- 1. **Biology.** The number of human genes is estimated to be around 20000 25000. The number of human proteins is estimated to be over 500000 (source: Wikipedia). How is this possible?
- 2. Methods. Explain briefly the hypothesis of co-evolving proteins (when considering proteinprotein interactions).
- 3. **Probability model.** Calculate the conditional probabilities $P(D_i|D_1)$ (i = 2a, 2b, 2c) with the equations below for the data in Table 1.
 - Which column *i* gives the highest probability and do you think this is plausible?
 - Can you explain why the model cannot distinguish between two of the columns? Do you think it should when a biological application is considered?

(Note that you can consider columns 2a and 2b as different assingments where the first and second sequence (row) has swapped interaction partners.)

Equations:

$$P(D_i|D_1) = \frac{P(D_{1i})}{P(D_1)}$$

$$P(D_1) = Z \prod_{\alpha} \frac{(n_{\alpha}^1 + 3)!}{3!}$$

$$P(D_{1i}) = Z \prod_{\alpha} \prod_{\beta} (n_{\alpha\beta}^{1i})!$$

 n_{α}^{1} is the number of occurences of symbol α (A, T, G or C) in column 1. $n_{\alpha\beta}^{1i}$ is the number of occurences of symbol α in column 1 and symbol β in column *i* on the same row. "!" denotes the factorial (0! = 1). Note that the normalization constant Z cancels out in the conditional probability and can be ignored.

Table 1: Data table.

1	2a	2b	2c
Α	Т	Α	Т
Т	A	Т	Α
Т	A	A	Т
G	C	C	G
C	G	G	C