Discovering molecular pathways from protein interaction and gene expression data

José Caldas

9-4-2008

José Caldas Discovering molecular pathways from protein interaction and g

<ロ> (日) (日) (日) (日) (日)

Introduction

A Probabilistic Graphical Model Learning Algorithm Results Conclusion

To have a mechanism for inferring pathways from **gene expression** and **protein interaction** data.

・ロン ・回と ・ヨン・

3

Motivation — Why search for pathways

Pathway

Set of genes that coordinate to achieve a specific task.

イロト イヨト イヨト イヨト

Motivation — Why search for pathways

Pathway

Set of genes that coordinate to achieve a specific task.

What do we gain from understanding pathways

- 1. A coherent global picture of (condition-specific) cellular activity.
- 2. Application to disease mechanisms.

Motivation — Why use two kinds of data

2 properties of (many) pathways

<ロ> (日) (日) (日) (日) (日)

3

Motivation — Why use two kinds of data

2 properties of (many) pathways

(A) Genes in the same pathway are activated together \Rightarrow exhibit similar expression profiles.

イロト イポト イヨト イヨト

Motivation — Why use two kinds of data

2 properties of (many) pathways

- (A) Genes in the same pathway are activated together \Rightarrow exhibit similar expression profiles.
- (B) When genes coordinate to achieve a particular task, their protein products often interact.

イロト イポト イラト イラト 一日

Motivation — Why use two kinds of data

2 properties of (many) pathways

- (A) Genes in the same pathway are activated together \Rightarrow exhibit similar expression profiles.
- (B) When genes coordinate to achieve a particular task, their protein products often interact.

Each data type alone is a weaker indicator of pathway activity.

イロト イポト イラト イラト 一日

Expression profiles Protein interaction — Markov random field Unified model

Intuitive Idea

Detect group of genes that are co-expressed, and whose products interact in the protein data.

Expression profiles Protein interaction — Markov random field Unified model

Intuitive Idea

- Detect group of genes that are co-expressed, and whose products interact in the protein data.
- Create a model for **gene expression data**.
- Create a model for **protein interaction data**.

(日) (同) (E) (E) (E)

Expression profiles Protein interaction — Markov random field Unified model

Intuitive Idea

- Detect group of genes that are co-expressed, and whose products interact in the protein data.
- Create a model for **gene expression data**.
- Create a model for **protein interaction data**.
- Join them.

(日) (同) (E) (E) (E)

Expression profiles Protein interaction — Markov random field Unified model

Gene

• Set of genes
$$G = \{1, \ldots, n\}$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Expression profiles Protein interaction — Markov random field Unified model

Gene

- Set of genes $G = \{1, \ldots, n\}$.
- Each gene g has two attributes:

<ロ> (四) (四) (三) (三) (三)

Expression profiles Protein interaction — Markov random field Unified model

Gene

- Set of genes $G = \{1, \ldots, n\}$.
- Each gene *g* has two attributes:
 - Class (pathway), denoted by g.C (discrete value).

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Expression profiles Protein interaction — Markov random field Unified model

Gene

- Set of genes $G = \{1, \ldots, n\}$.
- Each gene *g* has two attributes:
 - Class (pathway), denoted by g.C (discrete value).
 - Expression in microarray i, denoted by $g.E_i$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Expression profiles Protein interaction — Markov random field Unified model

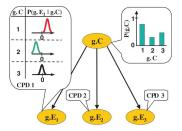
Gene

- Set of genes $G = \{1, \ldots, n\}$.
- Each gene g has two attributes:
 - Class (pathway), denoted by g.C (discrete value).
 - Expression in microarray i, denoted by g.E_i.
 - If there are m microarrays $\Rightarrow g.\mathbf{E} = \{g.E_1, \dots, g.Em\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Expression profiles Protein interaction — Markov random field Unified model

Model for expression profiles - Naive Bayes

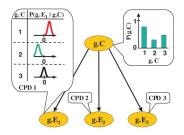


Naive Bayes — given the class label g.C, $g.E_i$ and $G.E_j$ are independent.

