Next: About this document ...
Up: Independent Component Analysis: A
Previous: Conclusion
- 1
-
S.-I. Amari, A. Cichocki, and H.H. Yang.
A new learning algorithm for blind source separation.
In Advances in Neural Information Processing Systems 8, pages
757-763. MIT Press, Cambridge, MA, 1996.
- 2
-
A. D. Back and A. S. Weigend.
A first application of independent component analysis to extracting
structure from stock returns.
Int. J. on Neural Systems, 8(4):473-484, 1998.
- 3
-
A.J. Bell and T.J. Sejnowski.
An information-maximization approach to blind separation and blind
deconvolution.
Neural Computation, 7:1129-1159, 1995.
- 4
-
J.-F. Cardoso.
Infomax and maximum likelihood for source separation.
IEEE Letters on Signal Processing, 4:112-114, 1997.
- 5
-
J.-F. Cardoso and B. Hvam Laheld.
Equivariant adaptive source separation.
IEEE Trans. on Signal Processing, 44(12):3017-3030, 1996.
- 6
-
A. Cichocki, R.E. Bogner, L. Moszczynski, and K. Pope.
Modified Herault-Jutten algorithms for blind separation of
sources.
Digital Signal Processing, 7:80 - 93, 1997.
- 7
-
P. Comon.
Independent component analysis - a new concept?
Signal Processing, 36:287-314, 1994.
- 8
-
T. M. Cover and J. A. Thomas.
Elements of Information Theory.
John Wiley & Sons, 1991.
- 9
-
N. Delfosse and P. Loubaton.
Adaptive blind separation of independent sources: a deflation
approach.
Signal Processing, 45:59-83, 1995.
- 10
-
D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard.
Wavelet shrinkage: asymptopia?
Journal of the Royal Statistical Society ser. B, 57:301-337,
1995.
- 11
-
The FastICA MATLAB package.
Available at http://www.cis.hut.fi/projects/ica/fastica/.
- 12
-
J. H. Friedman and J. W. Tukey.
A projection pursuit algorithm for exploratory data analysis.
IEEE Trans. of Computers, c-23(9):881-890, 1974.
- 13
-
J.H. Friedman.
Exploratory projection pursuit.
J. of the American Statistical Association, 82(397):249-266,
1987.
- 14
-
X. Giannakopoulos, J. Karhunen, and E. Oja.
Experimental comparison of neural ICA algorithms.
In Proc. Int. Conf. on Artificial Neural Networks
(ICANN'98), pages 651-656, Skövde, Sweden, 1998.
- 15
-
R. Gonzalez and P. Wintz.
Digital Image Processing.
Addison-Wesley, 1987.
- 16
-
P.J. Huber.
Projection pursuit.
The Annals of Statistics, 13(2):435-475, 1985.
- 17
-
A. Hyvärinen.
Independent component analysis in the presence of gaussian noise by
maximizing joint likelihood.
Neurocomputing, 22:49-67, 1998.
- 18
-
A. Hyvärinen.
New approximations of differential entropy for independent component
analysis and projection pursuit.
In Advances in Neural Information Processing Systems,
volume 10, pages 273-279. MIT Press, 1998.
- 19
-
A. Hyvärinen.
Fast and robust fixed-point algorithms for independent component
analysis.
IEEE Trans. on Neural Networks, 10(3):626-634, 1999.
- 20
-
A. Hyvärinen.
The fixed-point algorithm and maximum likelihood estimation for
independent component analysis.
Neural Processing Letters, 10(1):1-5, 1999.
- 21
-
A. Hyvärinen.
Gaussian moments for noisy independent component analysis.
IEEE Signal Processing Letters, 6(6):145-147, 1999.
- 22
-
A. Hyvärinen.
Sparse code shrinkage: Denoising of nongaussian data by maximum
likelihood estimation.
Neural Computation, 11(7):1739-1768, 1999.
- 23
-
A. Hyvärinen.
Survey on independent component analysis.
