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Abstract

We present a two-layer dynamic generative model of the statistical

structure of natural image sequences. The second layer of the model is

a linear mapping from simple cell outputs to pixel values, as in most

work on natural image statistics. The first layer models the dependen-

cies of the activity levels (amplitudes or variances) of the simple cells,

using a multivariate autoregressive model. The second layer shows

emergence of basis vectors that are localized, oriented and have differ-

ent scales, just like previous work. But our new model enables the first

layer to learn connections between the simple cells that are similar to

complex cell pooling: connections are strong among cells with similar

1



location, frequency and orientation. In contrast to previous work in

which one of the layers needed to be fixed in advance, the dynamic

model enables us to estimate both of the layers simultaneously from

natural data.

1 Introduction

A central question in the study of sensory neural networks is how stimuli are

represented or coded by neurons. Knowledge of the properties of this neural

code is needed when one wants to study the computations which take place

at different stages of neural processing. One approach to studying the neural

code is to examine how its properties are related to the statistics of natural

stimuli (Simoncelli and Olshausen, 2001). In this approach it is assumed that

the statistics of the natural input have affected the structure of the networks

via natural selection or during development.

In the visual system, the primary visual cortex is an area which is rela-

tively well known from the point of view of neurophysiology. There is a large

amount of knowledge about what different types of cells exist in this area,

the responses of these cells to different visual stimuli, and the connections

and physical layout of these cells. Within the past ten years, computational

principles relating the properties of cells in this area to the statistics of nat-

ural stimuli have been proposed. The most influential of these theories have

been sparse coding (Olshausen and Field, 1996; Hyvärinen and Hoyer, 2001),

independent component analysis (Bell and Sejnowski, 1997; van Hateren and

van der Schaaf, 1998; van Hateren and Ruderman, 1998; Hyvärinen et al.,
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2001), and temporal coherence (Földiák, 1991; Kayser et al., 2001; Wiskott

and Sejnowski, 2002; Hurri and Hyvärinen, 2002). In sparse coding, the fun-

damental property of the neural code is that only a small proportion of the

cells is activated by a given stimulus. In independent component analysis,

the outputs of different cells are as independent of each other as possible. In

the case of image data, these two principles are closely related (Hyvärinen

et al., 2001).

The principle of temporal coherence (Földiák, 1991; Mitchison, 1991;

Stone, 1996) is based on the idea that when processing temporal input,

the representation changes as little as possible over time. This principle

has been traditionally associated with complex cells (Földiák, 1991; Kayser

et al., 2001; Wiskott and Sejnowski, 2002; Einhäuser et al., 2002; Berkes and

Wiskott, 2002), which are considered to be invariant detectors. However, in

a recent paper (Hurri and Hyvärinen, 2002) we have shown that a nonlinear

form of temporal coherence is also related to the structure of simple cell re-

ceptive fields. According to the results presented in (Hurri and Hyvärinen,

2002), simple cell receptive fields are optimally temporally coherent in the

sense that the activity levels of simple cells are stable over short time inter-

vals. By activity level we mean the amplitude or energy of the output of

a linear filter that models a simple cell. (However, the principle seems to

be somewhat applicable even in the case of non-negative cell outputs – see

(Hurri and Hyvärinen, 2002) for a discussion.)

The measure of temporal activity coherence introduced in (Hurri and

Hyvärinen, 2002) took the sum of the temporal activity coherences of single

cells. Therefore, there was no possibility of an interaction between the activ-
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ity levels of different cells. In this paper, we introduce a model which includes

inter-cell activity dependencies. This is accomplished by a generative model

in which the activity levels are generated in an autoregressive manner.

The idea of describing a generative model of natural stimuli, and inter-

preting the hidden variables of this model as a neural representation may at

first seem counterintuitive, because the stimuli are not generated by the neu-

ral network. However, when the task of vision is considered as a problem of

inverse graphics, the approach makes a lot of sense (Hinton and Ghahramani,

1997; Olshausen, 2003). A generative model can express explicitly informa-

tion about the regularities in the stimuli as properties of hidden variables. If

these regularities can be used to make inferences about the underlying real

world, the visual system might utilize such an efficient internal representation

of its stimuli.

The generative model presented in this paper is a dynamic two-layer

model of natural image sequences. We will show that estimation of the model

from natural image sequence data yields simple-cell-like receptive fields, and

a completely unsupervised complex-cell-like pooling between the outputs of

simple cells. In what follows we will first describe the generative model. This

is followed by the description of an estimation algorithm, and simulations

with artificially generated data. Then we apply the algorithm to natural

image sequences data, and analyze the structure of the resulting model.
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2 Definition of the model

The generative model of natural image sequences introduced in this paper

has two layers (see Figure 1). The first layer is a multivariate autoregressive

model of the activity levels (amplitudes) of simple cell responses at time t

and time t−∆t. The signs of cell responses are generated by a second latent

signal between the first and second layer. The second layer is linear, and

maps cell responses to image features.

[Figure 1 about here.]

We start the formal description of the model with the second, linear layer.

We restrict ourselves to linear spatial models of simple cells. Let vector

x(t) denote an image patch taken from natural image sequences at time t.

