Tik-61.3030 Principles of Neural Computing

Raivio, Venna

Exercise 5,

1. The McCulloch-Pitts perceptrons can be used to perform numerous logical tasks. Neurons are assumed to have two binary input signals, x_1 and x_2 , and a constant bias signal which are combined into an input vector as follows: $\mathbf{x} = [x_1, x_2, -1]^T$, $x_1, x_2 \in \{0, 1\}$. The output of the neuron is given by

$$y = \begin{cases} 1, & \text{if } \mathbf{w}^T \mathbf{x} > 0\\ 0, & \text{if } \mathbf{w}^T \mathbf{x} \le 0 \end{cases}$$

where \mathbf{w} is an adjustable weight vector. Demonstrate the implementation of the following binary logic functions with a single neuron:

- (a) A
- (b) not B
- (c) A or B
- (d) A and B
- (e) A nor B
- (f) A nand B
- (g) $A \operatorname{xor} B$.

What is the value of weight vector in each case?

2. A single perceptron is used for a classification task, and its weight vector \mathbf{w} is updated iteratively in the following way:

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \alpha(y-y')\mathbf{x}$$

where \mathbf{x} is the input signal, $y' = \operatorname{sgn}(\mathbf{w}^T \mathbf{x}) = \pm 1$ is the output of the neuron, and $y = \pm 1$ is the correct class. Parameter α is a positive learning rate. How does the weight vector \mathbf{w} evolve from its initial value $\mathbf{w}(0) = [1, 1]^T$, when the above updating rule is applied with $\alpha = 0.4$, and we have the following samples from classes C_1 and C_2 :

$$C_1: \{[2,1]^T\}, C_2: \{[0,1]^T, [-1,1]^T\}$$

3. Suppose that in the signal-flow graph of the perceptron illustrated in Figure 1 the hard limiter is replaced by the sigmoidal linearity:

$$\varphi(v) = \tanh(\frac{v}{2})$$

where v is the induced local field. The classification decisions made by the perceptron are defined as follows:

Observation vector \mathbf{x} belongs to class C_1 if the output $y > \theta$ where θ is a threshold; otherwise, \mathbf{x} belongs to class C_2

Show that the decision boundary so constructed is a hyperplane.

4. Two pattern classes, C_1 and C_2 , are assumed to have Gaussian distributions which are centered around points $\mu_1 = [-2, -2]^T$ and $\mu_2 = [2, 2]^T$ and have the following covariance matrixes:

$$\Sigma_1 = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\Sigma_2 = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$.

Plot the distributions and determine the optimal Bayesian decision surface for $\alpha = 3$ and $\alpha = 1$. In both cases, assume that the prior probabilities of the classes are equal, the costs associated with correct classifications are zero, and the costs associated with misclassifications are equal.

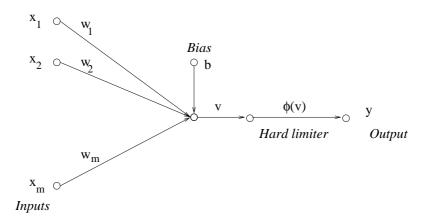


Figure 1: The signal-flow graph of the perceptron.