◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Distance Preservation - Part 2 Graph Distances

Niko Vuokko

October 9th 2007 NLDR Seminar From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Outline

Introduction Geodesic and graph distances

From linearity to nonlinearity

Isomap Geodesic NLM Curvilinear distance analysis

Novel experiments

Kernel PCA Semidefinite embedding

From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Graph distance

Outline

Introduction Geodesic and graph distances

From linearity to nonlinearity

Isomap Geodesic NLM Curvilinear distance analysis

Novel experiments

Kernel PCA Semidefinite embedding

Graph distance

Distance along the manifold

- In a perfect embedding the distances you see are as if taken along the manifold.
- ► Therefore using these distances could be beneficial.
- These distances can then be instantly plugged in to MDS, NLM or CCA.
- ► The methods optimize the latent space variables x_i analytically or algebraically. Thus the data space distances δ_y(i, j) don't have to have any special characteristics.

From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Graph distance

Geodesic distance Formal definition

 Simply defined as the shortest Euclidean distance along the manifold,

$$l = min_{p(z)} \int_{z(i)}^{z(j)} ||J_z m(p(z))|| dz.$$

- ► Simple? No.
- ► Solution? Discretize the manifold.

Graph distance

Graph distance - Practical simplification Base construction

- In discretizing we have to construct an undirected graph out of the manifold.
- Node selection is like vector quantization, but all points may be used.
 - Enough nodes needed to explain the manifold.
 - Too much nodes means immense computation.
- Edge weights give the Euclidean distances between the edge's endpoints. Thus we have a Euclidean graph in our hands.
- How to select the edges?

From linearity to nonlinearity 00000000000 Novel experiments

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Graph distance

Two rules for edge selection

- 1. Use the *K* closest neighbours.
- 2. Choose a "suitable" ε and all points closer than that.
- ► Too large a K or ε makes the graph very dense and computations hard. It may also let the graph jump across the void.
- ► Too small a K or ε may not connect the graph and gives insufficient information about the topology.
- ► This isn't too different from SOM...

Graph distance

Distances between data points

- ► The distance between x_i and x_j is the minimum sum of weights across any path from x_i to x_j in the graph.
- ► Now we need to find this minimum for all different point pairs (x_i, x_j).
- This is much easier than its analytical counterpart. Here we can efficiently calculate the distances with Dijkstra's algorithm.
- Theory says that in the ideal case these distances really give the optimal approximations for geodesic distances.

Recycling old ideas

- The old, fast linear methods with algebraic solutions are easily made nonlinear simply by replacing the Euclidean data space distances with graph distances.
- Result is a fast nonlinear method, where the nonlinearity comes from the distance used, not from the methods internals.
- Also inherently nonlinear methods such as NLM or CCA can be transformed this way to a new method.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theory behind the transition Developable manifold

- ► A manifold is called a *developable P-manifold* if its geodesic distances can be mapped to the embedding space Euclidean distances.
- After some calculus we find out that a manifold is developable iff there exists a parametric equation for the D-dimensional data set in which each coordinate depends on at most one latent variable.
- Mundanely: a manifold is developable if it is a twisted sheet of paper in space (or similar).
- ► Thus the swiss roll is developable, but the open box isn't.

From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Summary

Isomap

Outline

Introduction Geodesic and graph distances

From linearity to nonlinearity Isomap

Geodesic NLM Curvilinear distance analysis

Novel experiments

Kernel PCA Semidefinite embedding

Isomap definition

- The core of the method is the same as in classical metric MDS.
- ► Only difference is that now the distance matrix **D** contains graph distances between the data points.
- ► Solution is once again X̂ = I_{P×N}Λ^{1/2}U^T, where the Gram matrix S = UΛU^T is calculated from D with double centering.
- Vector quantization, subsampling or "anchoring" the distances can be used to lower computational burden.
- ► The model works if the graph distances are close to the embedding space distances, i.e. if the manifold is developable.

Isomap

Isomap properties

- Isomap has the same good properties as MDS: it's fast and the mappings can be done incrementally.
- One should note that the graph distance will never really explain any Euclidean configuration. Therefore some eigenvalues might be negative.
- The same elbow strategy still works when trying to figure out the intrinsic dimensionality.
- In the examples the graph distances are practically Manhattan distances. Therefore diagonal distances get overestimated and stretched.