(Vectorization of image patches can be done by scanning images column-wise

into vectors.) Let the vector y(t) = [y1(t) · · · yK(t)]T represent the outputs

of K simple cells. The linear generative model for x(t) is similar to the one

in (Olshausen and Field, 1996; Hyvärinen and Hoyer, 2001):

x(t) = Ay(t). (1)

Here A = [a1 · · · aK ] denotes a matrix which relates the image patch x(t) to

the outputs of simple cells, so that each column ak, k = 1, ..., K, gives the

feature that is coded by the corresponding simple cell. When the parameters

of the model are estimated, what we obtain first is the mapping from x(t) to

y(t), denoted by

y(t) = Wx(t). (2)
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Conceptually, the set of filters (vectors) w1, ...,wK corresponds here to the re-

ceptive fields of simple cells, and W = [w1 · · ·wK ]T denotes a matrix with all

the filters as rows. The dimension of x(t) is typically larger than the dimen-

sion of y(t), so that (2) is generally not invertible but an underdetermined set

of linear equations. A one-to-one correspondence between W and A can be

established by computing the pseudoinverse solution1 A = WT (WWT )−1.

In contrast to sparse coding (Olshausen and Field, 1996) or independent

component analysis (Hyvärinen et al., 2001) we do not assume that the com-

ponents of y(t) are independent. Instead, we assume that the activity levels

(amplitudes) of the components of y(t) are correlated. We model these de-

pendencies with a multivariate autoregressive model in the first layer of our

model. Let abs (y(t)) = [|y1(t)| · · · |yK(t)|]T , and let v(t) denote a driving

noise signal (the distribution of v(t) is constrained by the non-negativity of

the process, and will be discussed in more detail below). Let M denote a

K ×K matrix, and let ∆t denote a time lag. Our model for the activities is

a constrained multidimensional first-order autoregressive process, defined by

abs (y(t)) = Mabs (y(t − ∆t)) + v(t), (3)

and unit energy constraints

Et

{
y2

k(t)
}

= 1 (4)

1When the solution is computed with the pseudoinverse, the solved x(t) is

orthogonal to the nullspace of W, N (W) = {b ||Wb = 0} . In other words,

that part of x(t) which would be ignored by the linear mapping in equation

(2) is set to 0.
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for k = 1, ..., K and k2 = 1, ..., K. Actually, the constraint of unit energy

is not really a constraint but rather a convention. The scale of the latent

variables is not well defined because we can arbitrarily multiply a latent

variable by a constant and divide the corresponding column of A by the

same constant without affecting the model (a similar situation is found in

ICA). Thus, we can define the scale of the yk(t) as we like.

There are dependencies between the driving noise v(t) and filter output

activities abs (y(t)) , caused by the non-negativity of abs (y(t)) . To define a

generative model for the driving noise v(t) so that the non-negativity of the

absolute values holds, we proceed as follows. Let u(t) denote a zero-mean

random vector with components which are statistically independent of each

other. We define

v(t) = max (−Mabs (y(t − ∆t)) ,u(t)) , (5)

where, for vectors a and b, max (a,b) = [max(a1, b1) · · · max(an, bn)]T . We

assume that u(t) and abs (y(t)) are uncorrelated.

To make the generative model complete, a mechanism for generating the

signs of cell responses y(t) must be included. We specify that the signs

are generated randomly with equal probability for plus or minus after the

strengths of the responses have been generated. All the signs are mutually

independent, both over time and the cell population, and also independent

of the activity levels. Note that one consequence of this random generation

of signs is that that filter outputs are uncorrelated, which can be shown

as follows. Let k1 6= k2, and let sk1
(t) and sk2

(t) denote the generated

signs. Then we have Et {yk1
(t)yk2

(t)} = Et {sk1
(t) |yk1

(t)| sk2
(t) |yk2

(t)|} =
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Et {sk1
(t)}︸ ︷︷ ︸

=0

Et {sk2
(t)}︸ ︷︷ ︸

=0

Et {|yk1
(t)| |yk2

(t)|} = 0.

Note that the unit energy constraints and the uncorrelatedness of the

outputs can be represented by a single matrix equation

WCx(t)W
T = I, (6)

where Cx(t) = Et

{
x(t)x(t)T

}
, and that they imply Et

{
‖y(t)‖2} = K.

Therefore, because the sign generation mechanism also implies that each

yk(t) has zero mean, the variances of the outputs will also be constant.

In equation (3), a large positive matrix element M(i, j), or M(j, i), in-

dicates that there is a strong dependency between the activities of cells i

and j. Thinking in terms of grouping cells with large activity dependencies

together, matrix M can be thought of as containing similarities (reciprocals

of distances) between different cells. We will use this property in the ex-

perimental section to derive a spatial organization of the simple cells from

M.

Note that the driving noise v(t) could be considered as closely related to

complex cell outputs, that is, higher-order features. Typically, this innovation

process would be very sparse for image data. When the process does take a

positive value, this will cause activity in some simple cells, and this activity

will spread to other simple cells in the next time steps, though diminished

at every step.
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3 Estimation of the model

To estimate the model defined above we need to estimate both M and W

(the pseudoinverse of A). In this section we first show how to estimate

M, given W. Then we describe an objective function which can be used to

estimate W, given M. Each iteration of the estimation algorithm consists

of two steps. During the first step M is updated, and W is kept constant;

during the second step these roles are reversed.

First, regarding the estimation of M, consider a situation in which W

has been fixed. It is shown in Appendix A that M can be estimated by using

approximative method of moments, and that the estimate is given by

M̂ ≈ βEt

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

× Et

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t)) − Et {abs (y(t))})T

}−1

,

(7)

where β > 1. We will return to the role of the scalar multiplier β below.

