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A two-layer sparse coding model learns simple and complex cell
receptive fields and topography from natural images
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Abstract

The classical receptive fields of simple cells in the visual cortex have been shown to emerge from the statistical properties of
natural images by forcing the cell responses to be maximally sparse, i.e. significantly activated only rarely. Here, we show that this
single principle of sparseness can also lead to emergence of topography (columnar organization) and complex cell properties as
well. These are obtained by maximizing the sparsenesses of locally pooled energies, which correspond to complex cell outputs.
Thus, we obtain a highly parsimonious model of how these properties of the visual cortex are adapted to the characteristics of
the natural input. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The spatial classical receptive fields (CRFs) of neurons
in the primary visual cortex (V1) of primates are selective
for location, orientation and frequency (Hubel & Wiesel,
1968; DeValois, Albrecht, & Thorell, 1982). The neurons
are topographically organized by these same parameters
(Hubel & Wiesel, 1977; Tootell, Silverman, Hamilton,
Switkes, & Valois, 1988; Blasdel, 1992), which means
that the preferred values for these parameters tend to
change smoothly when moving tangentially to the corti-
cal surface. Further, most cells can be divided into the
categories of simple (essentially linear) vs. complex
(phase-insensitive) cells (Hubel & Wiesel, 1968; Pollen &
Ronner, 1983).

A fundamental problem in vision research is to deter-
mine why the selectivities and the organization of the
cells are as described above. Recently, several authors
have considered possible connections between the prop-
erties of the early visual system and the statistical
properties of natural images. It is reasonable to assume
that the visual system is adapted to process the particular

kind of input it receives. Such an adaptation would be
produced by the combined forces of evolution and
neural development.

It is clear that the visual input has certain statistical
characteristics that distinguish it from any arbitrary
input. First, the visual input is not white noise: the
Fourier amplitudes fall off approximately proportional
to the inverse of the frequency (e.g. see Ruderman &
Bialek, 1994). Second, visual input is not Gaussian: the
outputs of linear filters are usually strongly non-Gaus-
sian, which is especially true of Gabor filters mimicking
simple cells (Field, 1994). Third, on a higher level of
description, visual input contains structure such as
edges, bars, and different textures.

Thus, it could been argued that the properties of V1
reflect the statistical properties of the input (Barlow,
1961, 1972; Field, 1994). No statistical signal-processing
system can be optimal for analyzing any kind of input;
for an input set with given statistical properties, one can
find a system that is optimal in a given sense. For
example, the CRFs of simple cells are not very useful for
analyzing data that consist of Gaussian noise, since such
noise could be better analysed by Fourier methods
(Field, 1994). The reason why the CRFs have Gabor-like
shapes might thus be that this kind of CRFs are optimal
for analyzing the input that the visual system typically
receives.
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On a very low level, one can model the statistical
structure of natural images by a linear model. The basic
model that we consider here expresses the static
monochrome image I(x,y) as a linear superposition of
some features or basis vectors ai(x,y):

I(x,y)= �
n

i=1

ai(x,y)si. (1)

The si are stochastic coefficients, different for each
image I(x,y). In a cortical interpretation, the si model
the responses of (signed) simple cells, and the ai are
closely related to their CRFs (Olshausen & Field, 1996,
1997). Note that we are considering here the contrast
only, i.e. the local mean or DC component has been
removed from the image, so we can assume that the si

have a zero mean.
A fundamental assumption in this model is that the si

are non-Gaussian in a particular way, called sparseness,
or alternatively supergaussianity or leptokurtosis (Bar-
low, 1972; Field, 1994). Sparseness means that the
random variable takes very small (absolute) values or
very large values more often than a Gaussian random
variable would; to compensate, it takes values in be-
tween relatively more rarely. Thus, the random variable
is activated, i.e. significantly non-zero, only rarely. The
probability density of the absolute value of a sparse
random variable is often modelled as an exponential
density, which has a higher peak at zero than a Gaus-
sian density (see Fig. 1).

Sparseness is not dependent on the variance (scale) of
the random variable. To measure the sparseness of the
random variable, si, let us first normalize its scale so
that the expectation E{s i

2} equals some given constant.
Then, the sparseness can be measured as the expecta-
tion, E{G(s i

2)}, of a suitable non-linear function of the

square. Typically, G is chosen to be convex, i.e. its
second derivative is positive, e.g. G(s i

2)= (s i
2)2. Convex-

ity implies that this expectation is large when s i
2 typi-

cally takes values that are either very close to 0 or very
large, i.e. when si is sparse.

