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Small-World phenomenon

From legends to theory

I The small-world phenomenon: in a social network each
pair of nodes is connected with a fairly short path.

I First significant scientific attention in the 1960’s.
I Milgram et al.: people are connected to each other with

paths of length six on average.
I Path lengths give the average diameter of the network.
I The claim is a strong requirement for the denseness and the

homogeneity of the network.
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Small-World phenomenon

First attempts on an explanation

I Pool and Kochen gave ground to the claims already before
Milgram’s tests.

I They showed that random graphs have very often short
diameters, of size O(log n).

I They didn’t use transitivity: if Anna and Bob both know
Cecil, then Anna and Bob probably know each other too.

I But this may easily lead to a strongly-clustered network
where the claim can’t hold.
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Small-World phenomenon

A new model emerges
Searching a good balance

I In 1998 Watts and Strogatz published a network model that
tried to balance between these two problems.

I They created networks with both local and long-range links.
I Local links used the K-closest-neighbours rule and the long

ones were chosen uniformly at random.
I This seems to match the ideas of transitivity and

homogeneity quite well.
I This model actually fits to many real-world networks.
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Small-World phenomenon

Twisting the question
Not just why, but how?

I The random graph theory successfully explains the
existence of short diameters.

I But in Milgram’s tests the letters actually found the
recipients in those six steps.

I How are strangers able to find these short paths with their
very limited information?

I The graph is huge and quite dense. There’s a whole lot of
paths and most of them cannot be short.

I Thus the latent information of the network must be more
important than it seems at first.
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Small-World phenomenon

Defining the model
Idea of Kleinberg

I Let the edges be directed.
I Model the network as a two-dimensional n× n grid and use

the Manhattan distance.
I Each element has an outgoing edge to each node within

distance p ≥ 1.
I Each element also has q randomly selected long-range

outgoing edges.
I The length of these long-range edges will be decisive.
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Small-World phenomenon

Pin-pointing the problems

I If we just select the long-range edges uniformly at random,
there will be no small-world.

I Look at the nodes at most
√

n away from target t.
I Probability of hitting one of them is 1/

√
n.

I It would take O(
√

n) steps to get there in average.
I The problem here is that the closer we are to t, the more

probably the long-range edges will take us to totally
elsewhere.
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Small-World phenomenon

Defining the model continued
Selecting the long jumps

I Say we are selecting the long-range edges of u. A node v
will be selected with probability proportional to d(u, v)−r.

I This r will be the concentration exponent.
I The model now has parameters p, q and r, but only r has

any real effect on the model’s behaviour.
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Small-World phenomenon

Defining limits for a solution

I The goal is to examine decentralized algorithms.
I An entity knows only what it has been told.
I It knows the location of the target, its own links and the

grid structure of the lattice.
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Networks without a small-world

I When would there be some problems?
I For large r this might be quite obvious.
I In that case the close neighbours of t will be proportionally

quite far away from everything else.
I Therefore getting to the neighbourhood will easily take too

long, because the long links are not long enough.
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What about small r’s?

I In the case of a small r there should no problems with
converging on the target.

I So why shouldn’t it work?
I Problem is that we need precision to hit the proportionally

small neighbourhood.
I Small r makes the algorithms to easily overshoot.
I This means that the long links don’t give enough advantage.
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Too fast, too imprecise: r < 2

Seeking the chokepoint
Link lengths

I Remember the uniform case r = 0.
I The closer we are, the farther the graph will take us.
I Probabilities of long links should be too large and short

links too small: ∑
v6=u

d(u, v)−r ≥ n2−r

(2− r)23−r .
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Too fast, too imprecise: r < 2

Seeking the chokepoint
Neighbourhood

I Select a neighbourhood U for t with radius pnδ.
I We get easily |U| ≤ 4p2n2δ.
I Next let’s calculate how easy it is to find a long-range link

to U in λnδ steps.
I Define this event to be E .
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Too fast, too imprecise: r < 2

Doing the math

I In a certain step we’ll find a long link to U with probability
at most

q|U|
1

(2−r)23−r n2−r
≤ (2− r)25−rqp2n2δ

n2−r .