From linearity to nonlinearity

Novel experiments

Isomap

Isomap example

From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

GNLM

Outline

Introduction Geodesic and graph distances

From linearity to nonlinearity

Isomap Geodesic NLM Curvilinear distance analysis

Novel experiments Kernel PCA Semidefinite embedding

GNLM

Combining graph distances and NLM

- ➤ Similarly as with Isomap we merely use graph distances instead of Euclidean ones in d_y(i, j) distances.
- Error function is

$$E_{GNLM} = rac{1}{c}\sum_{\substack{i=1,\ i < j}}^{N}rac{(\delta_{\mathbf{y}}(i,j)-d_{\mathbf{x}}(i,j))^2}{\delta_{\mathbf{y}}(i,j)},$$

where δ_y is the graph distance.

 The same quasi-Newton update rule used in NLM is used also here. From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

GNLM

GNLM properties

- GNLM doesn't depend on manifold developability and it moulds nonlinearity also in the optimization phase.
- ► This means that it should perform better than Isomap.
- Once again diagonals get longer than they should, but this can actually be beneficial in GNLM as they will then have less weight.

From linearity to nonlinearity

Novel experiments

GNLM

GNLM example

From linearity to nonlinearity

Novel experiments

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Summary

CDA

Outline

Introduction Geodesic and graph distances

From linearity to nonlinearity

Isomap Geodesic NLM Curvilinear distance analysis

Novel experiments

Kernel PCA Semidefinite embedding CDA

Novel experiments

CCA + SOM = CDA

- CCA already made a clear point of looking only at the local structure.
- The weight function F_{λ} was used for this.
- CDA once again changes nothing but the data space distance to graph distance.
- If the manifold is developable, then the graph distances approximate the perfect embedding distances very well and *F_λ* has no use here.
- ...but in the real world manifolds may not be Euclidean and are definitely not when there is noise.
- Therefore F_{λ} is still a viable tuning component.

CDA

Novel experiments

CCA + SOM = CDA

- CCA already made a clear point of looking only at the local structure.
- The weight function F_{λ} was used for this.
- CDA once again changes nothing but the data space distance to graph distance.
- If the manifold is developable, then the graph distances approximate the perfect embedding distances very well and *F_λ* has no use here.
- ...but in the real world manifolds may not be Euclidean and are definitely not when there is noise.
- Therefore F_{λ} is still a viable tuning component.

CDA

Novel experiments

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

CDA properties

- Using the graph distance allows unwrapping even highly folded manifolds.
- ► Shortcuts across the "invisible forcefield" are forbidden.
- ► Of course selecting *λ* still requires precision, but the method is more robust in this standpoint than CCA.
- We may use a neighbourhood proportion instead of λ. It can also vary during the process.
- CDA converges faster than CCA for approximately developable manifolds and its parameters need less attention.

From linearity to nonlinearity

Novel experiments

CDA

CDA example

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ の々ぐ

From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

KPCA

Outline

Introduction Geodesic and graph distances

From linearity to nonlinearity

Isomap Geodesic NLM Curvilinear distance analysis

Novel experiments Kernel PCA Semidefinite embe

Large is small

- Usually DR methods try to find reductions that linearize variables to reduce dimensionality.
- ► Kernel PCA also tries to first linearize the data, but this time by growing the dimensionality from *D* to *Q* radically, maybe even to infinity(!)
- ► After the data is in the *Q*-dimensional space, basic MDS (as *Q* is large) is used to find the *P*-dimensional embedding.
- ► Usually Q ≫ N, so MDS may (and often will) give us N non-zero eigenvalues.
- Here once again the linear MDS in extended by giving it nonlinear scalar products to work with.