Further, the si in the basic model are assumed to be
statistically independent, i.e. the value of sj cannot be
used to predict si for i� j. The resulting model is called
sparse coding (Olshausen & Field, 1996), or indepen-
dent component analysis (ICA) (Jutten & Herault,
1991; Comon, 1994; Hyvärinen & Oja, 2000), and it can
be considered a non-Gaussian version of factor
analysis.

Estimation of the ICA model involves determining
the values of both si and ai(x,y) for all i and (x,y),
given a sufficient number of observations of images, or
in practice, image patches I(x,y). Estimation can be
performed by maximizing the likelihood (Pham, Gar-
rat, & Jutten, 1992). We restrict ourselves here to the
basic case where the ai(x,y) form an invertible linear
system, in which case, we can compute the si as dot-
products

si=�wi,I�= �
x,y

wi(x,y)I(x,y). (2)

where the wi denote the inverse filters, which are closely
related, if not necessarily identical, to the CRFs (Ol-
shausen & Field, 1996, 1997). To further simplify the
estimation, one often preprocesses the input data I(x,y)
by whitening, that is, by removing second-order corre-
lations. Then, the wi can be constrained to be orthogo-
nal and to have unit norm, that is, �wi,wj� equals 0 for
i� j and 1 for i= j (Comon, 1994; Hyvärinen & Oja,
2000). This procedure guarantees that the basis is com-
plete, and the si are uncorrelated with E{s i

2}=1, and it
also somewhat simplifies the likelihood. Then, the
likelihood, L, of observed image patches It, t=1,…,T
can be formulated as:

log L(I1,…,IT ; w1,…,wn)= �
T

t=1

�
n

i=1

G(�wi,It�2) (3)

where G(s i
2)= log pi(si) with pi being the probability

density of si, here assumed to be identical for all i. Due
to the sparsity of the si, the function G is typically
convex; for example, it is essentially the negative square
root for the exponential density in Fig. 1. Thus, maxi-
mization of likelihood can be seen as maximization of
sparsity (Olshausen & Field, 1996). When the model is
estimated with input data consisting of patches of
natural scenes, the obtained basis vectors, ai(x,y), have
the principal properties of simple cell CRFs (Olshausen
& Field, 1996; Bell & Sejnowski, 1997; van Hateren &
van der Schaaf, 1998).

In this paper, we extend the sparse coding principle
to model complex cell properties and topography. By
topography, we mean the columnar or clustering orga-

Fig. 1. Illustration of a sparse probability density. Vertical axis:
probability density. Horizontal axis: (absolute) value of random
variable si. The exponential density function p(si)=�2 exp(−�2si)
is given by the solid curve; this models the distribution of the absolute
values of a sparse variable. For comparison, the density of the
absolute value of a Gaussian random variable is given by the dashed
curve. Both are normalized so that E{s i

2}=1, as explained in the text.
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Fig. 2. Illustration of the two-layer network. The first layer consists of
simple cells or linear filters. The second layer is a complex cell layer
where the energies of simple cell outputs are pooled locally. The filter
weights in the first layer are estimated from natural image data. The
estimation is performed by maximizing the sparsenesses of the out-
puts of complex cells (or local activations). A specific spatial organi-
zation of the cells emerges in the process. Note that while the
complex cell pooling weights are fixed, the sparseness of complex cells
and the topographic organization are directly attained by learning
just the simple cell weights.

Here, we introduce a complex-cell layer to analyse
the dependencies not considered by basic ICA or linear
sparse coding. Simple cell outputs are rectified by tak-
ing squares (energies), and these are fed to the complex
cells. To model the organization of the cells, it is further
assumed that the simple cells are arranged in a two-di-
mensional grid or lattice as is typical in topographic
models. The topography is formally expressed by a
neighborhood function h(i,j ) that gives the proximity
of the cells with indices i and j (note that these indices
are two-dimensional). Typically, one defines that h(i,j )
is 1 if the cells are sufficiently close to each other, and
0 otherwise. There is a one-to-one correspondence be-
tween the simple cells and complex cells: for each value
of the index i, there is one simple cell and one complex
cell, so the complex cells have an organization as well,
but their organization is not essential here.

To fix the pooling weights from simple cells to com-
plex cells, we make the assumption here that complex
cells only pool outputs of simple cells that are nearby
on the topographic grid. Thus, the complex cell outputs
are given by the local activations. The local activation,
cit, at a position, i, on the grid for stimulus It, means a
weighted sum of the energies of near-by simple cells (see
below). Such a spatial arrangement would be useful to
minimize wiring length (Durbin & Mitchison, 1990) and
neuroanatomic measurements indicate that the wiring
of complex cells may indeed be so constrained (see
discussions in Blasdel, 1992; DeAngelis, Ghose,
Ohzawa, & Freeman, 1999).

