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On notation:
Kullback-Leibler divergence can be written in two ways:

KL (q(x) ‖ p(x)) = Eq(x)

{
ln

q(x)

p(x)

}
(1)

= −Eq(x)

{
ln

p(x)

q(x)

}
(2)

Tapani has used the former and Bishop’s book uses the latter. The lower
bound L(q) on page 463 is the same as −Cvb. Maximization of L(q) is thus
the same thing as minimization of Cvb. Also, Bishop absorbs the param-
eters θ into Z when describing variational inference. This makes some of
the formulas nicer, but the VB-EM algorithm cannot be described easily.

Let us use the shorthand 〈·〉 = Eq{·} to denote the expectation over the
posterior approximation q.

1. Consider the probabilistic principal component analysis (PPCA) model

x(t) = As(t) + n(t) (3)

with 3-dimensional data x(t), 1-dimensional source s(t), and Gaussian
noise p(ni(t)) = N(ni(t) | 0, σ2

i ). We would like to estimate the noise level

σ2
i for each data dimension i = 1, 2, 3 using the maximum likelihood esti-

mator. What happens when the weight matrix A goes to A =
(

1 0 0
)T

,
and the source s(t) copies the first dimension of the data: s(t) = x1(t)?

Solution:
First, let us compute the reconstruction error, or the noise term

n(t) = x(t) − As(t) =




0
x2(t)
x3(t)


 , (4)



which hints that there might be a problem with the variance parameters
σ2

1 . The likelihood of the data is

p(x(t) | A, s(t)) =
T

∏
t=1

3

∏
i=1

1√
2πσ2

i

exp

[
−

(xi(t) − Ais(t))2

2σ2
i

]
(5)

=
T

∏
t=1

1√
2πσ2

1

exp

[
−

0

2σ2
1

]
3

∏
i=2

1√
2πσ2

i

exp

[
−

(xi(t) − Ais(t))2

2σ2
i

]

(6)

= const
1

σ1
(7)

so we notice that when σ1 goes to zero, the likelihood goes to infinity.
Maximum likelihood criterion considers this degenerate solution in-

finitely good, while it is in fact useless. This is an extreme case of overfit-
ting, which is related to the fact that the posterior distribution has a high
but narrow peak at the mentioned solution. Using any methodology that
is sensitive to probability mass rather than density avoids this problem.

2. Variational Bayesian cost function Cvb is often a sum of simple terms,
one for each variable. Consider the variable s whose model is p(s | m, v) =
N(s | m, exp(−v)). Assume that s, m, v are independent aposteriori, that
is, q(s, m, v) = q(s)q(m)q(v) and that q(s) = N(s | s, s̃). Show that the

term of the cost for s, Cvb(s) = Eq

{
ln

q(s)
p(s|m,v)

}
, is

Cvb(s) =
1

2

(
Eq{exp v}

[
(s − Eq{m})2 + Var

q
{m} + s̃

]
− Eq{v} + ln(2π)

)

−
1

2
ln(2πes̃). (8)

Solution:
Let us first show that 〈mv〉 = 〈m〉 〈v〉 when q(m, v) = q(m)q(v).

〈mv〉 =
∫ ∫

q(m, v)mv dm dv (9)

=
∫

q(m)m dm
∫

q(v)v dv (10)

= 〈m〉 〈v〉 (11)



Let us address the cost function Cvb(s) = 〈ln q(s)〉 − 〈ln p(s | m, v)〉 in
two parts.

− 〈ln p (s | m, v)〉 = − 〈ln N (s | m, exp(−v))〉 (12)

= −

〈
ln

[
(2π exp(−v))−1/2 exp

−(s − m)2

2 exp(−v)

]〉
(13)

= −
〈

ln [2π exp(−v)]−1/2
〉
−

〈
ln exp

[
−

1

2
(s − m)2 exp v

]〉

(14)

=
1

2
ln 2π −

1

2
〈v〉 +

1

2

〈
(s − m)2

〉
〈exp v〉 . (15)

We still need to compute the expectation of (s − m)2

〈
(s − m)2

〉
=

〈
s2 − 2sm + m2

〉
(16)

=
〈

s2
〉
− 2 〈sm〉 +

〈
m2

〉
(17)

= s2 + s̃ − 2s 〈m〉 + 〈m〉2 + Var {m} (18)

= (s − 〈m〉)2 + s̃ + Var {m} . (19)

Substituting
〈
(s − m)2

〉
back in, we get:

−〈ln p (s | m, v)〉 =
1

2

{
〈exp v〉

[
(s − 〈m〉)2 + Var {m} + s̃

]
− 〈v〉 + ln 2π

}
.

(20)
The second part of the cost function is

〈ln q(s)〉 = 〈ln N (s | s, s̃)〉 (21)

=

〈
ln

[
(2πs̃)−1/2 exp

−(s − s)2

2s̃

]〉
(22)

= −
1

2
ln 2πs̃ +

−
〈
(s − s)2

〉

2s̃
(23)

= −
1

2
ln 2πs̃ +

−s̃

2s̃
(24)

= −
1

2
ln 2πes̃. (25)



3. Consider the following model:

p(x(t) | m, v) = N(x(t) | m, exp(−v)) (26)

p(m) = N(m | 0, exp(5)) (27)

p(v) = N(v | 0, exp(5)), (28)

where x(t), t = 1, . . . , T are the observed data and m and v are latent vari-
ables. Use the posterior approximation q(m, v) = q(m)q(v) = N(m |
m, m̃)N(v | v, ṽ). Assuming that q(v) is fixed, find q(m) that minimizes

Cvb = Eq

{
ln

q(m,v)

p({x(t)}T
t=1,m,v)

}
.

Solution:
Let us first write the whole cost function.

Cvb =

〈
ln

q(m, v)

p({x(t)}T
t=1 , m, v)

〉
(29)

= 〈ln q(m)〉 + 〈ln q(v)〉 +
T

∑
t=1

− 〈ln p(x(t) | m, v)〉 − 〈ln p(m)〉 − 〈ln p(v)〉 (30)

= −
1

2
ln(2πem̃)−

1

2
ln(2πeṽ)

+
T

∑
t=1

1

2

{
〈exp v〉

[
(x(t) − m)2 + m̃

]
− 〈v〉 + ln 2π

}

+
1

2

[
〈exp 5〉 (m2 + m̃)− 〈−5〉+ ln 2π

]

+
1

2

[
〈exp 5〉 (v2 + ṽ)− 〈−5〉+ ln 2π

]
(31)

Now if we only leave the terms that depend on q(m) we have

Cvb = const −
1

2
ln(2πem̃) +

T

∑
t=1

1

2
〈exp v〉

[
(x(t) − m)2 + m̃

]

+
1

2
〈exp 5〉 (m2 + m̃). (32)



The minimum of this can be found at the zero of the gradient with respect
to mean m and the variance m̃:

∂Cvb

∂m
=

T

∑
t=1

〈exp v〉 (m − x(t)) + exp(−5)m = 0 (33)

m =
∑

T
t=1 x(t)

exp(−5)
exp v + T

(34)

∂Cvb

∂m̃
= −

1

2m
+

T

∑
t=1

1

2
〈exp v〉+

1

2
exp(−5) = 0 (35)

m̃ =
1

exp(−5) + Texp v
. (36)

We can note that the mean m is close to the average of the data, only the
prior makes it go slightly towards zero. Also we note that the posterior
variance m̃ is the same as prior variance in case that there are no observa-
tions, or T = 0, and with each observation, the uncertainty (or variance)
decreases. It is interesting that the actual data values x(t) do not affect m̃.

The fourth problem will be solved next week.


