Small World

An algorithmic perspective

Niko Vuokko

October 24th 2007
Information Networks Seminar

Outline

Introduction
 Small-World phenomenon

Problematic networks
Too fast, too imprecise: $r<2$
Too introvert: $r>2$

The navigable network: $r=2$
Balance in all things

Small-World phenomenon

Outline

Introduction
 Small-World phenomenon

Problematic networks
 Too fast, too imprecise: $r<2$
 Too introvert: $r>2$

The navigable network: $r=2$ Balance in all things

From legends to theory

- The small-world phenomenon: in a social network each pair of nodes is connected with a fairly short path.
- First significant scientific attention in the 1960's.
- Milgram et al.: people are connected to each other with paths of length six on average.
- Path lengths give the average diameter of the network.
- The claim is a strong requirement for the denseness and the homogeneity of the network.

First attempts on an explanation

- Pool and Kochen gave ground to the claims already before Milgram's tests.
- They showed that random graphs have very often short diameters, of size $\mathcal{O}(\log n)$.
- They didn't use transitivity: if Anna and Bob both know Cecil, then Anna and Bob probably know each other too.
- But this may easily lead to a strongly-clustered network where the claim can't hold.

A new model emerges Searching a good balance

- In 1998 Watts and Strogatz published a network model that tried to balance between these two problems.
- They created networks with both local and long-range links.
- Local links used the K-closest-neighbours rule and the long ones were chosen uniformly at random.
- This seems to match the ideas of transitivity and homogeneity quite well.
- This model actually fits to many real-world networks.

Twisting the question
 Not just why, but how?

- The random graph theory successfully explains the existence of short diameters.
- But in Milgram's tests the letters actually found the recipients in those six steps.
- How are strangers able to find these short paths with their very limited information?
- The graph is huge and quite dense. There's a whole lot of paths and most of them cannot be short.
- Thus the latent information of the network must be more important than it seems at first.

Defining the model
 Idea of Kleinberg

- Let the edges be directed.
- Model the network as a two-dimensional $n \times n$ grid and use the Manhattan distance.
- Each element has an outgoing edge to each node within distance $p \geq 1$.
- Each element also has q randomly selected long-range outgoing edges.
- The length of these long-range edges will be decisive.

Pin-pointing the problems

- If we just select the long-range edges uniformly at random, there will be no small-world.
- Look at the nodes at most \sqrt{n} away from target t.
- Probability of hitting one of them is $1 / \sqrt{n}$.
- It would take $\mathcal{O}(\sqrt{n})$ steps to get there in average.
- The problem here is that the closer we are to t, the more probably the long-range edges will take us to totally elsewhere.

Defining the model continued

Selecting the long jumps

- Say we are selecting the long-range edges of u. A node v will be selected with probability proportional to $d(u, v)^{-r}$.
- This r will be the concentration exponent.
- The model now has parameters p, q and r, but only r has any real effect on the model's behaviour.

Defining limits for a solution

- The goal is to examine decentralized algorithms.
- An entity knows only what it has been told.
- It knows the location of the target, its own links and the grid structure of the lattice.

Networks without a small-world

- When would there be some problems?
- For large r this might be quite obvious.
- In that case the close neighbours of t will be proportionally quite far away from everything else.
- Therefore getting to the neighbourhood will easily take too long, because the long links are not long enough.

What about small r's?

- In the case of a small r there should no problems with converging on the target.
- So why shouldn't it work?
- Problem is that we need precision to hit the proportionally small neighbourhood.
- Small r makes the algorithms to easily overshoot.
- This means that the long links don't give enough advantage.

What about small r's?

- In the case of a small r there should no problems with converging on the target.
- So why shouldn't it work?
- Problem is that we need precision to hit the proportionally small neighbourhood.
- Small r makes the algorithms to easily overshoot.
- This means that the long links don't give enough advantage.

Too fast, too imprecise: $r<2$

Outline

Introduction Small-World phenomenon

Problematic networks

Too fast, too imprecise: $r<2$
Too introvert: $r>2$

The navigable network: $r=2$ Balance in all things

Seeking the chokepoint Link lengths

- Remember the uniform case $r=0$.
- The closer we are, the farther the graph will take us.
- Probabilities of long links should be too large and short links too small:

$$
\sum_{v \neq u} d(u, v)^{-r} \geq \frac{n^{2-r}}{(2-r) 2^{3-r}}
$$

Seeking the chokepoint

 Neighbourhood- Select a neighbourhood U for t with radius $p n^{\delta}$.
- We get easily $|U| \leq 4 p^{2} n^{2 \delta}$.
- Next let's calculate how easy it is to find a long-range link to U in λn^{δ} steps.
- Define this event to be \mathcal{E}.

Doing the math

- In a certain step we'll find a long link to U with probability at most

$$
\frac{q|U|}{\frac{1}{(2-r) 2^{3-r}} n^{2-r}} \leq \frac{(2-r) 2^{5-r} q p^{2} n^{2 \delta}}{n^{2-r}}
$$

- Doing this in λn^{δ} steps thus has probability

$$
P(\mathcal{E}) \leq \lambda n^{\delta} \frac{(2-r) 2^{5-r} q p^{2} n^{2 \delta}}{n^{2-r}} \leq \frac{1}{4}
$$

when selecting λ suitably and $\delta=(2-r) / 3$.