The estimation of W is more complicated. A rigorous derivation of an

objective function based on well-known estimation principles is very difficult

because the statistics involved are non-Gaussian, and the processes have dif-

ficult interdependencies. Therefore, instead of deriving an objective function

from first principles, we derived an objective function heuristically, and veri-

fied through simulations that the objective function is capable of estimating

models generated according to the two-layer model. The objective function is

a weighted sum of the covariances of filter output amplitudes at times t−∆t
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and t, defined by

f(W,M) =
K∑

i=1

K∑

j=1

M(i, j) cov {|yi(t)| , |yj(t − ∆t)|} , (8)

which can also be expressed as

f(W,M) = Et

{
(abs (y(t)) − Et {abs (y(t))})T

M

× (abs (y(t − ∆t)) − Et {abs (y(t))})

}
.

(9)

(The function f depends on W through the relationship (2).) The estimation

of W is thus accomplished by maximizing this objective function

Ŵ = arg max
W

f(W,M). (10)

Optimization of the objective function f over W under constraint (6) uses a

gradient projection approach (Hurri and Hyvärinen, 2002). The initial value

of W is selected randomly.

Note that the scalar multiplier β in (7) has a constant linear effect in

objective function (9). Because this scaling does not affect the optima of (9),

and because we are more interested in the relative magnitudes of elements

of M than their absolute values, we can discard β in the estimation process.

Therefore, in the estimation we set β = 1. However, in the validation of

the estimation method the real value of this coefficient must be taken into

account. This case will be considered in detail below.

4 Experiments with artificial data

Before applying the estimation method to natural data, we wanted to verify

its validity using artificial data. In order to do this we first generated 100
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different matrices M and A, and used these to generate data which followed

our model. The dimension of the data was K = 10, and both M and A were

10 × 10 matrices. Input noise u(t) was Gaussian white noise. In generating

the data, care must be taken so that the the constraints are fulfilled, and

that the resulting autoregressive model is stable. Details on how the data

was generated are given in Appendix B.1.

After data generation we ran our estimation algorithm 100 times, once

for each of the data sets, to obtain estimates M̂ and Ŵ (estimate of the

pseudoinverse of A) of all the original matrices. Because of the insensitivity

of the objective function (9) to a different ordering of the components of y(t),

care had to be taken to compensate for a possible permutation; details on

how this was done are described in Appendix B.2. After compensating for

the possible permutation, the effect of the unknown scalar multiplier β in

equation (7) had to be accounted for. This was done by using equation (7)

to estimate β by

β̂ =
‖M‖

F∥∥∥M̂

∥∥∥
F

(11)

(remember that estimate M̂ is obtained by setting β = 1 in equation (7)).

To analyze the convergence of the algorithm, we examined how the relative

estimation errors
‖M−M̂‖

F

‖M‖
F

and
‖W−Ŵ‖

F

‖W‖
F

change as a function of number of

iterations (here ‖·‖
F

denotes the Frobenius norm, i.e., the sum of the squares

of all the elements of its argument).

Figure 2 shows the resulting plots of the relative errors. The plots show

the median and the maximum of the errors of the estimates of M and W,

computed over the whole set of 100 runs. The median and maximum of
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the errors are plotted as a function of iteration number. As we can see, the

estimate of W converges very reliably to the true value.

[Figure 2 about here.]

As for the estimation of M, the scalar multiplier β estimated as in equa-

tion (11) was consistently greater than 1, as predicted in Appendix A. The

relative error of the estimate of M decreases considerably in the estimation,

but the final estimate is not as good as in the case of W. This is probably

due to the approximation made in its estimation (see Appendix A). How-

ever, a large part of the error is caused by a systematic bias in the estimate

that does not seem to be critical in our analysis of the results. The nature

of the bias can be seen in Figure 3, which shows a scatter plot of the true

elements of the 100 matrices M vs. their estimates. We can see that the

systematic bias is largely a nonlinear element-wise relationship between the

true value of an element of M and its estimate. This nonlinear relationship is

a monotonic convex function, characterized by large positive deviations from

the true value when the absolute value of the element of M is large. Remem-

bering that the Frobenius norm – which is used to measure the relative error

– emphasizes large errors, we can see that a large part of the relative error

results from this systematic bias.

[Figure 3 about here.]

In the analysis of results with real data we are mostly interested in the

magnitudes of the elements of M with respect to other elements of the same

matrix. These relationships are preserved by a smooth monotonic mapping
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of the elements of M, like the systematic bias described above. In Figure 4

we have plotted four first matrices M from the set of 100 matrices, along with

their estimates M̂. Although there are some differences in some individual

elements of the matrices, especially in elements with large absolute values,

the structures of the true matrices and their estimates look very much alike.

This is because the relative values of the elements with respect to the values

of the other elements are similar.

[Figure 4 about here.]

5 Experiments with natural image sequences

5.1 Data collection and preprocessing

The data and preprocessing used in the experiments were very similar to

those in (Hurri and Hyvärinen, 2002), so we will describe them only shortly

here, and refer the reader to (Hurri and Hyvärinen, 2002) for details.

