Note that the ignored constant changes between lines (5) and (6). We
showed that the product of two Gaussians is another Gaussian whose
mean is a weighted average of the two means, and the variance is smaller
than either of the two variances. This result might be useful elsewhere,
too.



Then let us study the problem at hand, starting with Bayes theorem:
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The problem is now solved, but let us still discuss the term p(x2 | x1).
When we think about it the normal way, x1 is a constant and p gives
the distribution over x2. But p(x2 | x1) is actually a function over two
variables, x1 and x2. If we assume x2 is known, p(x2 | x1) is the like-
lihood function of x1. Likelihood functions are not distributions (they
don’t have to normalize to 1 - consider for instance the case where x2

is independent of x1 and the likelihood function is a positive constant
p(x2 | x1) = p(x2) > 0 with respect to x1). But in this case, the like-

lihood function is const · exp
−(x1−x2)

2

2·0.1 which has a Gaussian form so we
can write p(x2 | x1) = N(x1 | x2, 0.1) · const.

% Problem 3(b)

figure(3); clf; hold on;

x1(1) = 0;

x2(1) = 0;

for iter=1:50,

x1(iter+1) = 10/11*x2(iter)+randn(1)*sqrt(1/11);

plot([x1(iter);x1(iter+1)],[x2(iter);x2(iter)],’b’);

x2(iter+1) = x1(iter+1)+randn(1)*sqrt(0.1);

plot([x1(iter+1);x1(iter+1)],[x2(iter);x2(iter+1)],’b’);

plot([x1(iter);x1(iter+1)],[x2(iter);x2(iter+1)],’r’);

end;

4. Let us study a model with three variables, x1, x2, and x3. The model is
such that x1 and x2 are drawn from the same distribution pu(x) as before,
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Figure 3: Problem 3(b). Blue lines show the alternate updates of x1 and x2

while the red lines show the two updates combined.

and x3 ∼ N(x3 | x1 + x2, 1.0). Draw samples from p(x1, x2 | x3 = 1.0)
by using Metropolis algorithm (page 538). Use a proposal distribution

x∗1 ∼ N(x∗1 | x
(τ)
1 , 1.0) and x∗2 ∼ N(x∗2 | x

(τ)
2 , 1.0) (simultaneously, not

alternately as in Gibbs sampling). Plot 50 samples with a line connecting
consequtive samples ’-’ and rejected proposals with a cross ’x’.

% Problem 4

figure(4); clf;

x3 = 1.0;

for i=1:8,

% variance of the proposed jump:

propvar = 0.01*(mod(i,4)==1)+0.1*(mod(i,4)==2) ...

+1.0*(mod(i,4)==3)+10.0*(mod(i,4)==0);

nsamples = 50*(i<=4)+500*(i>=5);

subplot(2,4,i); axis([-4 4 -4 4]); hold on;

title(sprintf(’nsamples = %d, prop var = %3.2f’,nsamples,propvar))

x1(1) = 0;

x2(1) = 0;

for iter = 1:nsamples,



prob_old = unknown_p(x1(iter))*unknown_p(x2(iter)) ...

*gaussian(x3,x1(iter)+x2(iter),1.0);

x1prop = x1(iter)+randn(1)*sqrt(propvar);

x2prop = x2(iter)+randn(1)*sqrt(propvar);

prob_prop = unknown_p(x1prop)*unknown_p(x2prop) ...

*gaussian(x3,x1prop+x2prop,1.0);

if prob_prop/prob_old > rand(1), % accept proposed jump?

x1(iter+1)=x1prop;

x2(iter+1)=x2prop;

plot([x1(iter);x1(iter+1)],[x2(iter);x2(iter+1)],’b-’);

else,

x1(iter+1)=x1(iter);

x2(iter+1)=x2(iter);

plot(x1prop,x2prop,’rx’);

end;

end;

end;
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Figure 4: Problem 4. The top row has 50 samples while the bottom row
has 500 samples. The variance of the proposal distribution is 0.01 (left),
0.1 (second from left), 1.0 (third from left), and 10.0 (right). Note how the
samples are close to each other in the left because the variance is too small
and most steps are rejected in the right because the variance is too large.


