Connection and Center-Piece Subgraphs
 jatoivol@cis.hut.fi

Connection subgraphs

- "Fast Discovery of Connection Subgraphs" by C. Faloutsos, K. McCurley, A.Tomkins
- subgraph showing connections between two given nodes ($s \& t$) in a larger graph
- interesting to find relationships in vast social networks
- visualization limits manual exploration

Conventional methods

- Connections have been measured before:
- shortest path (Dijkstra, A^{*} etc.)
- maximum flow (Ford-Fulkerson etc.)
- survivable networks: number of edgedisjoint paths
- Not very suitable for social networks

Examples

Proposed method

I. Find a smaller candidate graph to avoid computational burden
2. Use the electrical concept of delivered current to model intuitive connections
3. Find a subgraph of limited size and maximal delivered current for display purposes

I. Candidate graphs

- Quick preprocessing to speed up the rest
- finds most important connections by carefully growing neighborhoods of the query nodes s and t
- discovered nodes $=D(s)$ and $D(t)$
- expanded nodes $=E(s)$ and $E(t)$
- pending nodes $=P(s)$ and $P(t)$

Neighborhoods

pickHeuristic

- Selects which node to expand next
- take the one with "shortest" path to root
- many ways to define "shortest"
- degree-weighted, count-weighted, and multiplicative properties of length

$$
\begin{aligned}
& l=\operatorname{deg}(u) / C(u, v) \\
& l=\log \left(\operatorname{deg}^{2}(u) / C(u, v)^{2}\right)
\end{aligned}
$$

stoppingCondition

- Stop when $D(s)$ and $D(t)$ overlap enough
- limit total expansions (disk access)
- limit discovered nodes (memory)
- limit the number of cut edges (connectedness of $D(s)$ and $D(t)$)

2. Electrical model

- Model the network using concepts from electrical circuits
- voltage, current, conductance etc.
- source node s has +I volts, sink t has 0 V
- weight of edges ~ conductance
- current will flow from source to sink

Other analogues

- Hydraulics : pressurized liquid flowing thru network of pipes of various diameter
- Random walk : a model related to electrons
- find the paths which take random walkers from source to destination

Elementary physics

- Ohm's law: $I(u, v)=C(u, v)(V(u)-V(v))$
- Kirchhoff's Ist law: $\forall v: \sum_{u} I(u, v)=0$
- => set of linear equations
- solved in $O\left(n^{\wedge} 3\right)$

Network modifications

- Universal sink added to better match the social network domain
- \approx grounding nodes relative to their degree
- high degree nodes and long paths penalized
- concept of delivered current required since part of the total current gets lost

$$
\begin{aligned}
& \hat{I}(s, u)=I(s, u) \\
& \hat{I}\left(s, \ldots, u_{i}\right)=\hat{I}\left(s, \ldots, u_{i-1}\right) \frac{I\left(u_{i-1}, u_{i}\right)}{I_{o u t}\left(u_{i-1}\right)}
\end{aligned}
$$

3. Display graphs

- Greedy heuristics to find subgraph of given size to maximize delivered current
- Starts with an empty graph and adds paths with highest flow / new node
- Achieved with dynamic programming on topologically sorted (directed) candidate graph

Center-piece subgraphs

- "C-P Subgraphs: Problem Definition and Fast Solutions" by H.Tong, C. Faloutsos
- connection subgraphs had 2 query nodes
- center-piece subgraphs try to describe the community between $\mathrm{Q}>2$ query nodes
- E.g. find most influential authors related to a set of given researchers in a field

Conventional methods

- Concept of delivered current works only for pairs of nodes
- random walk methods like PageRank etc.
- community detection (remote relations?)
- graph partitioning achieves mostly the opposite thing

Proposed method

- Based on the random walk idea
- random walkers start from each of the query nodes q_{i}
- steady-state probability score $r(i, j)$ for visiting a certain node j
- score $r(\mathcal{Q}, j)$ for the whole query set \mathcal{Q}
- goodness criterion for subgraph $\sum_{j \in \mathcal{H}} r(\mathcal{Q}, j)$

Different queries

- OR, k_softAND, AND
- i.e. how many of the query nodes need to have connections to a target node
- achieved by combining individual scores suitably, e.g.AND: $r(\mathcal{Q}, j)=\prod r(i, j)$
- $\mathrm{k} _$softAND based on meeting probability of k random walkers:
$r(\mathcal{Q}, j, k)=r(\dot{\mathcal{Q}}, j, k-1) \cdot r(\mathcal{Q}, j)+r(\dot{\mathcal{Q}}, j, k)$

Solving scores

- Steady-state probabilities become:

$$
\begin{aligned}
& \mathbf{R}=r(i, j) \\
& \mathbf{R}^{T}=c \mathbf{R}^{T} \times \tilde{\mathbf{W}}+(1-c) \mathbf{E} \\
\Rightarrow & \mathbf{R}^{T}=(1-c)(\mathbf{I}-c \tilde{\mathbf{W}})^{-1} \mathbf{E}
\end{aligned}
$$

EXTRACT algorithm

- Like display graph generation: find a small subgraph maximizing score
- Tries to find new key paths from query nodes to most promising destination nodes

$$
p d=\operatorname{argmax}_{j \neq \mathcal{H}} r(\mathcal{Q}, j)
$$

Speeding up

- Graph partitioning used for finding smaller candidate graphs
- select the partitions containing the query nodes

Teh end

- Any questions?
- Thanks for the patience