The natural image sequences used in data collection consisted of 129

image sequences, which were a subset of natural image sequences used in

(van Hateren and Ruderman, 1998). The sampling rate in these sequences

was 25 Hz. Initially 200,000 image sequences with a duration of 440 ms, and

spatial size 16 × 16 pixels, were sampled from these sequences. The fairly

long duration of these initial samples was necessary because of the temporal

filtering used in preprocessing,

The preprocessing consisted of four steps: temporal decorrelation, sub-

traction of local mean, normalization, and dimensionality reduction. Tempo-
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ral decorrelation enhances temporal changes in the data, and differentiates

our results from those obtained with static images (Hurri and Hyvärinen,

2002). It can also be motivated as a model of temporal processing at the

lateral geniculate nucleus (Dong and Atick, 1995). Temporal decorrelation

was performed with a temporal filter of length 400 ms. The length of the

resulting sequences, which was also the time delay ∆t in our experiment,

was 40 ms. After temporal decorrelation the spatial local mean (spatial DC

component) was subtracted from each of the 400,000 image patches, and the

patches were normalized to unit norm. This normalization can be considered

as a form of contrast gain control (Carandini et al., 1997; Heeger, 1992). Fi-

nally, to reduce the effect of noise and aliasing artifacts, the dimensionality of

the data was reduced to 160 using principal component analysis (Hyvärinen

et al., 2001).

5.2 Results

The estimation algorithm described in Section 3 was applied to the prepro-

cessed natural image sequence data to obtain estimates for M and A (the

pseudoinverse of W). Figure 5 shows the resulting basis vectors – that is,

columns of A. As can be seen, the resulting basis vectors are localized, ori-

ented, and have multiple scales. These are the most important defining cri-

teria of simple cell receptive fields (Palmer, 1999). These qualitative features

are also characteristic of results obtained with independent component anal-

ysis or sparse coding (Olshausen and Field, 1996; van Hateren and van der

Schaaf, 1998) and purely temporal activity coherence (Hurri and Hyvärinen,
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2002). This suggests that, as far as receptive field structure is concerned,

these methods are roughly equivalent to each other in that similar receptive

fields emerge when the methods are applied to natural stimuli.

[Figure 5 about here.]

The estimated matrix M captures the spatiotemporal activity dependen-

cies between the basis vectors shown in Figure 5. The diagonal elements of

the estimated M are relatively large, ranging from 0.31 to 0.74 with a mean

of 0.44, indicating that for all the basis vectors, activities at time t−∆t and

time t have considerable correlation. This is in concordance with the results

in (Hurri and Hyvärinen, 2002). A histogram of the non-diagonal elements

of M, which contain the information about spatiotemporal dependencies be-

tween the basis vectors, is shown in Figure 6. In order to examine these

dependencies more closely, we first plotted the basis vectors with the highest

and lowest activity dependency values for a set of representative reference

vectors. The results, shown in Figure 7, suggest that basis vectors with high

positive activity dependencies code for similar features at nearby positions,

whereas basis vectors with low (negative) dependencies code for features with

different scale or orientation.

[Figure 6 about here.]

[Figure 7 about here.]

To visualize the spatiotemporal dependencies of all of the basis vectors,

we used the interpretation of M as a similarity matrix (see Section 2). Matrix
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M was first converted to a non-negative similarity matrix Ms by subtracting

mini,j M(i, j) from the elements of M, and by setting the diagonal elements

to value 1. Multidimensional scaling (MDS) was then applied to Ms by in-

terpreting the values 1−Ms(i, j) and 1−Ms(j, i) as distances between cells

i and j. The objective of MDS is to map the points in a (high-dimensional)

space to a two-dimensional space (a plane) so that the distances between

the points in the original space are preserved as well as possible on the

plane. A central concept in the application of MDS to a particular prob-

lem is the measurement scale (Borg and Groenen, 1997; SAS/STAT, 2000),

which is a mathematical description of the type of information contained

in the measurements of proximity. We applied MDS to our data so that

the interval measurement scale (Borg and Groenen, 1997; SAS/STAT, 2000)

was assumed. Informally, the interval measurement scale is characterized

so that relative sizes of differences between measurements are meaningful,

but there is no absolute zero. This makes sense in our case, because firstly,

the differences between the elements of Ms should tell us something about

the differences of strengths of spatiotemporal dependencies, and secondly, we

do not know the maximum possible spatiotemporal dependency in natural

image sequence data (the absolute zero).

The resulting spatial layout produced by the MDS procedure is shown in

Figure 8. Because some of the points in the planar representation were very

close to each other, some small distances were stretched (some of the tightest

clusters were magnified) in order to be able to show the basis vectors in a

reasonable scale (without overlap between the basis patches). As in Figure 7,

we can see that those basis vectors which are very close to each other seem
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to be mostly coding for similarly oriented features with the same frequencies

at nearby spatial positions. This kind of grouping is characteristic of pooling

of simple cell outputs at complex cell level, as well as of the topographic

organization of the visual cortex (Palmer, 1999). Note that this grouping

effect is not a result of the magnification of the tightest clusters described

above; in fact, the magnification reduces the effect. In addition to the local

topography described above, some global topography also emerges in the

results: those basis vectors which code for horizontal features are on the left

in Figure 8, while those that code for vertical features are on the right.

[Figure 8 about here.]

