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About Data-driven Lattices. . .

What’s new?

Previously. . .

• Topology lattice predefined

• Based on some “intuition”/idea for the data

• In the best case scenario:
• You know the data topology
• You select the nicest lattice shape to preserve it

But life is cruel

Usually no idea beforehand about data topology (or not much)
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About Data-driven Lattices. . .

What’s new?

So, what about trying to infer a topology from the data itself?
Ideally, then:

• Unconstrained embedding

• More adaptive

Now how do we do this?

Lattice is in fact a graph built from the data:

• Vertices: data points

• Edges: neighbourhood relationships
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About Data-driven Lattices. . .

Outline

1 Creating these graphs

2 Locally Linear Embedding (LLE)

3 Laplacian Eigenmap (LE)
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Creating these graphs
Data not quantized
Data quantized

As seen before. . .

We just want to connect neighbouring points of the space.

Two main situations:
• Data not quantized
• Data quantized

And two color figures to divert you...

(a) Sine example (b) Spiral example
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Creating these graphs
Data not quantized
Data quantized

K -rule - Does not exactly work well on the examples. . .

The K -rule

• Find the K closest points

• Choosing incorrectly K may lead to “wrong” neighbours

• And hence, edges issues
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Creating these graphs
Data not quantized
Data quantized

K -rule - Does not exactly work well on the examples. . . (2)

Edges and neighbours issues, for example

(c) Sine example (d) Spiral example
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Creating these graphs
Data not quantized
Data quantized

ε-rule - Funny results also. . .

ε-rule

• Each point gets connected to points within an ε radius ball (centered
on the considered point)

• But then. . . Isolated points may have no neighbours (or “wrong” ones)

• Hard to evaluate a proper ε (more than K ) in practice

• Results are OK when data is uniformly distributed
• Too dense =⇒ Too many edges
• Too sparse =⇒ Disconnected points
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Creating these graphs
Data not quantized
Data quantized

ε-rule - Funny results also. . . (2)

(e) Sine example (f) Spiral example
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Creating these graphs
Data not quantized
Data quantized

τ -rule - Slightly better. . .

τ -rule

Two points y(i) and y(j) are connected if

di︷ ︸︸ ︷
min

j
||y(i)− y(j)|| ≤ τ

dj︷ ︸︸ ︷
min

i
||y(j)− y(i)|| and dj ≤ τdi (similarity cond.)

(1)

||y(i)− y(j)|| ≤ τdi or ||y(j)− y(i)|| ≤ τdj(neighborhood cond.) (2)

Behaves almost like the ε-rule but with an implicit radius (in τ)
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Creating these graphs
Data not quantized
Data quantized

τ -rule - Slightly better. . . (2)

(g) Sine example (h) Spiral example

Yoan Miche (CIS, HUT) Topology Preservation II: The Lattice Strikes Back November 6, 2007 11 / 27



Creating these graphs
Data not quantized
Data quantized

Data rule: let’s be serious

Why not use the information of the quantization for the graph building ?

Data rule

• for each point y(i)
• compute the K closest prototypes c(j1), . . . , c(jK )

• Each pair c(js), c(jt) has to follow the two conditions to be
connected:

• “Condition of the ellipse”:

d(y(i), c(js)) + d(y(i), c(jt)) < C1d(c(js), c(jt)) (3)

• “Condition of the circle”:

d(y(i), c(js)) < C2d(y(i), c(jt)) and d(y(i), c(jt)) < C2d(y(i), c(js))
(4)
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Creating these graphs
Data not quantized
Data quantized

Looks nicer. . .

(i) Sine example (j) Spiral example
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Creating these graphs
Data not quantized
Data quantized

Histogram rule exists also. . .

(k) Sine example (l) Spiral example
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Locally Linear Embedding (LLE)

Ideas behind. . .

• While SOM and GTM try to preserve neighbouring points close, we
work on angles with LLE

• LLE uses conformal mapping to preserve local angles

• This is somewhat related to preserving distances: aims at preserving
the local scalar product properties
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Locally Linear Embedding (LLE)

A little algorithm. . .