Scrapping parts

- Next we'll forget the not-so-obviously problematic parts.
- Let \mathcal{F} be the event for $d(s, t) \geq n / 4$.
- Easily one sees that $P(\mathcal{F}) \geq 1 / 2$.
- Now we can conclude that

$$
P(\overline{\mathcal{F}} \vee \mathcal{E}) \leq \frac{1}{2}+\frac{1}{4} \Longrightarrow P(\mathcal{F} \wedge \overline{\mathcal{E}}) \geq \frac{1}{4}
$$

Scrapping parts continued

- Suppose $\mathcal{F} \wedge \overline{\mathcal{E}}$.
- Then $d(s, t) \geq n / 4>p \lambda n^{\delta}$.
- Getting to t in λn^{δ} steps requires now at least one long jump to U.
- This is a contradiction. In this case thus all paths to t have length more than λn^{δ}.

Cleaning house

- Now we can concentrate on the substantial part of situations where we have the most problems.
- If X denotes the number of steps needed to reach t, then

$$
E(X) \geq E(X \mid \mathcal{F} \wedge \overline{\mathcal{E}}) \cdot P(\mathcal{F} \wedge \overline{\mathcal{E}}) \geq \frac{1}{4} \lambda n^{\delta} .
$$

Outline

Introduction Small-World phenomenon

Problematic networks

Too fast, too imprecise: $r<2$
Too introvert: $r>2$

The navigable network: $r=2$ Balance in all things

Brainstorming the solution

- The links should now be more tightly concentrated.
- This means that getting far will be hard.
- Our aim is to prove that most paths are much too short.

Gathering pieces

- Let $\varepsilon=r-2$ be the number of problems we have.
- If v is a long-range contact of u then we can easily say that $P(d(u, v)>m) \leq m^{-\varepsilon} / \varepsilon$.
- Define \mathcal{F} and X similarly as before.
- \mathcal{E} will be the event that we find a link longer than n^{γ} in λn^{β} steps.
- We'll progress just as we did in the $r<2$ case.

Probability of \mathcal{E}

- The union bound will give us

$$
P(\mathcal{E}) \leq \lambda n^{\beta} q n^{-\varepsilon \gamma} / \varepsilon \leq \frac{1}{4}
$$

when choosing λ suitably and $\beta=\varepsilon \gamma$.

- Now we once again see that $P(\mathcal{F} \wedge \overline{\mathcal{E}}) \geq 1 / 4$.
- In that case the first λn^{β} steps will take us only $\lambda n^{\beta+\gamma}=\lambda n<n / 4<d(s, t)$ steps closer. (Choose $\beta+\gamma=1$)

Endgame

- Requirements $\beta=\varepsilon \gamma$ and $\beta+\gamma=1$ imply

$$
\beta=\frac{\varepsilon}{\varepsilon+1} \text { and } \gamma=\frac{1}{\varepsilon+1} .
$$

- We achieve the desired bound using the same tricks as before:

$$
E(X) \geq E(X \mid \mathcal{F} \wedge \overline{\mathcal{E}}) \cdot P(\mathcal{F} \wedge \overline{\mathcal{E}}) \geq \frac{1}{4} \lambda n^{\beta}=\frac{1}{4} \lambda n^{\frac{r-2}{r-1}}
$$

Balance in all things

Outline

Introduction
 Small-World phenomenon

Problematic networks
 Too fast, too imprecise: $r<2$
 Too introvert: $r>2$

The navigable network: $r=2$
Balance in all things

Balance in all things

Plot of the lower bounds

What's
 happening

in $r=2$?

Going through a phase

- The probability that u has v as its long-range link is at least $d(u, v)^{-2} /(4 \log (6 n))$.
- We say that the algorithm is in phase j if for the current node $u: 2^{j}<d(u, t) \leq 2^{j+1}$.
- Suppose B_{j} is the set of nodes $v: d(v, t) \leq 2^{j}$.
- We easily get $\left|B_{j}\right|>2^{2 j-1}$ and $\forall v \in B_{j}: d(u, v)<2^{j+2}$.
- What is the probability of changing phase?

$$
P\left(\text { we move to } B_{j}\right) \geq \frac{2^{2 j-1}}{4 \log (6 n) 2^{2 j+4}}=\frac{1}{128 \log (6 n)}
$$

Phase-shift

- X_{j} is now the time spent in phase j :

$$
\begin{aligned}
E\left(X_{j}\right)=\sum_{i=1}^{\infty} P\left(X_{j} \geq i\right) & \leq \sum_{i=1}^{\infty}\left(1-\frac{1}{128 \log (6 n)}\right)^{i-1} \\
& =128 \log (6 n)
\end{aligned}
$$

- There are $\log n$ phases in total, therefore the expectation of the path lengths is $E(X)=\mathcal{O}\left(\log ^{2} n\right)$.

Reason behind the phenomenon

- The problem in the first cases was that either the closer nodes were too close or the farther nodes were too far.
- In the $r=2$ case all the phases were homogeneous.
- The magic behind this is that 2 is the only exponent for which the long-range links are uniformly distributed over distance scales
- Links of length 2^{j} to 2^{j+1} have the same probabilities for all j. Thus we have enough precision in every case.

Summary

- In a large network one has to manage local and global relations simultaneously.
- Heisenberg uncertainty principle for networks: you can't have both at the same time, but you can trade them.
- The paper states the balance enabling a subject to grasp the whole and still observe the vicinity.