イロン イヨン イヨン イヨン

Expression profiles Protein interaction — Markov random field Unified model

Model for expression profiles - Naive Bayes



Class probability

g.C follows a multinomial probability distribution

•
$$p(g.C = k) = \theta_k$$

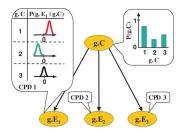
• $\sum_{i=1}^{K} \theta_i = 1$

イロト イヨト イヨト イヨト

3

Expression profiles Protein interaction — Markov random field Unified model

Model for expression profiles - Naive Bayes



Expression profiles

- $g.E_i|g.C = k \sim N(\mu_{ki}, \sigma_{ki}^2)$
- ► A pathway *i* specifies the **average** expression level for each microarray and also the variance.

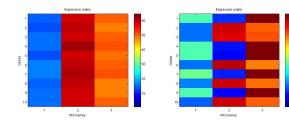
イロン イヨン イヨン イヨン

Expression profiles Protein interaction — Markov random field Unified model

Model for expression profiles - Naive Bayes

Example:

- 1 pathway, 10 genes, 3 microarrays
- Pathway specifies the averages $\mu = (15, 60, 50)$
- What is the most likely expression matrix?



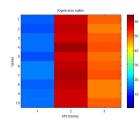
イロト イヨト イヨト イヨト

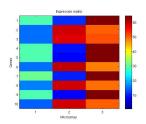
Expression profiles Protein interaction — Markov random field Unified model

Model for expression profiles - Naive Bayes

Example:

- 1 pathway, 10 genes, 3 microarrays
- Pathway specifies the averages $\mu = (15, 60, 50)$
- What is the most likely expression matrix?



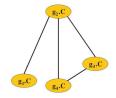


(The matrix on the left)

イロト イポト イヨト イヨト

Expression profiles Protein interaction — Markov random field Unified model

Model for protein interaction — Markov random field

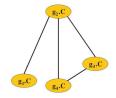


Undirected graph, $V = \{g_1.C, \dots, g_n.C\}$, E =set of protein interactions.

イロン イ部ン イヨン イヨン 三日

Expression profiles Protein interaction — Markov random field Unified model

Model for protein interaction — Markov random field



Undirected graph, $V = \{g_1.C, \dots, g_n.C\}$, E =set of protein interactions.

Assumption

Interacting proteins are more likely to be in the same pathway.

Intuitive idea

If a pair of nodes share the same class \Rightarrow likelihood is higher \Rightarrow

Expression profiles Protein interaction — Markov random field Unified model

Markov random field — Formalism

• Each $g_i.C$ is associated with a *potential* $\phi_i(g_i.C)$.

(日) (四) (王) (王) (王)

Expression profiles Protein interaction — Markov random field Unified model

Markov random field — Formalism

- Each $g_i.C$ is associated with a *potential* $\phi_i(g_i.C)$.
- ► Each edge g_i.C g_j.C is associated with a compatibility potential φ_{i,j}(g_i.C, g_j.C).

Expression profiles Protein interaction — Markov random field Unified model

Markov random field — Formalism

- Each $g_i.C$ is associated with a *potential* $\phi_i(g_i.C)$.
- Each edge g_i.C g_j.C is associated with a compatibility potential φ_{i,j}(g_i.C, g_j.C).

Joint distribution is

$$P(g_1.C,\ldots,g_n.C) = \frac{1}{Z} \prod_{i=1}^n \phi_i(g_i.C) \prod_{\{g_i.C-g_j.C\}\in \mathbb{E}} \phi_{i,j}(g_i.C,g_j.C)$$
(1)

Z is a normalization constant.

(日) (同) (E) (E) (E)

Expression profiles Protein interaction — Markov random field Unified model

Markov random field — Formalism

$$\phi_{i,j}(g_i.C = p, g_j.C = q) = \begin{cases} lpha & p = q \\ 1 & \text{otherwise} \end{cases}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Expression profiles Protein interaction — Markov random field Unified model

Markov random field — Formalism

$$\phi_{i,j}(g_i.C=p, g_j.C=q) = \left\{ egin{array}{cc} lpha & p=q \ 1 & ext{otherwise} \end{array}
ight.$$
 $(lpha \geq 1).$

José Caldas Discovering molecular pathways from protein interaction and g

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Expression profiles Protein interaction — Markov random field Unified model

Unified Model

What we already have

- Model for expression data (Naive Bayes)
- Model for class probability (Markov random field)

・ロト ・回ト ・ヨト ・ヨト

3

Expression profiles Protein interaction — Markov random field Unified model

Unified Model

What we already have

- Model for expression data (Naive Bayes)
- Model for class probability (Markov random field)

What we want

Probability distribution $P(\mathbf{G}.C, \mathbf{G}.E)$, using expression and protein data.