Novel experiments

The details

- ► The dimension-inflating mapping is \$\phi\$: \$\mathbb{R}^D\$ → \$\mathbb{R}^Q\$ and the Gram matrix used by MDS is \$\Phi\$ = \$(\phi(y_i) \cdot \phi(y_j))_{ij}\$.
- The *Q*-dimensional data φ(Y) must be centered before EVD, this can circumvented by double-centering the Gram matrix Φ similarly to earlier double-centerings.
- Problem not yet discussed: What *is* ϕ ? How to define it?
- Simple (?) answer: nobody really knows.
- As one can note, ϕ was used only to calculate the Gram matrix Φ .
- We can forget about φ and go straight to Φ by using a kernel function. Then the mapping φ or even Q is never actually considered explicitly.

Novel experiments

The details

- ► The dimension-inflating mapping is \$\phi\$: \$\mathbb{R}^D\$ → \$\mathbb{R}^Q\$ and the Gram matrix used by MDS is \$\Phi\$ = \$(\phi(y_i) \cdot \phi(y_j))_{ij}\$.
- The *Q*-dimensional data φ(Y) must be centered before EVD, this can circumvented by double-centering the Gram matrix Φ similarly to earlier double-centerings.
- Problem not yet discussed: What is ϕ ? How to define it?
- Simple (?) answer: nobody really knows.
- As one can note, φ was used only to calculate the Gram matrix Φ.
- We can forget about φ and go straight to Φ by using a kernel function. Then the mapping φ or even Q is never actually considered explicitly.

Novel experiments

The details

- ► The dimension-inflating mapping is \$\phi\$: \$\mathbb{R}^D\$ → \$\mathbb{R}^Q\$ and the Gram matrix used by MDS is \$\Phi\$ = \$(\phi(y_i) \cdot \phi(y_j))_{ij}\$.
- The *Q*-dimensional data φ(Y) must be centered before EVD, this can circumvented by double-centering the Gram matrix Φ similarly to earlier double-centerings.
- Problem not yet discussed: What is ϕ ? How to define it?
- Simple (?) answer: nobody really knows.
- As one can note, φ was used only to calculate the Gram matrix Φ.
- We can forget about φ and go straight to Φ by using a kernel function. Then the mapping φ or even Q is never actually considered explicitly.

From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

KPCA

Kernel function

We will use a kernel function

$$\kappa : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}, \kappa(y_i, y_j) = \phi(y_i) \cdot \phi(y_j).$$

- ► Of course κ should be selected so that there exists a φ that induces the scalar products κ(ℝ^D × ℝ^D).
- The kernel ideology has similarities to Support Vector Machines (SVM).

From linearity to nonlinearity

Novel experiments

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Mercer's theorem

Theorem (Mercer's theorem)

Suppose κ is a continuous kernel of a positive and positive-definite integral operator

$$\mathcal{K}: L_2 \to L_2, (\mathcal{K}f)(v) = \int \kappa(u, v) f(v) dv.$$

Then κ can be decomposed into a series

$$\kappa(u, v) = \sum_{q=1}^{\infty} \lambda_q \phi_q(u) \phi_q(v),$$

where λ_q are the eigenvalues and ϕ_q the orthonormal eigenfunctions of κ .

From linearity to nonlinearity

Novel experiments

Shortcut to the scalar products

This implies that the function defined as

$$\phi(\mathbf{y}) = \sum_{q=1}^{\infty} \sqrt{\lambda_q} \phi_q(\mathbf{y})$$

induces the scalar products given by κ .

- Of course once again it is overly difficult to check these conditions for some desired κ. Therefore *de facto* solutions are usually used:
 - ▶ Polynomial kernel: $\kappa(u, v) = (u \cdot v + 1)^p$, $p \in \mathbb{Z}$.
 - ► Radial basis functions, e.g. Gaussian kernels $\kappa(u, v) = \exp(-\frac{||u-v||^2}{2\sigma^2}).$
 - Sigmoidal functions such as $\kappa(u, v) = \tanh(u \cdot v + b)$.