Thus, the estimation of our two-layer model from natural image sequences

yields both simple-cell-like receptive fields (Figure 5), and grouping similar

to the pooling of simple cell outputs and local topography in the primary

visual cortex (Figures 7 and 8). The receptive fields emerge in the second

layer (matrix A), and cell output grouping emerges in the first layer (matrix

M). Both of these layers emerge simultaneously during the estimation of the

model. This is a significant improvement on earlier statistical models of early

vision (Hyvärinen and Hoyer, 2000; Hyvärinen and Hoyer, 2001; Wainwright

and Simoncelli, 2000), because no a priori fixing of either of these layers is

needed.
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6 Discussion

There are two main contributions in this paper. First, to our knowledge,

the generative model presented here is the first two-layer generative model

of natural image sequences presented in literature. A multi-layered descrip-

tion of the stimuli is biologically important because it enables us to capture

dependencies within the different layers of sensory processing. In our case,

the results suggest that simple cell outputs have temporal activity depen-

dencies, and that cells at the next level of processing (complex cells) pool

simple cell outputs so that cells with high activity dependencies are pooled

together. This can provide important cues as to how different layers in the

visual pathway are connected.

In addition, the results suggest that temporal activity dependencies could

also be reflected in the topography of the primary visual cortex – that is, cells

with high temporal activity dependency seem to be physically located close

to each other within the cortex. Earlier research has shown that simulta-

neous activity dependency is also reflected in the organization of the cortex

in a similar manner (Hyvärinen and Hoyer, 2001). Therefore, it seems pos-

sible that “activity bubbles” (Hyvärinen et al., 2002), activations of simple

cells which are contiguous both in space and time, appear on the cortical

surface when a stimulus with appropriate characteristics (orientation, scale)

is present in the visual field. This is an intriguing characterization of the

neural code at the simple cell level, the implications of which are a subject

of future research.

Second, this paper also makes a rather different contribution, describ-
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ing a general-purpose two-layer model that is a generalization of the basic

generative models used in blind source separation. The generative model de-

scribed in this paper employs nonlinearities and interdependencies, resulting

in a model which is difficult to solve using well-known estimation principles.

Therefore, when developing the estimation algorithm, we had to resort to ap-

proximation and heuristics. However, as we have shown above, the resulting

algorithm can estimate fairly well the unknown parameters from data which

follows our model. Matrix A can be estimated with great accuracy. Matrix

M can also be recovered up to a fairly small relative error, and a system-

atic bias which is irrelevant for our purposes. This generative model could

be applied to many of those applications in which blind source separation

algorithms have been successful, such as brain imaging and data analysis

(Hyvärinen et al., 2001).

Research related to the results presented here can be found in research

concerning natural image statistics, blind source separation, and economet-

rics. The outputs of related wavelet filters with uncorrelated outputs exhibit

a similar dependency in natural images (Wainwright and Simoncelli, 2000;

Schwartz and Simoncelli, 2001): the conditional variance of the output of

one filter is larger when the output of the other filter has a large amplitude.

In a more generative-model setting, dependence of the simultaneous activity

levels between simple cells have been used in modeling complex cells and

topography (Hyvärinen and Hoyer, 2000; Hyvärinen and Hoyer, 2001). In

these models, the second (pooling) layer was fixed and only the first layer

was estimated. In blind source separation, Bayesian methods have been used

to extract sources with nonlinear dynamics and nonlinear mapping from state
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space to observations (Valpola and Karhunen, 2002). In econometrics, au-

toregressive conditional heteroskedasticity (ARCH) models (e.g., (Bera and

Higgins, 1993)) are used to model econometric time series in which variance

changes over time, and is highly correlated over time, thereby exhibiting tem-

poral coherence of high activity. Multivariate ARCH models can be used to

model cases where the variances of different time series have dependencies.

To conclude, we have described a two-layer dynamic generative model of

image sequences, and an algorithm for estimating the model from sample

data. Application of the estimation algorithm to natural image sequences

yields a set of linear filters, or basis vectors, which are similar to simple cell

receptive fields, and connections between the simple cells that are similar to

the way in which simple cell outputs are pooled at the complex cell level. The

basis vectors are learned in one layer of the model, and the pooling property

in the other. Both layers are learned simultaneously and in a completely

unsupervised manner.
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A Estimation of M

We estimate M using the method of moments. From (3) we get

Et {v(t)} = Et {abs (y(t))} − MEt {abs (y(t))} .

Therefore

Et

{
(abs (y(t)) − Et {abs (y(t))}) (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= Et

{
(Mabs (y(t − ∆t)) + v(t) − Et {abs (y(t))})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= Et

{(
Mabs (y(t − ∆t)) − MEt {y(t)}

+ v(t) − Et {abs (y(t))} + MEt {y(t)}
)

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= Et

{
(M(abs (y(t − ∆t)) − Et {y(t)}) + v(t) − Et {v(t)})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= MEt

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t)) − Et {abs (y(t))})T

}

+ Et

{
(v(t) − Et {v(t)}) (abs (y(t − ∆t)) − Et {abs (y(t))})T

}
.

(12)

The second term in equation (12) is non-zero because of the non-negativity

of abs (y(t)) , which is implemented by equation (5). However, we can ap-

proximate this term. Let us say that the non-negativity constraint in (5) is
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active for a proportion α ∈ (0, 1) of the whole sample. Then we approximate

Et

{
(v(t) − Et {v(t)}) (y(t − ∆t) − Et {y(t)})T

}

≈ αEt

{
(−My(t − ∆t) − Et {My(t − ∆t)}) (y(t − ∆t) − Et {y(t)})T

}

(1 − α) Et

{
(u(t) − Et {u(t)})T (y(t − ∆t) − Et {y(t − ∆t)})T

}

︸ ︷︷ ︸
=0

= −αMEt

{
(y(t) − Et {y(t)}) (y(t) − Et {y(t)})T

}
.

