Generative Topographic Mapping

Nonlinear Dimensionality Reduction Seminar

Helsinki University of Technology

Laszld Kozma <lkozma@cc.hut.fi>



* Nonlinear Dimensionality Reduction

- Distance-preserving methods
- Topology-preserving methods

* Predefined-lattice

- SOM

- Generative Topographic Mapping
« Data-driven lattice



Generative Topographic Mapping

Generative model

Probabilistic method based on Bayesian
learning

Introduced by Bishop, Svenseén, et. al. in 1996
http://www.ncrg.aston.ac.uk/GTM/



GTM in a nutshell

R’- data space
R"— latent space

D>L

1. probabilistically pick a point in R”

. D . .
2. map the pointto R via a nonlinear, smooth
function

3. add noise

probability distribution in R"  smooth function,
noise can all be learned through EM-algorithm



GTM is “a principled SOM”

 explicit density model over data

 objective function that quantifies how well the
map Is trained

e sound, provably convergent optimization
method (EM-algorithm)



Generative Topographic Mapping

 Data space: RD

L
o Latent space: R

 Find a nonlinear, smooth function:
L D
y(x,W):R"—>R

(for example a MLP, where W-weights)

* Yy maps an L dimensional space into an L-dimensional
manifold non-linearly embedded in D-dimensions



* p(x) — probability distribution in latent space

 induces probability distibution in data space



e Convolve distribution with Gaussian noise:

N(y(x,W),5)

—D/2 D
(%) em{—gg(td—yd(x,“’))z}

p(t|x, W, )

- B — inverse of variance
- D — dimension of data space






 Integrate out the latent variables:
pEW,8) = [ pltlx, W, ) p(x) dx.

» generally not solvable analytically

« choose grid points in latent space:

K
PEW, ) = = 3" pltler, W, 5).
k



Likelihood of the model

N

L= Hp(t‘w? !6) — H

n

1 K
E Zp(tn‘xka W:v ﬁ)]
k

Log-likelihood:
{ = ?len (% ;p(tﬂxkawaﬂ))

Maximize it with respect to § and W
For example with gradient descent
Mixture of Gaussians: use EM-algorithm



EM - algorithm

« E-step:
- responsibility of latent point x« for data point t»

p(tn|xx, W, 8)p(xz)
> Pt | Xk, W, B)p(xp/)

Fkn — p(xk|tna W:- ;6) —

- p(x«) constant (1/K)
* M-step:
- 'tn Used as weights to update p and W

- “move each component of the mixture towards data
points for which it is most responsible”



The nonlinear function y

choice important if we want to preserve topology

linear combination of linear and non-linear basis functions

M
yd(xa W) — Z(;STR(X)H}TH@

L linear basis functions can be initialized using PCA
non-linear basis functions typically Gaussian kernels

nr. of basis functions ~ nr. of grid points



Initialization

Latent space dimension (1 or 2)

Prior distribution in latent space (grid points)
Center and width of Gaussian basis functions
Weights W:

- can be chosen randomly, such that variance over y equals
variance of test data

- if y has linear components, they can be initialized with PCA

- non-linear component-weights can be set to zero or to small
random values

Noise variance: 1/} (at least the length of (L+1)th PC)



Algorithm

Pick latent space dimension, grid points
Choose basis functions
Initialize W, 3

repeat
E-step
M-step
until Convergence



Example...

iteration 0,1



Example...

iteration 2,4



Example...

iteration 8,15



Dimension Reduction

Suppose we found suitable W* and 3*

We have a probability distribution in data space: p(t|xx)
k=1,2,3,...,K

Prior distribution in latent space: p(xk)=1/K

Use Bayes-theorem:

p(t‘xk? W+, ,6* )p(xk)
Z:k* p(ty|xp , W, 3%)p(x )

p(xx|t) =



Dimension Reduction

e posterior-mode projection:

ﬁmde = argmax p(Xg|t,)

Xk

X

» posterior-mean projection:

K
Xt = "Xy p(X [tn)
k



Results
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GTM summary

« Advantages:

- In addition to finding X for given y, it can also approximate
DP(xly)

- Easy to generalize to new points
- Optimizes well-defined function (log-likelihood)

- EM maximizes log-likelihood monotonically, converges after
few iterations

« Disadvantages:
- Inefficient for more than 2 latent dimensions
- Doesn't estimate intrinsic dimension

- Limited mapping power: kernel centers, variances fixed, only
weights adjusted



