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Graph distance

Distance along the manifold

I In a perfect embedding the distances you see are as if taken
along the manifold.

I Therefore using these distances could be beneficial.
I These distances can then be instantly plugged in to MDS,

NLM or CCA.
I The methods optimize the latent space variables xi

analytically or algebraically. Thus the data space distances
δy(i, j) don’t have to have any special characteristics.
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Graph distance

Geodesic distance
Formal definition

I Simply defined as the shortest Euclidean distance along the
manifold,

l = minp(z)

∫ z(j)

z(i)
||Jzm(p(z))||dz.

I Simple? No.
I Solution? Discretize the manifold.
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Graph distance

Graph distance - Practical simplification
Base construction

I In discretizing we have to construct an undirected graph
out of the manifold.

I Node selection is like vector quantization, but all points
may be used.

I Enough nodes needed to explain the manifold.
I Too much nodes means immense computation.

I Edge weights give the Euclidean distances between the
edge’s endpoints. Thus we have a Euclidean graph in our
hands.

I How to select the edges?
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Graph distance

Two rules for edge selection

1. Use the K closest neighbours.

2. Choose a “suitable” ε and all points closer than that.

I Too large a K or ε makes the graph very dense and
computations hard. It may also let the graph jump across
the void.

I Too small a K or ε may not connect the graph and gives
insufficient information about the topology.

I This isn’t too different from SOM...
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Graph distance

Distances between data points

I The distance between xi and xj is the minimum sum of
weights across any path from xi to xj in the graph.

I Now we need to find this minimum for all different point
pairs (xi, xj).

I This is much easier than its analytical counterpart. Here we
can efficiently calculate the distances with Dijkstra’s
algorithm.

I Theory says that in the ideal case these distances really give
the optimal approximations for geodesic distances.
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Recycling old ideas

I The old, fast linear methods with algebraic solutions are
easily made nonlinear simply by replacing the Euclidean
data space distances with graph distances.

I Result is a fast nonlinear method, where the nonlinearity
comes from the distance used, not from the methods
internals.

I Also inherently nonlinear methods such as NLM or CCA can
be transformed this way to a new method.
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Theory behind the transition
Developable manifold

I A manifold is called a developable P-manifold if its geodesic
distances can be mapped to the embedding space Euclidean
distances.

I After some calculus we find out that a manifold is
developable iff there exists a parametric equation for the
D-dimensional data set in which each coordinate depends
on at most one latent variable.

I Mundanely: a manifold is developable if it is a twisted
sheet of paper in space (or similar).

I Thus the swiss roll is developable, but the open box isn’t.
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Isomap

Isomap definition

I The core of the method is the same as in classical metric
MDS.

I Only difference is that now the distance matrix D contains
graph distances between the data points.

I Solution is once again X̂ = IP×NΛ1/2UT, where the Gram
matrix S = UΛUT is calculated from D with double
centering.

I Vector quantization, subsampling or “anchoring” the
distances can be used to lower computational burden.

I The model works if the graph distances are close to the
embedding space distances, i.e. if the manifold is
developable.



Introduction From linearity to nonlinearity Novel experiments Summary

Isomap

Isomap properties

I Isomap has the same good properties as MDS: it’s fast and
the mappings can be done incrementally.

I One should note that the graph distance will never really
explain any Euclidean configuration. Therefore some
eigenvalues might be negative.

I The same elbow strategy still works when trying to figure
out the intrinsic dimensionality.

I In the examples the graph distances are practically
Manhattan distances. Therefore diagonal distances get
overestimated and stretched.
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Isomap

Isomap example
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GNLM

Combining graph distances and NLM

I Similarly as with Isomap we merely use graph distances
instead of Euclidean ones in dy(i, j) distances.

I Error function is

EGNLM =
1
c

N∑
i=1,
i<j

(δy(i, j)− dx(i, j))2

δy(i, j)
,

where δy is the graph distance.
I The same quasi-Newton update rule used in NLM is used

also here.
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GNLM

GNLM properties

I GNLM doesn’t depend on manifold developability and it
moulds nonlinearity also in the optimization phase.

I This means that it should perform better than Isomap.
I Once again diagonals get longer than they should, but this

can actually be beneficial in GNLM as they will then have
less weight.
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GNLM

GNLM example
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CDA

CCA + SOM = CDA

I CCA already made a clear point of looking only at the local
structure.

I The weight function Fλ was used for this.
I CDA once again changes nothing but the data space

distance to graph distance.
I If the manifold is developable, then the graph distances

approximate the perfect embedding distances very well and
Fλ has no use here.

I ...but in the real world manifolds may not be Euclidean and
are definitely not when there is noise.

I Therefore Fλ is still a viable tuning component.
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CDA

CDA properties

I Using the graph distance allows unwrapping even highly
folded manifolds.

I Shortcuts across the “invisible forcefield“ are forbidden.
I Of course selecting λ still requires precision, but the

method is more robust in this standpoint than CCA.
I We may use a neighbourhood proportion instead of λ. It

can also vary during the process.
I CDA converges faster than CCA for approximately

developable manifolds and its parameters need less
attention.
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CDA

CDA example
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KPCA

Large is small

I Usually DR methods try to find reductions that linearize
variables to reduce dimensionality.

I Kernel PCA also tries to first linearize the data, but this time
by growing the dimensionality from D to Q radically, maybe
even to infinity(!)

I After the data is in the Q-dimensional space, basic MDS (as
Q is large) is used to find the P-dimensional embedding.