The pooling process into local activations or complex
cell responses can be expressed using the above-defined
neighborhood function h(i,j). This function directly
gives the pooling weights or the connections between
the simple cell with index, i, and the complex cell with
index j. Thus, we define the local activation as

cit= �
n

j=1

h(i, j)�wj,It�2. (4)

This two-layer network where the outputs of the simple
cells are square-rectified and locally pooled in the com-
plex cell layer is illustrated in Fig. 2.

After fixing the network structure, we define its learn-
ing process as the estimation of a generative model that
is an extension of ICA. The connections between simple
cells and complex cells, given by h(i,j), are considered
fixed and are not learned from the natural image input.
What is learned are the basis vectors ai, or equivalently,
the inverse filters wi. The learning of the basis vectors,
ai, is modulated by the complex cell pooling process,
which is why the results are not the same with basic
ICA.

Thus, we define a topographic extension of the ICA
model in which the likelihood (i.e. the probability of the
data given the model parameters) is given by

nization of the cells. Several neural network models
have been proposed for learning these properties (Von
der Malsburg, 1973; Kohonen, 1982; Linsker, 1988;
Obermayer, Ritter, & Schulten, 1990; Erwin, Ober-
mayer, & Schulten, 1995; Miller, 1995; Kohonen, 1996;
Swindale, 1996; Hyvärinen & Hoyer, 2000), but none
has succesfully demonstrated emergence of all of them.
Here, we show that these properties emerge from a
two-layer sparse coding model that is fed natural image
data as its input.

2. The model

The extension of the basic ICA or sparse coding
model so that it models complex cell properties and
topography is possible simply by considering the
sparsenesses of local acti�ations instead of simple cell
responses. The starting point is that the components
given by ICA are actually not independent, and the
remaining dependencies can be further analysed.

Each simple cell is modelled as a linear filter with
adaptable weights, given equivalently by the basis vec-
tors ai or the filters wi. The output of the simple cell
with index i, when input with an image patch It, is thus
given by the dot-product or convolution as in Eq. (2).
This is like in basic ICA.
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Fig. 3. Illustration of sparse topographic (local) activations. Each pixel in the two plots gives the (signed) activity of one simple cell; grey means
no activation and black and white are activated. Left: original ICA or sparse coding model. The activations are sparse but have no spatial
structure. Right: our model. The activations are sparse and are in addition spatially clustered or topographic.

logL(I1, …,IT ; w1, …,wn)= �
T

t=1

�
n

i=1

G(cit). (5)

The topography given by h(i,j ) is considered fixed,
and only the first-layer weights, wj, are estimated, so
this likelihood is a function of the wi only. The func-
tion G is again typically convex, and the expectation
of its argument is constant due to whitening and
orthogonalization.

The central feature of this model is that the re-
sponses, si, of nearby simple cells are statistically not
independent in this model. The responses are still lin-
early uncorrelated,1 but they have non-linear depen-
dencies. In fact, the rectified outputs, s i

2, are strongly
positively correlated for neighboring cells. This means
simultaneous acti�ation of neighboring cells; such
simultaneous activation is implicit in much of the
work in cortical topography.

To illustrate the connection between sparseness of
complex cell responses and simultaneous activation,
let us consider the following two cases. Consider just
two simple cells that have the same distributions for
the output energies, and whose output energies are
pooled to a complex cell response. If the outputs are
statistically independent, the pooling to local activa-
tions reduces sparseness. This is because of the funda-
mental result given by the Central Limit Theorem in
probability theory, and which forms the basis of
much of the theory if ICA (Hyvärinen & Oja, 2000).
Roughly, this result says that the sum of independent
random variables is closer to Gaussian (and, there-
fore, less sparse) than the original random variables
themselves. Now, consider the contrasting extreme
case where the cell outputs are perfectly dependent,
that is, equal. This means that the distribution of the
pooled energies is equal to the distribution of the

original energies (up to a scaling constant), and there-
fore, there is no reduction in sparseness. Thus, the
sparseness of complex cell responses requires not only
that the simple cell responses are sparse, but also that
each complex cell pools responses that are not too
independent.

Our model can be estimated by maximization of
the likelihood. Maximization of the likelihood is here
equivalent to maximizing the sparsenesses of the local
activations or complex cell responses. This is because
the likelihood now measures the sparsenesses of the
complex cell responses (or, strictly speaking, the
square roots of the responses), just like the likelihood
in ICA measured the sparsenesses of the simple cell
responses.