Using this approximation we get from equation (12)

M̂ ≈
1

1 − α
Et

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

× Et

{
(abs (y(t)) − Et {abs (y(t))}) (abs (y(t)) − Et {abs (y(t))})T

}−1

.

(13)

Setting β = 1/(1 − α) in this equation yields (7).

B Mathematical details of the validation of the

estimation algorithm

B.1 Data generation

The generated data must follow equations (1), (3) and (4). In addition, M

must be specified so that the autoregressive model (3) is stable.

The main steps of data generation were as follows (details are given be-

low). First, we chose a random M that is stable. In order to generate y(t)

we first generated positive magnitude data according to the autoregressive
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model (3), and then assigned a random sign for each value. We then modified

the data so that the constraints specified in (4) were fulfilled. This latter step

also affects the temporal model in (3), so during the latter step the param-

eters of (3) were updated. After this we chose a random A, and used it to

generate observed data x(t) linearly from y(t).

To generate data according to the temporal equation (3), a non-negative

matrix M0 was first generated by assigning the absolute value of a random

number from a normal distribution with mean zero and variance one, to each

of its elements, and then ensuring the stability of the autoregressive model

by normalizing M0 so that its spectral norm2 was between 0.6 and 0.8 (the

actual value of the norm was chosen randomly from this interval during each

run). After this a sample of abs (y0(t)) of length 40000 points was generated

using equations (3) and (5) with a random (non-negative) starting point

|y0(0)| .

Signed data y0(t) was generated from abs (y0(t)) by assigning a random

sign with equal probability for plus or minus. As was shown in Section 2,

this step alone guarantees that the components of y(t) are uncorrelated.

The unit energy constraint on each of the components of abs (y0(t)) was

enforced by normalizing the components. This is equivalent to premultiplying

abs (y0(t)) with a diagonal matrix Λ, where Λ(k, k) = 1√
Et{y2

0,k
(t)}

, so that

abs (y(t)) = Λabs (y0(t)) . Substituting y(t) with y0(t) in equation (3), and

2The spectral norm of a matrix B, denoted by ‖B‖2 , is defined to be

the square root of the largest eigenvalue of BTB. If ‖M‖2 < 1, then the

autoregressive model is stable because ‖Mabs (y(t))‖ ≤ ‖M‖2 ‖abs (y(t))‖

(Horn and Johnson, 1985).
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premultiplying with Λ yields

Λabs (y0(t)) = ΛM0 abs (y0(t − ∆t)) + Λv0(t)

abs (y(t)) = ΛM0Λ
−1

︸ ︷︷ ︸
=M

Λabs (y0(t − ∆t)) + Λv0(t)︸ ︷︷ ︸
=v(t)

abs (y(t)) = Mabs (y(t − ∆t)) + v(t),

where M = ΛM0Λ
−1 is the final parameter matrix of the generated data,

and v(t) = Λv0(t) is the driving noise of the model. This scaling also affects

the spectral norm of M – the values of these norms varied between 0.7 and

1.2. The variances of the components of v(t) varied between 0.4 and 1.2.

To generate the observed data x(t) from y(t), a random number from a

normal distribution with mean zero and variance one was first assigned to

each of the elements of matrix A, which was then applied to y(t) according

to equation (1).

B.2 Compensating for a possible permutation of com-

ponents of y(t)

The objective function (9) is insensitive to a reordering of the components

of y(t), and possible sign changes. Let y2(t) = Py(t), where P is a signed

permutation matrix. This permutation needs to be compensated in both

layers of the model (equations (1) and (3)).

First, concerning the linear layer, let A2 denote the linear basis corre-

sponding to y2(t) (see equation (1)). We have Ay(t) = x(t) = A2y2(t) =

A2Py(t), or

A = A2P. (14)
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Second, concerning the temporal layer, let Pa denote an unsigned per-

mutation matrix Pa = abs (P) , where abs (·) takes an absolute value of

each of the elements of its argument, and let M2 denote the temporal ma-

trix corresponding to y2(t) (see equation (3)). For the magnitudes of y2(t)

we have abs (y2(t)) = Pa abs (y(t)) , so abs (y(t)) = P−1
a abs (y2(t)) =

PT
a abs (y2(t)) Substituting y(t) with y2(t) in equation (3), and premulti-

plying with PT
a yields

PT
a abs (y2(t)) = PT

a M2 abs (y2(t − ∆t)) + PT
a v2(t)

abs (y(t)) = PT
a M2PaP

T
a abs (y2(t − ∆t)) + PT

a v2(t)

abs (y(t)) = PT
a M2Pa︸ ︷︷ ︸

=M

abs (y(t − ∆t)) + PT
a v2(t)︸ ︷︷ ︸
=v(t)

,

so

M = PT
a M2Pa. (15)

To convert the previous equations into a procedure, let Ŵp and M̂p de-

note the estimates computed with the estimation method (corresponding to

possibly permutated outputs), and A and M denote the correct parameter

matrices corresponding to the generated data. We first use (14) to com-

pute an estimate of the permutation matrix, P̂ = round
(
ŴpA

)
, where

round (·) rounds every element of its argument to the nearest integer. (If P̂

is singular, as usually happens during the first few rounds of the algorithm

when examining its convergence, then it is not sensible to carry on to compute

the estimates for A or M.) An estimate for A can be computed using (14)

again: Â = Ŵ−1
p P̂. The unsigned permutation matrix P̂a = abs

(
P̂

)
can

be used to compute an estimate of M with equation (15): M̂ = P̂T
a M̂pP̂a.

