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Summary

The types of problems discussed on this course are

Intrinsic dimensionality estimation

Dimensionality reduction

Latent variable separation

for high-dimensional data sets.

Principal component analysis (PCA) can be used for all three,
but we can do better.
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Intrinsic dimensionality estimation

How many parameters are needed to approximate the manifold?

Instead of PCA we can use fractal dimensionality measures

Capacity dimension (“box-counting”)

Correlation dimension

Also iterative testing—“trial-and-error”—methods can be effective.
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Dimensionality reduction

How to find a representative projection to
a lower-dimensional space?

PCA was improved by

Better cost function/optimisation ⇒ Sammon’s NLM (1969)

Stochastic techniques ⇒ CCA (Demartines & Hérault, 1995)

Geodesic distances and graph distances ⇒ Isomap
(Tenenbaum, 1998)

Topology considerations ⇒ SOM (Kohonen, 1982)

Data-driven methods ⇒ Isotop (Lee, 2002)
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Latent variable separation

What are the paremeters which describe the manifold?

PCA has been improved into

Projection pursuit (PP, Kruskal, 1972)

Blind source separation and independent component analysis
(BSS/ICA, Jutten & Hérault, 1980s)

Of the methods on this course only generative topographic
mapping (GTM) is effective for variable separation.
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Taxonomy: Distance preserving methods

Euclidan

Multidimensional scaling (MDS), equivalent to PCA
Sammon’s nonlinear mapping (NLM)
Curvilinear component analysis (CCA)

Geodesic

Isomap
Geodesic NLM (GNLM)
Curvilinear distance analysis (CDA)

Other

Kernel PCA (KPCA)
Semidefinite embedding (SDE)
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Taxonomy: Topology preserving methods

Predefined lattice

Self-organising maps (SOM)
Generative topographic mapping (GTM)

Data-driven lattice

Locally linear embedding (LLE)
Laplacian eigenmaps (LE)
Isotop
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Taxonomy: By kernel and algorithm

Distance pres. MDS algorithm NLM alg. CCA alg.

Euclidean metric MDS NLM CCA
Geodesic Isomap GNLM CDA
Commute time LE
Fixed kernel KPCA
Optimised kernel SDE

Topology pres. ANN-like MLE by EM Spectral

Predefined lattice SOM GTM
Data-driven lattice Isotop LLE

Artificial Neural Network, Maximum Likelihood Estimation, Expectation Maximation
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Data flow

Five steps to success:

1 Data selection

2 Calibration/normalization

3 Linear dimensionality reduction by PCA

4 Nonlinear dimensionality reduction
or

latent variable separation

5 Visualization/modeling/classification/prediction/etc.
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Methodology considerations based on data set size N

Large data set, N > 2000

Probably too computationally heavy for most methods
Consider reducing the size by sampling or vector quantization

Medium-sized set, 200 < N ≤ 2000

The NLDR methods will generally work ok

Small data set, N ≤ 200

Problems are likely
PCA can still be used safely
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Methodology considerations based on dimensionality D

Very high dimensionality, D > 50

Some methods can “get confused”
Use PCA first for reducing dimensionality and denoising
without significantly losing information

High dimensionality, 5 < D ≤ 50

Probably ok, but proceed with caution

Low dimensionality, D ≤ 5

The NLDR methods can be used safely
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Methodology considerations based on intrinsic dimension

Target dimension d vs. intrinsic dimension iD

if d � iD

Anything will work, so use PCA

if d ≈ iD

Use some NLDR method
If the manifold is highly curved it would be good to have
d = iD + 1 or iD + 2.

if d < iD

E.g., for visualisation
Risky business
Methods based on eigenvectors are relatively safer, since they
converge better and you can choose which eigenvectors to use.
SOM or NeRV
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