▲ロト▲母ト▲ヨト▲ヨト ヨーのへで

KPCA properties

- In the bone KPCA is nothing but a fancy way of using basic MDS.
- This time the Gram matrix gets calculated by the kernel function.
- Nothing really justifies the use of the mentioned kernel functions, we're just optimistic that the selected kernel AND its parameters would be "compatible" with the data.
- Luckily KPCA is fast if the kernel is easy enough to compute. The EVD in MDS is the bottleneck then.
- Using sloppier kernel parameters makes KPCA more like the linear PCA.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Drawbacks

- ► As already mentioned, KPCA gives no guarantees of the kernel's abilities.
- ► In fact, KPCA might as well increase the data's dimension even from *D* to *N*.
- This happens in the following examples.
- ► The first six eigenvalues combined don't contribute even half of the variance in either of the examples!

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Drawbacks

- ► As already mentioned, KPCA gives no guarantees of the kernel's abilities.
- ► In fact, KPCA might as well increase the data's dimension even from *D* to *N*.
- This happens in the following examples.
- The first six eigenvalues combined don't contribute even half of the variance in either of the examples!

From linearity to nonlinearity

Novel experiments

KPCA

KPCA example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Outline

From linearity to nonlinearity

Novel experiments

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Summary

SDE

Introduction Geodesic and graph distances

From linearity to nonlinearity

Isomap Geodesic NLM Curvilinear distance analysis

Novel experiments

Kernel PCA Semidefinite embedding From linearity to nonlinearity

Novel experiments

SDE

Semidefinite embedding Evolving KPCA

- KPCA's problem was that its impossible to know the correct kernel and its parameters.
- SDE's idea is to learn a suitable kernel function i.e. the Gram matrix from the data itself.
- SDE applies realism in forgetting about preserving large distances and concentrates on trying to achieve local isometry.
- This requires the manifold to be smooth enough for isometries to be possible.

Novel experiments

Constructing a local isometry

- In practice the local isometry means creating cliques to the adjacency graph.
- ► Construct a clique of size *K* + 1 for each point and its *K* neighbours.
- ► Let **A** be the adjacency matrix of the graph. Then we require that $\mathbf{A}_{ij} = 1 \implies ||x_i x_j||_2 = ||y_i y_j||_2$.
- Our objective becomes maximizing

$$\phi=rac{1}{2}\sum_{i=1}^N\sum_{j=1}^N d_x^2(i,j)$$

while taking care of the requirement above.

Novel experiments

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Simplifying the problem

- This is still too difficult, but it can be simplified by making use of the scalar products.
- Let S be the Gram matrix constructed from the δ_y matrix, and K the Gram matrix in the latent space.
- ► Now we need to have $\mathbf{A}_{ij} = 1 \implies \mathbf{S}_{ij} = \mathbf{K}_{ij}$
- ► Solution is unique up to translations. Requiring ∑_i x_i = 0 can also be stated as ∑_{i,j} K_{ij} = 0.
- ► When remembering the null sum of K, objective φ actually reduces to tr(K) after some manipulation.

Novel experiments

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Final solution

- So our problem is:
- ► Find arg max_K tr(K), where
 - 1. K is symmetric and positive-definite (it is a Gram matrix),

2.
$$\sum_{i,j} \mathbf{K}_{ij} = 0$$
 and

3.
$$\mathbf{A}_{ij} = 1 \implies \mathbf{S}_{ij} = \mathbf{K}_{ij}$$
.

- This looks really bad, but actually can be solved with semidefinite programming (SDP) (although computations are big).
- ► Actually the target function is even convex and bounded.
- Finally we do EVD: $\mathbf{K} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$, and output $\hat{\mathbf{X}} = \mathbf{I}_{P \times N} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$.

Novel experiments

SDE properties

- ► As SDE is a close cousin to KPCA, it is just basic MDS in steroids.
- SDE is slow, the trace optimization takes lots of time and space. Vector quantization is one solution.
- The kernel function is never revealed.
- ► It is possible to incrementally select the embedding dimension *D*.
- SDE and local isometry vs. Isomap and full isometry. Macrostructure is better preserved in SDE.

From linearity to nonlinearity

Novel experiments

SDE

SDE example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Summary

- ► The distances can be calculated as if taken from a perfect embedding to a lower dimension.
- Geodesic and graph distances try to achieve this.
- Still, the methods have few new ideas. All of them depend on MDS or NLM.
- Methods are successful in unwrapping manifolds, other structures and noise cause problems.