25



References

Bell, A. and Sejnowski, T. J. (1997). The independent components of nat-

ural scenes are edge filters. Vision Research, 37(23):3327–3338.

Bera, A. K. and Higgins, M. L. (1993). ARCH models: Properties, esti-

mation and testing. Journal of Economic Surveys, 7(4):305–366.

Berkes, P. and Wiskott, L. (2002). Applying slow feature analysis to image

sequences yields a rich repertoire of complex cell properties. In Dor-

ronsoro, J. R., editor, Artificial Neural Networks – ICANN 2002, vol-

ume 2415 of Lecture notes in computer science, pages 81–86. Springer.

Borg, I. and Groenen, P. (1997). Modern Multidimensional Scaling: Theory

and Applications. Springer Series in Statistics. Springer.

Carandini, M., Heeger, D. J., and Movshon, J. A. (1997). Linearity and

normalization in simple cells of the macaque primary visual cortex.

Journal of Neuroscience, 17(21):8621–8644.

Dong, D. W. and Atick, J. (1995). Temporal decorrelation: a theory of

lagged and nonlagged responses in the lateral geniculate nucleus. Net-

work: Computation in Neural Systems, 6(2):159–178.

Einhäuser, W., Kayser, C., König, P., and Körding, K. (2002). Learn-

ing the invariance properties of complex cells from their responses to

natural stimuli. European Journal of Neuroscience, 15(3):475–486.

Földiák, P. (1991). Learning invariance from transformation sequences.

Neural Computation, 3(2):194–200.

26



Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex.

Visual Neuroscience, 9:181–198.

Hinton, G. and Ghahramani, Z. (1997). Generative models for discovering

sparse distributed representations. Philosophical Transactions of the

Royal Society B, 352:1177–1190.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge Uni-

versity Press.

Hurri, J. and Hyvärinen, A. (2002). Simple-cell-like receptive fields max-

imize temporal coherence in natural video. Neural Computation. In

press.

Hyvärinen, A. and Hoyer, P. O. (2000). Emergence of phase and shift

invariant features by decomposition of natural images into independent

feature subspaces. Neural Computation, 12(7):1705–1720.

Hyvärinen, A. and Hoyer, P. O. (2001). A two-layer sparse coding model

learns simple and complex cell receptive fields and topography from

natural images. Vision Research, 41(18):2413–2423.

Hyvärinen, A., Hurri, J., and Väyrynen, J. (2002). Bubbles: A unify-

ing framework for low-level statistical properties of natural image se-

quences. Submitted.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component

Analysis. John Wiley & Sons.

Kayser, C., Einhäuser, W., Dümmer, O., König, P., and Körding, K.

(2001). Extracting slow subspaces from natural videos leads to com-

27



plex cells. In Dorffner, G., Bischof, H., and Hornik, K., editors, Artifi-

cial Neural Networks – ICANN 2001, volume 2130 of Lecture notes in

computer science, pages 1075–1080. Springer.

Mitchison, G. (1991). Removing time variation with the anti-Hebbian dif-

ferential synapse. Neural Computation, 3(3):312–320.

Olshausen, B. A. (2003). Principles of image representation in visual cor-

tex. In Chalupa, L. and Werner, J., editors, The Visual Neurosciences.

The MIT Press. In press.

Olshausen, B. A. and Field, D. (1996). Emergence of simple-cell receptive

field properties by learning a sparse code for natural images. Nature,

381(6583):607–609.

Palmer, S. E. (1999). Vision Science – Photons to Phenomenology. The

MIT Press.

SAS/STAT (2000). SAS/STAT Users Guide, version 8. SAS Publishing.

Schwartz, O. and Simoncelli, E. P. (2001). Natural signal statistics and

sensory gain control. Nature Neuroscience, 4(8):819–825.

Simoncelli, E. P. and Olshausen, B. A. (2001). Natural image statistics and

neural representation. Annual Review of Neuroscience, 24:1193–1216.

Stone, J. (1996). Learning visual parameters using spatiotemporal smooth-

ness constraints. Neural Computation, 8(7):1463–1492.

Valpola, H. and Karhunen, J. (2002). An unsupervised ensemble learning

method for nonlinear dynamic state-space models. Neural Computa-

tion. In press.

28



van Hateren, J. H. and Ruderman, D. L. (1998). Independent component

analysis of natural image sequences yields spatio-temporal filters sim-

ilar to simple cells in primary visual cortex. Proceedings of the Royal

Society of London B, 265(1412):2315–2320.

van Hateren, J. H. and van der Schaaf, A. (1998). Independent component

filters of natural images compared with simple cells in primary visual

cortex. Proceedings of the Royal Society of London B, 265(1394):359–

366.

Wainwright, M. J. and Simoncelli, E. P. (2000). Scale mixtures of Gaus-

sians and the statistics of natural images. In Solla, S. A., Leen, T. K.,

and Müller, K.-R., editors, Advances in Neural Information Processing

Systems, volume 12, pages 855–861. The MIT Press.

Wiskott, L. and Sejnowski, T. J. (2002). Slow feature analysis: Unsuper-

vised learning of invariances. Neural Computation, 14(4):715–770.