I Doing this in λnδ steps thus has probability

P(E) ≤ λnδ (2− r)25−rqp2n2δ

n2−r ≤ 1
4

when selecting λ suitably and δ = (2− r)/3.
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Too fast, too imprecise: r < 2

Scrapping parts

I Next we’ll forget the not-so-obviously problematic parts.
I Let F be the event for d(s, t) ≥ n/4.
I Easily one sees that P(F) ≥ 1/2.
I Now we can conclude that

P(F ∨ E) ≤ 1
2

+
1
4

=⇒ P(F ∧ E) ≥ 1
4
.
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Too fast, too imprecise: r < 2

Scrapping parts continued

I Suppose F ∧ E .
I Then d(s, t) ≥ n/4 > pλnδ.
I Getting to t in λnδ steps requires now at least one long

jump to U.
I This is a contradiction. In this case thus all paths to t have

length more than λnδ.



Introduction Problematic networks The navigable network: r = 2 Summary

Too fast, too imprecise: r < 2

Cleaning house

I Now we can concentrate on the substantial part of
situations where we have the most problems.

I If X denotes the number of steps needed to reach t, then

E(X) ≥ E(X|F ∧ E) · P(F ∧ E) ≥ 1
4
λnδ.

�
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Too introvert: r > 2

Brainstorming the solution

I The links should now be more tightly concentrated.
I This means that getting far will be hard.
I Our aim is to prove that most paths are much too short.
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Too introvert: r > 2

Gathering pieces

I Let ε = r− 2 be the number of problems we have.
I If v is a long-range contact of u then we can easily say that

P(d(u, v) > m) ≤ m−ε/ε.
I Define F and X similarly as before.
I E will be the event that we find a link longer than nγ in λnβ

steps.
I We’ll progress just as we did in the r < 2 case.
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Too introvert: r > 2

Probability of E

I The union bound will give us

P(E) ≤ λnβqn−εγ/ε ≤ 1
4
,

when choosing λ suitably and β = εγ.
I Now we once again see that P(F ∧ E) ≥ 1/4.
I In that case the first λnβ steps will take us only

λnβ+γ = λn < n/4 < d(s, t) steps closer. (Choose β +γ = 1)
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Too introvert: r > 2

Endgame

I Requirements β = εγ and β + γ = 1 imply

β =
ε

ε + 1
and γ =

1
ε + 1

.

I We achieve the desired bound using the same tricks as
before:

E(X) ≥ E(X|F ∧ E) · P(F ∧ E) ≥ 1
4
λnβ =

1
4
λn

r−2
r−1 .

�
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Balance in all things

Plot of the lower bounds

What’s
happening
in r = 2?
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Balance in all things

Going through a phase

I The probability that u has v as its long-range link is at least
d(u, v)−2/(4 log(6n)).

I We say that the algorithm is in phase j if for the current
node u : 2j < d(u, t) ≤ 2j+1.

I Suppose Bj is the set of nodes v : d(v, t) ≤ 2j.
I We easily get |Bj| > 22j−1 and ∀v ∈ Bj : d(u, v) < 2j+2.
I What is the probability of changing phase?

P(we move to Bj) ≥
22j−1

4 log(6n)22j+4 =
1

128 log(6n)
.
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Balance in all things

Phase-shift

I Xj is now the time spent in phase j:

E(Xj) =
∞∑

i=1

P(Xj ≥ i) ≤
∞∑

i=1

(
1− 1

128 log(6n)

)i−1

= 128 log(6n).

I There are log n phases in total, therefore the expectation of
the path lengths is E(X) = O(log2 n). �
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Balance in all things

Reason behind the phenomenon

I The problem in the first cases was that either the closer
nodes were too close or the farther nodes were too far.

I In the r = 2 case all the phases were homogeneous.
I The magic behind this is that 2 is the only exponent for

which the long-range links are uniformly distributed over
distance scales

I Links of length 2j to 2j+1 have the same probabilities for all
j. Thus we have enough precision in every case.
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Summary

I In a large network one has to manage local and global
relations simultaneously.

I Heisenberg uncertainty principle for networks: you can’t
have both at the same time, but you can trade them.

I The paper states the balance enabling a subject to grasp the
whole and still observe the vicinity.
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