LLE algorithm

1 Determine which angles to take into account
• Select neighbours for each point using a previous graph building

technique (mostly K closest or ε ball)

2 Then, replace each data point with a linear combination of the
selected neighbours

3 Local geometry of manifold characterized by these linear coefficients.

4 Reconstruction error measured by

E (W) =
N∑

i=1

∣∣∣∣∣∣
∣∣∣∣∣∣y(i)−

∑
j∈N (i)

wi ,jy(j)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(5)

With N (i) the set of neighbours of y(i) and wi ,j the coefficients of
the N × N matrix W of weights
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Locally Linear Embedding (LLE)

A little algorithm. . . (2)

To compute the wi ,j , E (W) is minimized under two constraints

• Points are reconstructed solely from their neighbours:
wi ,j = 0 ∀j /∈ N (i)

• Rows of W sum to one:
N∑

j=1

wi ,j = 1

Nice thing lies here

• Obtained wi ,j verify invariance to rotations, scalings and translations
of the associated point y(i) and its neighbours

• Hence, weights characterize intrinsic geometric properties of the
considered neighbourhood of the manifold

• Hopefully, these geometric properties are also valid in a lower
P-dimensional representation.
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Locally Linear Embedding (LLE)

A little algorithm. . . (3)

• Coordinates in this P-dimensional space are found by minimizing the
embedding cost function

Φ(X̂) =
N∑

i=1

∣∣∣∣∣∣
∣∣∣∣∣∣x̂(i)−

∑
j∈N (i)

wi ,j x̂(j)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(6)

• Error calculated in the embedding space, this time, and wi ,j fixed

• Details of the calculation omitted. Use an EVD on a certain matrix
M = (I−W)T (I−W) to minimize Φ(X̂) and find the coordinates in
the P-dimensional space
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Locally Linear Embedding (LLE)

Looks rather nice

(m) Swiss roll: LLE (n) Open box: LLE

Smooth, correct embedding, except for a crushed face on the open box
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Locally Linear Embedding (LLE)

Advantages and some other things. . .

• Assumes that data linear locally, not globally

• =⇒ Manifold can be mapped to a plane using a conformal mapping

• Elegant for the mind and simple in the ideas

• Sticks to an eigensolver for the hardest part (and matrix often sparse,
which makes things easier)
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Laplacian Eigenmap (LE)

Ideas behind. . .

• Also going for a local approach to the problem of NLDR

• This time, minimization of neighbouring distances within the graph,
with constraints (avoids the trivial case)

• Relies on the idea that the data set
Y = {. . . , y(i), . . . , y(j), . . . }1≤i ,j≤M contains a sufficiently large
number N of points on a smooth P-dimensional manifold

• If N large enough, manifold can be represented by a graph
G = (VN ,E )

• Again, neighbourhood relationships determined using K -ary
neighourhoods or ε-balls
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Laplacian Eigenmap (LE)

What’s done in practice. . .

Some steps of LE

• Map Y to a set of low dimensional points
X = {. . . , x(i), . . . , x(j), . . . }1≤i ,j≤N keeping same neighbourhgood
relationships, under the constraint of minimizing

ELE =
1

2

N∑
i ,j=1

||x(i)− x(j)||22wi ,j (7)

with wi ,j = 0 if y(i) and y(j) not neighbours, and 0 ≤ wi ,j otherwise.

• Most often, wi ,j follow a Gaussian kernel, or more simply, wi ,j = 1 if
y(i) and y(j) are neighbours

• Thus, minimizing ELE means that if y(i) and y(j) are close to each
other, then x(i) and x(j) should be as well
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Laplacian Eigenmap (LE)

What’s done in practice. . . (2)

With some calculations, criterion reduces to

ELE = tr(XLXT ) (8)

with L = W −D being the weighted Laplacian matrix of the graph G ,

and D diagonal with di ,j =
N∑

j=1

wi ,j

Problem ends up to an EVD of L and keep the P “lowest” eigenvectors
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Laplacian Eigenmap (LE)

Algorithm in a big nutshell. . .

LE algorithm

1 Determine neighbourhoods (K -ary or ε-balls)

2 Build the graph (and determine adjacencies)

3 Build matrix W (using kernel or. . . )

4 Compute D matrix (diagonal, sums of weights rowwise)

5 Compute L, Laplacian matrix of W: L = W −D

6 Normalize the Laplacian matrix

7 Compute its EVD and do some operations on eigenvectors to obtain
the embedding

But again, life is cruel. . .

Parameters controlling the graph (K or ε) are very sensitive and require
great care
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Laplacian Eigenmap (LE)

Not-so-bad-but-not-so-good. . .

(o) Swiss roll: LE (p) Open box: LE

Swiss roll has third (spiral) dimension crushed and box is OK except for
one crushed dimension again
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Laplacian Eigenmap (LE)

Finally, for LE. . .

• LE has few parameters (once kernel for weights W is chosen): K or ε

• But parameters have a “dramatic” influence on results

• Apparently much nicer for clustering than dimensionality reduction

• Minimizing distances may lead to degenerate solutions (all in one
point or such)
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Conclusion

A small conclusion on these two methods. . .

• LLE has sexy and seducing ideas and concepts

• Not so hard on the calculation part

• Rather ok results (box crushed is “usual” unfortunately)

• LE is definately not meant for dimension reduction

• Seriously, the book says so!

• Used for clustering, more

• You may as well forget this one, I guess

And now, for the end of the show. . .

Antti takes on with Isotop
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