・ロト ・回ト ・ヨト ・ヨト

Expression profiles Protein interaction — Markov random field Unified model

Unified Model

What we already have

- Model for expression data (Naive Bayes)
- Model for class probability (Markov random field)

What we want

Probability distribution $P(\mathbf{G}.C, \mathbf{G}.E)$, using expression and protein data.

What we are missing

 Naive Bayes provides that prob. distribution, but does not use protein data.

・ロン ・回 と ・ 回 と ・ 回 と

Expression profiles Protein interaction — Markov random field Unified model

Unified Model

What we already have

- Model for expression data (Naive Bayes)
- Model for class probability (Markov random field)

What we want

Probability distribution $P(\mathbf{G}.C, \mathbf{G}.E)$, using expression and protein data.

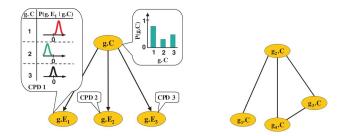
What we are missing

- Naive Bayes provides that prob. distribution, but does not use protein data.
- We haven't specified the potentials $\phi_i(g_i.C)$.

ロト (日) (日) (日)

Expression profiles Protein interaction — Markov random field Unified model

Unified Model



Solution

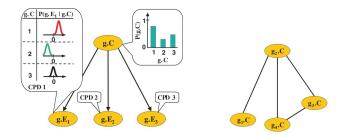
▶ Use Markov random field as *P*(**G**.*C*).

・ロト ・回ト ・ヨト ・ヨト

æ

Expression profiles Protein interaction — Markov random field Unified model

Unified Model



Solution

- ▶ Use Markov random field as *P*(**G**.*C*).
- ► Use multinomial dist. P(g_i.C) from Naive Bayes as potential φ_i(g_i.C).

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Expression profiles Protein interaction — Markov random field Unified model

Unified Model

$$P(\mathbf{G}.C, \mathbf{G}.\mathbf{E}) = \frac{1}{Z} \prod_{i=1}^{n} P^*(g_i.C) \prod_{\{g_i.C-g_j.C\} \in \mathbf{E}} \phi_{i,j}(g_i.C, g_j.C) \cdot \prod_{i=1}^{n} \prod_{j=1}^{m} P(g_i.E_j|g_i.C)$$

 $P(\mathbf{G}.C) \rightarrow \text{Markov random field.}$ $P(\mathbf{G}.\mathbf{E}) \rightarrow \text{Gaussian distributions.}$

(ロ) (四) (三) (三) (三)

Learning Algorithm

EM algorithm

Parameters to be estimated

- Multinomial distribution $\rightarrow (\theta_1, \ldots, \theta_K)$.
- Mean and variance for gaussian distributions

(日) (同) (E) (E) (E)

Gene Expression

- 173 arrays (Gasch et al. 03)
- 77 arrays (Spellman et al. 98)

Protein Interaction 10705 interactions (Xenarios *et al.* 05)

After preprocessing \rightarrow 3589 genes.

- 4 同 ト 4 三 ト

Running the algorithm

- EM for optimizing parameters
- Number of pathways fixed as 60
- Starting point for parameters \rightarrow use hierarchical clustering

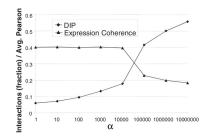
How to set the α parameter?

・ロン ・回と ・ヨン ・ヨン

Recall: α is the compatibility potential when two proteins interact and belong to the same pathway.

・ロト ・回ト ・ヨト ・ヨト

Recall: α is the compatibility potential when two proteins interact and belong to the same pathway.



A (10) > (10)

< E

э

Comparisons with other methods

Methods that use only one type of data

- Markov Cluster (Enright *et al.* 02)
- ▶ Hierarchical clustering (Eisen *et al.* 98)

イロト イポト イヨト イヨト

- Prediction of held-out interactions.
- Functional enrichment in Gene Ontology.
- Coverage of protein complexes.
- Assigning new roles to unknown proteins.