I Usually Q � N, so MDS may (and often will) give us N
non-zero eigenvalues.

I Here once again the linear MDS in extended by giving it
nonlinear scalar products to work with.
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KPCA

The details

I The dimension-inflating mapping is φ : RD → RQ and the
Gram matrix used by MDS is Φ = (φ(yi) · φ(yj))ij.

I The Q-dimensional data φ(Y) must be centered before EVD,
this can circumvented by double-centering the Gram matrix
Φ similarly to earlier double-centerings.

I Problem not yet discussed: What is φ? How to define it?
I Simple (?) answer: nobody really knows.
I As one can note, φ was used only to calculate the Gram

matrix Φ.
I We can forget about φ and go straight to Φ by using a

kernel function. Then the mapping φ or even Q is never
actually considered explicitly.
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KPCA

Kernel function

I We will use a kernel function

κ : RD × RD → R, κ(yi, yj) = φ(yi) · φ(yj).

I Of course κ should be selected so that there exists a φ that
induces the scalar products κ(RD × RD).

I The kernel ideology has similarities to Support Vector
Machines (SVM).
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KPCA

Mercer’s theorem

Theorem (Mercer’s theorem)

Suppose κ is a continuous kernel of a positive and positive-definite
integral operator

K : L2 → L2, (Kf)(v) =
∫

κ(u, v)f(v)dv.

Then κ can be decomposed into a series

κ(u, v) =
∞∑

q=1

λqφq(u)φq(v),

where λq are the eigenvalues and φq the orthonormal
eigenfunctions of κ.
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KPCA

Shortcut to the scalar products

I This implies that the function defined as

φ(y) =
∞∑

q=1

√
λqφq(y)

induces the scalar products given by κ.
I Of course once again it is overly difficult to check these

conditions for some desired κ. Therefore de facto solutions
are usually used:

I Polynomial kernel: κ(u, v) = (u · v + 1)p, p ∈ Z.
I Radial basis functions, e.g. Gaussian kernels

κ(u, v) = exp(− ||u−v||2
2σ2 ).

I Sigmoidal functions such as κ(u, v) = tanh(u · v + b).
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KPCA

KPCA properties

I In the bone KPCA is nothing but a fancy way of using basic
MDS.

I This time the Gram matrix gets calculated by the kernel
function.

I Nothing really justifies the use of the mentioned kernel
functions, we’re just optimistic that the selected kernel AND
its parameters would be “compatible” with the data.

I Luckily KPCA is fast if the kernel is easy enough to
compute. The EVD in MDS is the bottleneck then.

I Using sloppier kernel parameters makes KPCA more like
the linear PCA.



Introduction From linearity to nonlinearity Novel experiments Summary

KPCA

Drawbacks

I As already mentioned, KPCA gives no guarantees of the
kernel’s abilities.

I In fact, KPCA might as well increase the data’s dimension
even from D to N.

I This happens in the following examples.
I The first six eigenvalues combined don’t contribute even

half of the variance in either of the examples!
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KPCA

KPCA example
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SDE

Semidefinite embedding
Evolving KPCA

I KPCA’s problem was that its impossible to know the correct
kernel and its parameters.

I SDE’s idea is to learn a suitable kernel function i.e. the
Gram matrix from the data itself.

I SDE applies realism in forgetting about preserving large
distances and concentrates on trying to achieve local
isometry.

I This requires the manifold to be smooth enough for
isometries to be possible.
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SDE

Constructing a local isometry

I In practice the local isometry means creating cliques to the
adjacency graph.

I Construct a clique of size K + 1 for each point and its K
neighbours.

I Let A be the adjacency matrix of the graph. Then we
require that Aij = 1 =⇒ ||xi − xj||2 = ||yi − yj||2.

I Our objective becomes maximizing

φ =
1
2

N∑
i=1

N∑
j=1

d2
x(i, j)

while taking care of the requirement above.
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SDE

Simplifying the problem

I This is still too difficult, but it can be simplified by making
use of the scalar products.

I Let S be the Gram matrix constructed from the δy matrix,
and K the Gram matrix in the latent space.

I Now we need to have Aij = 1 =⇒ Sij = Kij

I Solution is unique up to translations. Requiring
∑

i xi = 0
can also be stated as

∑
i,j Kij = 0.

I When remembering the null sum of K, objective φ actually
reduces to tr(K) after some manipulation.
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SDE

Final solution

I So our problem is:
I Find arg maxK tr(K), where

1. K is symmetric and positive-definite (it is a Gram matrix),
2.

∑
i,j Kij = 0 and

3. Aij = 1 =⇒ Sij = Kij.

I This looks really bad, but actually can be solved with
semidefinite programming (SDP) (although computations
are big).

I Actually the target function is even convex and bounded.
I Finally we do EVD: K = UΛUT, and output

X̂ = IP×NΛ1/2UT.
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SDE

SDE properties

I As SDE is a close cousin to KPCA, it is just basic MDS in
steroids.

I SDE is slow, the trace optimization takes lots of time and
space. Vector quantization is one solution.

I The kernel function is never revealed.
I It is possible to incrementally select the embedding

dimension D.
I SDE and local isometry vs. Isomap and full isometry.

Macrostructure is better preserved in SDE.
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SDE

SDE example
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Summary

I The distances can be calculated as if taken from a perfect
embedding to a lower dimension.

I Geodesic and graph distances try to achieve this.
I Still, the methods have few new ideas. All of them depend

on MDS or NLM.
I Methods are successful in unwrapping manifolds, other

structures and noise cause problems.
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