
Connection and
Center-Piece Subgraphs

Janne Toivola
jatoivol@cis.hut.fi

Connection subgraphs

• “Fast Discovery of Connection Subgraphs”
by C. Faloutsos, K. McCurley, A. Tomkins

• subgraph showing connections between
two given nodes (s & t) in a larger graph

• interesting to find relationships in vast
social networks

• visualization limits manual exploration

Conventional methods

• Connections have been measured before:

• shortest path (Dijkstra, A* etc.)

• maximum flow (Ford-Fulkerson etc.)

• survivable networks: number of edge-
disjoint paths

• Not very suitable for social networks

Examples

...

s t

Proposed method

1. Find a smaller candidate graph to avoid
computational burden

2. Use the electrical concept of delivered
current to model intuitive connections

3. Find a subgraph of limited size and maximal
delivered current for display purposes

1. Candidate graphs

• Quick preprocessing to speed up the rest

• finds most important connections by
carefully growing neighborhoods of the
query nodes s and t

• discovered nodes = D(s) and D(t)

• expanded nodes = E(s) and E(t)

• pending nodes = P(s) and P(t)

Neighborhoods

s t

E(s) E(t)

cut edge

P(s)

D(s) D(t)

pickHeuristic

• Selects which node to expand next

• take the one with “shortest” path to root

• many ways to define “shortest”

• degree-weighted, count-weighted, and
multiplicative properties of length

l = deg(u)/C(u, v)

l = log(deg2(u)/C(u, v)2)

stoppingCondition

• Stop when D(s) and D(t) overlap enough

• limit total expansions (disk access)

• limit discovered nodes (memory)

• limit the number of cut edges
(connectedness of D(s) and D(t))

2. Electrical model

• Model the network using concepts from
electrical circuits

• voltage, current, conductance etc.

• source node s has +1 volts, sink t has 0V

• weight of edges ~ conductance

• current will flow from source to sink

Other analogues

• Hydraulics : pressurized liquid flowing thru
network of pipes of various diameter

• Random walk : a model related to electrons

• find the paths which take random walkers
from source to destination

Elementary physics

• Ohm’s law:

• Kirchhoff’s 1st law:

• => set of linear equations

• solved in O(n^3)

I(u, v) = C(u, v)(V (u) − V (v))

∀v :
∑

u

I(u, v) = 0

Network modifications

• Universal sink added to better match the
social network domain

• ≈ grounding nodes relative to their degree

• high degree nodes and long paths penalized

• concept of delivered current required since
part of the total current gets lost

Î(s, u) = I(s, u)

Î(s, ..., ui) = Î(s, ..., ui−1)
I(ui−1, ui)

Iout(ui−1)

3. Display graphs

• Greedy heuristics to find subgraph of given
size to maximize delivered current

• Starts with an empty graph and adds paths
with highest flow / new node

• Achieved with dynamic programming on
topologically sorted (directed) candidate
graph

Center-piece subgraphs

• “C-P Subgraphs: Problem Definition and
Fast Solutions” by H. Tong, C. Faloutsos

• connection subgraphs had 2 query nodes

• center-piece subgraphs try to describe the
community between Q > 2 query nodes

• E.g. find most influential authors related to
a set of given researchers in a field

Conventional methods

• Concept of delivered current works only
for pairs of nodes

• random walk methods like PageRank etc.

• community detection (remote relations?)

• graph partitioning achieves mostly the
opposite thing

Proposed method

• Based on the random walk idea

• random walkers start from each of the
query nodes

• steady-state probability score for
visiting a certain node

• score for the whole query set

• goodness criterion for subgraph

qi

j

r(i, j)

r(Q, j) Q
∑

j∈H

r(Q, j)

Different queries

• OR, k_softAND, AND

• i.e. how many of the query nodes need to
have connections to a target node

• achieved by combining individual scores
suitably, e.g. AND:

• k_softAND based on meeting probability
of k random walkers:

r(Q, j) =
∏

i∈[1,Q]

r(i, j)

r(Q, j, k) = r(Q́, j, k − 1) · r(Q, j) + r(Q́, j, k)

Solving scores

• Steady-state probabilities become:
R = r(i, j)

R
T = cR

T
× W̃ + (1 − c)E

⇒ R
T = (1 − c)(I − cW̃)−1

E

EXTRACT algorithm

• Like display graph generation: find a small
subgraph maximizing score

• Tries to find new key paths from query
nodes to most promising destination nodes

pd = argmaxj !=Hr(Q, j)

Speeding up

• Graph partitioning used for finding smaller
candidate graphs

• select the partitions containing the query
nodes

Teh end

• Any questions?

• Thanks for the patience