イロト イヨト イヨト イヨト

Prediction of held-out interactions

 Cross-validation — divide protein data into 5 disjoint sets (4 for training, 1 for testing)

イロン イヨン イヨン イヨン

Prediction of held-out interactions

- Cross-validation divide protein data into 5 disjoint sets (4 for training, 1 for testing)
- Get average number of held-out interactions between genes in the same pathway

・ロト ・回ト ・ヨト ・ヨト

Prediction of held-out interactions

- Cross-validation divide protein data into 5 disjoint sets (4 for training, 1 for testing)
- Get average number of held-out interactions between genes in the same pathway
- ▶ Result: 222.4 ± 13.2
- (MCL) 383.2 ± 29.1

イロト イポト イヨト イヨト

Biological coherence of the inferred pathways

General result

More functionally coherent than when using standard clustering or MCL

イロト イヨト イヨト イヨト

Biological coherence of the inferred pathways

General result

More functionally coherent than when using standard clustering or MCL

Example — Pathways related to translation, protein degradation, transcription, and DNA replication

- Genes in these pathways interact with many genes from other categories.
- ► They are also co-expressed.

Biological coherence of the inferred pathways

General result

More functionally coherent than when using standard clustering or MCL

Example — Pathways related to translation, protein degradation, transcription, and DNA replication

- Genes in these pathways interact with many genes from other categories.
- They are also co-expressed.
- MCL cannot isolate them.

Protein Complexes

Motivation

The components of many pathways are protein complexes. Thus, a good pathway model should assign the member genes of many of these complexes to the same pathway.

イロト イポト イヨト イヨト

Protein Complexes

Motivation

The components of many pathways are protein complexes. Thus, a good pathway model should assign the member genes of many of these complexes to the same pathway.

Procedure

- ▶ Use experimental assays (Gavin *et al.* 02) and (Ho *et al.* 02)
- Associate each gene to the complexes to which it belongs.
- Measure enrichment in pathways.

イロト イポト イヨト イヨト

Protein Complexes — Results

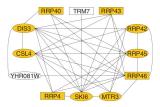
In general, better than clustering:

- 374 complexes significantly enriched (higher than in clustering).
- Stress data → 124 complexes in which more than 50% of members appear in the same pathway.
- Clustering \rightarrow only 46 complexes that verify that condition.

イロン イ部ン イヨン イヨン 三日

Assigning New Roles to Unknown Proteins

Largest connected component of pathway 1 (cytoplasmic exosome):

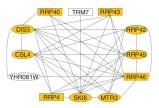


YHR081W is uncharacterized

イロト イポト イヨト イヨト

Assigning New Roles to Unknown Proteins

Largest connected component of pathway 1 (cytoplasmic exosome):

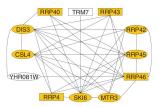


- YHR081W is uncharacterized
- Clustering Only 4 genes in pathway

イロト イポト イヨト イヨト

Assigning New Roles to Unknown Proteins

Largest connected component of pathway 1 (cytoplasmic exosome):



- YHR081W is uncharacterized
- Clustering Only 4 genes in pathway
- MCL Includes 114 additional genes in connected component

Summary

 Probabilistic model for integrating gene expression and protein interaction data

・ロン ・回と ・ヨン・

Summary

- Probabilistic model for integrating gene expression and protein interaction data
- Method aims at finding co-expressed and connected genes (pathways)

イロン イヨン イヨン イヨン

Summary

- Probabilistic model for integrating gene expression and protein interaction data
- Method aims at finding co-expressed and connected genes (pathways)

Comparison with single-source methods

イロト イヨト イヨト イヨト

Summary

- Probabilistic model for integrating gene expression and protein interaction data
- Method aims at finding co-expressed and connected genes (pathways)

Comparison with single-source methods

Some pathways are only obtainable by combining both types of data

・ロン ・回 と ・ 回 と ・ 回 と

Limitations

José Caldas Discovering molecular pathways from protein interaction and g

<ロ> (四) (四) (注) (注) (三)

Limitations

Model for co-expression is too restrictive

・ロン ・回 と ・ヨン ・ヨン

Limitations

- Model for co-expression is too restrictive
- Assignment of each gene to a single pathway

<ロ> (日) (日) (日) (日) (日)

Limitations

- Model for co-expression is too restrictive
- Assignment of each gene to a single pathway
- Pathways should be condition-specific (same goes for protein interaction)

イロン イヨン イヨン イヨン

- (1) On which two assumptions about pathways is the model based?
- (2) Map each of the previous assumptions into a property of the model
- (3) Why must the α parameter in the markov random field be greater than one?
- (4) What happens when (a) $\alpha = 1$ or when (b) α is close to infinity?

(ロ) (同) (E) (E) (E)