Neural Computing Surveys, 2:94-128, 1999.
- 24
-
A. Hyvärinen and E. Oja.
A fast fixed-point algorithm for independent component analysis.
Neural Computation, 9(7):1483-1492, 1997.
- 25
-
A. Hyvärinen and E. Oja.
Independent component analysis by general nonlinear Hebbian-like
learning rules.
Signal Processing, 64(3):301-313, 1998.
- 26
-
A. Hyvärinen, J. Särelä, and R. Vigário.
Spikes and bumps: Artefacts generated by independent component
analysis with insufficient sample size.
In Proc. Int. Workshop on Independent Component Analysis and
Signal Separation (ICA'99), pages 425-429, Aussois, France, 1999.
- 27
-
M.C. Jones and R. Sibson.
What is projection pursuit ?
J. of the Royal Statistical Society, ser. A, 150:1-36, 1987.
- 28
-
C. Jutten and J. Herault.
Blind separation of sources, part I: An adaptive algorithm based on
neuromimetic architecture.
Signal Processing, 24:1-10, 1991.
- 29
-
J. Karhunen, E. Oja, L. Wang, R. Vigário, and J. Joutsensalo.
A class of neural networks for independent component analysis.
IEEE Trans. on Neural Networks, 8(3):486-504, 1997.
- 30
-
K. Kiviluoto and E. Oja.
Independent component analysis for parallel financial time series.
In Proc. ICONIP'98, volume 2, pages 895-898, Tokyo, Japan,
1998.
- 31
-
T.-W. Lee, M. Girolami, and T. J. Sejnowski.
Independent component analysis using an extended infomax algorithm
for mixed sub-gaussian and super-gaussian sources.
Neural Computation, 11(2):417-441, 1999.
- 32
-
D. G. Luenberger.
Optimization by Vector Space Methods.
John Wiley & Sons, 1969.
- 33
-
S. Makeig, A.J. Bell, T.-P. Jung, and T.-J. Sejnowski.
Independent component analysis of electroencephalographic data.
In Advances in Neural Information PRocessing Systems 8, pages
145-151. MIT Press, 1996.
- 34
-
S. G. Mallat.
A theory for multiresolution signal decomposition: The wavelet
representation.
IEEE Trans. on PAMI, 11:674-693, 1989.
- 35
-
J.-P. Nadal and N. Parga.
Non-linear neurons in the low noise limit: a factorial code maximizes
information transfer.
Network, 5:565-581, 1994.
- 36
-
A. Papoulis.
Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 3rd edition, 1991.
- 37
-
B. A. Pearlmutter and L. C. Parra.
Maximum likelihood blind source separation: A context-sensitive
generalization of ica.
In Advances in Neural Information Processing Systems, volume 9,
pages 613-619, 1997.
- 38
-
D.-T. Pham, P. Garrat, and C. Jutten.
Separation of a mixture of independent sources through a maximum
likelihood approach.
In Proc. EUSIPCO, pages 771-774, 1992.
- 39
-
T. Ristaniemi and J. Joutsensalo.
On the performance of blind source separation in CDMA downlink.
In Proc. Int. Workshop on Independent Component Analysis and
Signal Separation (ICA'99), pages 437-441, Aussois, France, 1999.
- 40
-
R. Vigário.
Extraction of ocular artifacts from EEG using independent component
analysis.
Electroenceph. clin. Neurophysiol., 103(3):395-404, 1997.
- 41
-
R. Vigário, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja.
Independent component analysis for identification of artifacts in
magnetoencephalographic recordings.
In Advances in Neural Information Processing Systems 10, pages
229-235. MIT Press, 1998.
- 42
-
R. Vigário, J. Särelä, and E. Oja.
Independent component analysis in wave decomposition of auditory
evoked fields.
In Proc. Int. Conf. on Artificial Neural Networks
(ICANN'98), pages 287-292, Skövde, Sweden, 1998.
Aapo Hyvarinen
2000-04-19