29



abs (y(t)) = Mabs (y(t − ∆t)) + v(t) x(t) = Ay(t) x(t)v(t) ×

random signs

y(t)abs (y(t))

Figure 1: The two layers of the generative model with spatiotemporal ac-
tivity dependencies. Let abs (y(t)) = [|y1(t)| · · · |yK(t)|]T denote the activity
levels (amplitudes) of simple cell responses. In the first layer, the driving
noise signal v(t) generates the activities of simple cells via a multivariate
autoregressive model. Matrix M captures the spatiotemporal activity de-
pendencies in the model. The signs of the responses are generated randomly
between the first and second layer to yield signed responses y(t). In the sec-
ond layer, natural image sequence x(t) is generated linearly from simple cell
responses. In addition to the relations shown here, the generation of v(t)
is affected by Mabs (y(t − ∆t)) to ensure non-negativity of abs (y(t)) . See
text for details.
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Figure 2: The median and the maximum of the relative errors made in the
estimation of W and M, computed over the estimates of 100 different in-
stances of our two-layer model. Each run of the algorithm used a different
data set corresponding to different values of of M and A (the pseudoinverse
of W), as well as different driving noise u(t), and different random signs of
components of y(t). (a) The median and the maximum of the relative error
made in the estimation of W, plotted as a function of iteration number. (b)
The median and the maximum of the relative error made in the estimation
of M, plotted as a function of iteration number. Note that none of the plots
begin from iteration 1, because the possible permutation of the components
of y(t) can not be determined during the first rounds of the algorithm (see
Appendix B.2).
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Figure 3: The approximation used in the estimation of M introduces a sys-
tematic bias in the estimate M̂. The figure shows a scatter plot of the 10000
elements of all 100 matrices M vs. the corresponding elements of estimates
M̂. Let M(i, j) denote an element of M. The scatter plot shows that in addi-
tion to the variance of the estimates growing as a function of |M(i, j)| , there

is also a positive bias in M̂(i, j) when |M(i, j)| is large. This bias is charac-

terized by a convex monotonic mapping from M(i, j) to M̂(i, j). Notice, how-
ever, that such a monotonic bias tends to preserve the ordering of the mag-
nitudes of the elements of M – that is, if an element M(i1, j1) > M(i2, j2),

then typically also M̂(i1, j1) > M̂(i2, j2). In the analysis of the results we are
mostly interested in this ordering, while the convergence analysis presented
above employs Frobenius norm which emphasizes large errors. The scatter
plot shows that a large part of the relative error is a consequence of this
systematic bias.
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true M estimate M̂

Figure 4: Estimates M̂ are very similar to the true M, except for positive
differences at elements with high absolute values. This is a consequence of
the fairly small relative error and the fact that the systematic bias made in
the estimation of M accounts for a large proportion of the remaining error.
The plots show the true matrices M (left column) and their estimates M̂

(right column) from the first four runs of the 100 runs of the validation
experiment. Bright pixels indicates high positive values, dark pixels low
negative ones (zero is medium gray). Each (M,M̂)-pair was plotted using
a common colormap, so similar pixel intensities in the true value and the
estimate indicate that the elements have similar values. The estimates look
very similar to the true matrices. A closer inspection reveals that in the
estimates the brightest and the darkest pixels are typically brighter than in
the true matrices. This is in accordance with the systematic bias illustrated
in Figure 3.
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Figure 5: The estimation of the generative model from natural visual stimuli
results in the emergence of localized, oriented receptive fields with multiple
scales. These basis vectors (columns of A) were obtained by applying the
estimation procedure described in Section 3 to a large set of samples from
natural image sequences. The basis vectors are in no particular order in this
figure.
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Figure 6: Histogram of the non-diagonal elements of M estimated from nat-
ural image sequence data.
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reference
highest

dependency
values

lowest
dependency

values

0.148 0.145 -0.009 -0.010

0.077 0.072 -0.013 -0.013

0.079 0.069 -0.011 -0.014

0.064 0.063 -0.011 -0.012

Figure 7: Basis vectors (columns of A) with high activity dependency values
code for similar features at nearby positions, whereas basis vectors with low
dependency values code for features with different scale and/or orientation.
Each row shows the basis vectors with highest and lowest dependency values
with respect to the reference vector in the leftmost column. The reference
vectors were chosen from the set of vectors in Figure 5 as representatives of
four different orientations. The measure of spatiotemporal dependency used
was M(i,j)+M(j,i)

2
, where i and j denote the columns of the basis vectors in

A. The dependency value of each of the basis vectors with respect to the
reference is shown under the vector. As can be seen, basis vectors with high
positive activity dependency code for similar features (orientation, frequency)
as the reference vectors, whereas those with low (negative) dependency code
for different scale and/or orientation.
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Figure 8: Grouping similar to complex cell pooling of simple cell outputs
emerges from spatiotemporal activity dependencies. Here we have plotted
each of the basis vectors (columns of A) at a 2D position obtained by applying
multidimensional scaling to the similarity values defined by M. As can be
seen, nearby basis vectors seem to be mostly coding for similarly oriented
features with similar frequencies at nearby spatial positions. In addition,
some global topographic organization also emerges: those basis vectors which
code for horizontal features are on the left in the figure, while those that
code for vertical features are on the right. Some short distances have been
extended in order to be able to show the basis vectors in a reasonable scale.

37


