T-61.6040 Special Course in Computer and Information Science IV: Information Networks

László Kozma (lkozma@cc.hut.fi)

- S.Brin, L.Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine (1998)
- L.Page, S.Brin, R.Motwani, T.Winograd: The PageRank Citation Ranking: Bringing Order to the Web (1998)

This presentation is about: Google web search engine

- Not about:
 - Google Corporation
 - -Gmail, Google Maps, Google Docs, etc.
 - NASDAQ:GOOG
 - "Do no evil", etc. (maybe just a few words)

Web search

• WWW:

~30 B pages (source:Netcraft)

- Search engines:
 - crawl
 - index
 - -query (by keywords)
 - rank

Web search in 1998

- Not very useful:
 - mostly junk results
 - ranking doesn't work well
 - ex.: 3 of the 4 leading search engines can't find themselves
 - ex.: "Bill Clinton" joke of the day

Web search in 1998

- Design elements:
 - term counting
 - backlink counting
 - meta tags
 - "mixed motives"
 - closed algorithms

How was Google different?

- PageRank
- Using external information
- Scalable Architecture
- Openness, "Scientific Integrity"
- AdSense

- "Importance" of a page:
 is it possible to measure objectively?
- "Academic citations" model
- But the web is different:
 - heterogeneous
 - no quality control
 - ease of publishing
 - manipulation

- Basic idea:
 - links are not equally important
 - -Assign a Ranking for each page
 - Ranking propagates through links (votes)
 - "votes" evenly distributed among outgoing links

Simplified Ranking

$$R(u) = c \cdot \sum_{v \in B_u} \frac{R(v)}{|F_v|}$$

- u web page
- Fu forward link pages
- Bu backward link pages

- "Random Surfer" Model:
 - PageRank as probability distribution
- Problem with previous formula:
 - source sinks
 - Solution: damping factor (random surfer gets bored)
 - Pagerank with damping (typically d=0.85):

$$PR(u) = \frac{1-d}{N} + d \cdot \sum_{v \in B_u} \frac{PR(v)}{|F_v|}$$

- Computing PageRank: Iterative approach
- Convergence:
 - Affected by graph structure (good "expansion factor")
 - Initial values don't affect result, just convergence speed

-Typically ~log(N) nr. of iterations.

- Variants: personalized PageRank
- Manipulation

Meta-data

- Ranking of search results:
 - PageRank
 - Relevance to query
- Anchor text
 - Often describes a page better than the content itself
 - Can be abused through coordinated effort
- Other information:
 - Visual details
 - Page update frequency
 - Search term proximity

Google Architecture

- Overview
- Data Structures
- Crawling
- Indexing
- Searching

Google Architecture

Data Structures

- BigFiles
- Repository
- Document Index
- Lexicon
- Hit Lists
- Forward Index
- Inverted Index

- Crawling
- Indexing:
 - Parsing
 - Indexing into Barrels
 - Sorting

Searching

- 1. Parse query
- 2. Convert words into wordID
- 3. Seek start of doclist for every word
- 4. Scan through doclist until there is document matching all terms
- 5. Compute rank of document for query
- 6. If we are not at the end of any doclist and we haven't reached max. nr. of documents, go to 4
- 7. Sort matched documents by rank, return top k.

Conclusions

- Original papers present Google as research project
- Commercial success largely due to technical superiority
- Influence:
 - On everyday life
 - On businesses
- AdSense, AdWords:
 - Made Google viable commercially
 - Changed the web by providing an easy way to monetize content
- Google:
 - Monitor the web, grow with it
 - Influence the web (SEO industry)

"Do no evil"

- Privacy
- Filtering results
 - -Google bombs
 - Link farms
 - Illegal stuff
 - Political issues
- Transparency (search data)
- Transparency (algorithms)

Thanks for the attention.