Sparseness of local activations means that at any
given time, simple cells that have significantly non-
zero responses tend to be spatially clustered. Such
sparse topographic activations are illustrated in Fig.
3. Sparse topographic activation is of course inti-
mately related to simultaneous activation of neigh-
bors.

To gain some further insight into the learning pro-
cess that ensues from the maximization of the likeli-
hood of our model, one might consider an alternative
two-step procedure. First, one might learn the basis
vectors, ai, by ordinary linear sparse coding, com-
pletely ignoring the second layer and the topography.
After this, the cells (or basis vectors) could then be
arranged on the 2-D topographic grid so that cells
that are simultaneously active are as close to each
other as possible. Essentially, estimation of our model
combines these two hypothetical steps into a single
process. There is no need to explicitly shift the cells
afterwards (as in the two-step procedure) because the
objective of sparseness of local activations automati-
cally considers the spatial arrangement of the cells.
Thus, the learning of the ai is modulated by feedback
so that the organization is automatically created with-
out any need to learn the second-layer weights.

1 This is because in the model, the probability only depends on the
absolute value of si. This means that the linear correlation must be
zero, because this symmetry implies that E{sisj}=E{(−si)sj}, and
therefore necessarily E{(−si)sj}=0.
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Fig. 4. The topographic basis vectors ai estimated from natural image data. The basis vectors are similar to those obtained by basic ICA or sparse
coding (Olshausen & Field, 1996), but in our model, they have a particular order. The extent of the neighborhood (pooling area) is shown by the
dashed square.

3. Data and methods

Using patches of natural images as the input data, we
estimated the representation given by the model. For
simplicity, we consider here only images that are static,
monocular, and monochromatic.

A sample of 50000 image patches of 32×32 pixels
were sampled from natural images available on the
WWW (http://www.cis.hut.fi/projects/ica/data/images).
The choice of this image set was somewhat arbitrary; see
Section 5 for a critique. To reduce noise and aliasing

artifacts, the dimension of the data was reduced to 625
components by principal component analysis: We re-
jected the components with low variances, as well as the
four components with the largest variances. The total
effect was a bandpass filtering. At the same time, the data
were whitened. The basis vectors, ai(x,y), are shown
below in the original space, i.e. after inverting these
preprocessing steps.

The topography was chosen as a 25×25 torus, i.e. a
square whose opposite edges are considered connected
together, to avoid border effects. The neighborhood
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Fig. 5. Analysis of topographic organization by fitted Gabor functions. (a) Scatterplots showing the local parameter correlations. Each pair of two
adjacent cells is one dot on each plot, and the axes give the values of the parameter for the fitted Gabors. Location is along the x axis; the y axis
gives virtually identical results. (b) Global map of each parameter. Each cell corresponds to one pixel, whose color codes the value of the
parameter of the fitted Gabor. (c) Analysis of complex cell properties of neighborhoods. One parameter of the fitted Gabor was changed at a time,
and the response (normalized so that the maximum is one) was plotted as a function of the parameter change (the location was changed
perpendicular to the preferred orientation.) Upper row: simple cells (absolute values); lower row: complex cells. Solid line: median of responses
of all the 625 cells in the population, dotted lines: 90 and 10% quantiles.

function was chosen so that for a given i, h(i,j ) is 1 if
the cell j is in a 5×5 square centred on cell i ; otherwise
h(i,j ) is zero (see dashed square in Fig. 4). Thus, the
pooling area for complex cells consisted of 25 simple
cells. This neighborhood function was chosen after some
experimenting with different neighborhood sizes. Smaller
neighborhood sizes led to a weaker topographic organi-
zation, and very large neighborhood sizes did not give
good (Gabor-like) simple cell CRFs.

We used three different convex functions G(c)=
−�1��+c+�1, G(c)= −�2 tanh(c/2)+�2 and G(c)
= −�3/log(1+c)+�3, where �1,�2,�3,�1,�2,�3�0 are
irrelevant normalization constants only needed for the
likelihood interpretation, and �=0.00001. These non-lin-
earities yielded essentially identical results; the results are
shown here for the first one.

The likelihood in Eq. (5) was maximized by an
ordinary gradient method; the iteration was started from
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Fig. 6. Two-bar experiment investigating the non-linearity of complex cell responses. (a) Response of a complex cell to a single optimally oriented
bar at various parts of the CRF. Horizontal axis: position of bar along the axis orthogonal to preferred orientation. (b)– (d) Non-linearity of
responses to two bars of same polarity. One was fixed at some given spot in the CRF, shown by the vertical line, and the other was moved as
in (a). The plots show the difference of the actual response and the sum of responses for the two bars alone. The experiments are shown for the
neighborhood boxed in Fig. 4; most neighborhoods behaved very similarly.

random initial values for the wi. This took about 1 week
on a single RISC processor.

