Coronary heart disease related proteomics

Jaakko Niemi

Contents

- Background of coronary heart disease
- Shotgun proteomics
- SEQUEST algorithm
- Application: HDL proteomics
- Conclusions

Coronary heart disease

- the most common cause of death in the Western World
- annual costs 360 billion US dollars (in USA alone)
- Ipoprotein particles have a major role in the development and progression of the disease

Lipoprotein structure and main classes

Lipoprotein	Density	Diameter	Average	Average	Average	Average
Fraction	range, g/ml	range, nm	C, %	TG, %	Lipid, %	Protein, $\%$
CM	$<\!0.960$	80-1200	4	88	99	1
VLDL	0.960 - 1.006	30-80	23	56	92	8
IDL	1.006 - 1.019	25 - 35	43	29	89	11
LDL	1.019 - 1.063	16-25	58	13	79	21
HDL_2	1.063 - 1.125	8.5-12	41	16	67	33
HDL_3	1.125 - 1.210	4-8.5	35	13	48	52

Lipoprotein metabolism

Development of a foam cell

Progression of an atherosclerotic lesion

Plaque rupture and thrombosis

HDL particles

- "the good cholesterol"
- inversely related to CHD
- maintain reverse cholesterol transport
- may have antiinflammatory and antioxidative properties

Shotgun proteomics

- direct analysis of large protein complexes (DALPC)
- capable of identifying individual proteins in large protein complexes without first purifying each protein component to homogeneity

Shotgun proteomics

Identified proteins in complex

- 2D Chromatograpy (charge and hydrophobicity)
 - Strong cation exchange (SCX)
 - Reversed-phase (RP)
- SEQUEST algorithm for identifying proteins in MS spectra

SEQUEST

- tandem mass spectrometry data analysis method used for protein identification
- identifies collections of tandem mass spectras comparing these spectras to the protein sequences found in protein databases
- identifies each tandem mass spectrum individually.

SEQUEST

- Step 1: Tandem mass spectrometry data reduction
- Step 2: Searching amino acid sequences from protein database
- Step 3: Scoring method and theoretical spectra construction
- Step 4: Cross-correlation analysis

Step 1: MS data reduction

- Aim: to eliminate noise and to reduce the number of ions to be considered
- all but the 200 most abundant ions are removed
- the remaining ions are renormalised

Step 2: Search method

- possible amino acid sequences are identified in a protein database
- protein sequences are retrieved and scanned to find linear combinations of amino acids that match the mass of the peptide

Step 3: Scoring method

- The fragment ions are predicted for the sequences derived from database
- They are compared to the MS spectra using a scoring function
- Theoretical spectra is created for the top 500 best fit sequences

Step 4: Cross-correlation analysis

- Theoretical spectras are compared to the experimental spectra using cross-correlation
- The final score attributed to each candidate peptide sequence is the value of the function at T=0 minus the mean of the cross-correlation function over the range -75< T<75
- The scores are normalized to 1.0 and the peptide sequence with the biggest score is selected

$$R_{\tau} = \sum_{i=0}^{n-1} x[i] y[i + \tau]$$

x is theoretical spectra y is experimental spectra τ is a displacement value

Cross-correlation function for the peptide DLRSWTAADTAAQISQ

Application: HDL proteomics

- Quantify the protein composition of HDL
 - → provide insights into the properties of HDL
- 33 subjects (7 CAD patients)
- Shotgun proteomics used for protein identification

Results (1/2)

48 proteins identified in HDL

- → 22 linked to cholesterol and lipoprotein metabolism
- → 23 acute-phase-response proteins
- Fundamental role for HDL in innate immunity

Results (2/2)

- HDL₃ from CAD patients is selectively enriched in some proteins related to inflammatory response
- Individual protein levels as markers of CAD?

Discussion

- HDL proteomics provides new information on HDL functions
- The degree of variation in the number and identity of HDL proteins large
- Future direction: find simple HDL biomarkers to predict CHD

Conclusions

- Lipoproteins are closely related to coronary heart disease
- Shotgun proteomics is a useful method to identify individual proteins in large protein complexes
- SEQUEST method can be used to identify proteins from experimental MS spectras
- Proteomics may provide new information on coronary heart disease