4. Results

The basis functions ai(x,y) are shown in Fig. 4, with
their topographic ordering. The topographic map has
basis vectors that are tuned for the three principal
parameters: orientation, frequency and location. Visual
inspection of the map shows that orientation and loca-
tion mostly change smoothly as a function of position on
the topographic grid. A striking feature of the map is a
‘blob’ grouping low-frequency basis vectors. Thus, the
topography is determined by the same set of parameters
for which the model cells are selectively tuned.

For further analysis, we fitted Gabor functions to the
estimated basis vectors using the criterion of least
squares. Thus, we described each simple cell in terms of
phase, location, orientation, and frequency. First, we
investigated local parameter correlations (DeAngelis et
al., 1999). In Fig. 5(a), we show the scatterplots for the
values of a single parameter for every pair of two adjacent
cells. Location, orientation, and frequency of two adja-
cent cells are strongly correlated.2 In contrast, the phases
are not correlated.

Furthermore, we plotted the global maps for the same
parameters, in Fig. 5(b). In the orientation map, one can
observe fractures, and especially pinwheels, which were
determined manually and marked with white circles. The
frequency map shows clearly the ‘blob’ of low-frequency
basis vectors already visible in Fig. 4. The phase map
further confirms that the phases have no spatial structure.
The map of locations shows that the model does have a
local retinotopy, but the global retinotopy is less clear.

Note that the neighborhood structure was toroidal, so
the edges of the map exist only in this 2-D plot, and they
could be moved by rolling the map horizontally or
vertically.

Finally, we analyzed the properties of the complex cells
given by the model. The neighborhood size (pooling area)
for the complex cell outputs was the same as in the
estimation (see Fig. 4). We varied the parameters of the
optimal Gabor stimulus, computed separately for both
simple and complex cells, and plotted the responses in
Fig. 5 (c). Most complex cells are insensitive (invariant)
to phase; moreover, their responses are somewhat insen-
sitive to location. These two properties are in stark
contrast to those of simple cells. However, cells in both
categories are selective to orientation and frequency.
(Most of the neighborhoods not showing these properties
are located in fractures and pinwheel centres.) A further
experiment was made by simulating an experiment that
measures the nonlinearity of the complex cell by present-
ing two bars (Movshon, Thompson, & Tolhurst, 1978).
We computed regions where the two bars gave stronger
or weaker responses than those predicted by linear
superposition (Szulborski & Palmer, 1990). The results
(Fig. 6) show clear excitatory and inhibitory regions.

5. Discussion

5.1. Comparison with V1 properties

The principal characteristics of the spatial CRFs of
primate simple cells seem to be selective tuning for
location, orientation, and frequency (Hubel & Wiesel,
1968; DeValois et al., 1982). These are the properties that
emerged in the basic ICA or sparse coding model
(Olshausen & Field, 1996). A systematic comparison (van
Hateren & van der Schaaf, 1998) showed that the filters,
wi, (as well as the ai; see below) are quite similar to the
CRFs of simple cells; the main difference is that ICA
gives basis vectors that are predominantly of high
frequency whereas CRFs in V1 seem to be more evenly
distributed. The properties of simple cells in our model
are essentially similar to those in the basic ICA model.

2 In the orientation plot, we see a faint wrong diagonal (4% of
points), which is due to anisotropies in the image data (van Hateren
& van der Schaaf, 1998). To confirm that this was not an aliasing
artifact, we first computed the results for strongly low-pass filtered
data, which did not change the diagonal, and second, we rotated the
raw data by 45°, which simply changed the position of the diagonal.
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The topography in V1 seems to be mainly arranged
according to the same parameters. The fundamental
topographic arrangement is by retinotopy (spatial loca-
tion) (Hubel & Wiesel, 1977). Orientation preference
seems to change smoothly as well, except in pinwheels
and other singularities (Blasdel, 1992). Frequency selec-
tivity seems to be arranged topographically with respect
to the cytochrome oxidase (CO) blobs, so that the blobs
(or at least their centres) contain predominantly cells
that prefer low-frequency cells, and the interblob cells
prefer higher frequencies (Tootell et al., 1988; Silver-
man, Grosof, DeValois, & Elfar, 1989; Edwards, Pur-
pura, & Kaplan, 1996). In contrast, phase seems to be
random, and does not seem to have any spatial structure
(DeAngelis et al., 1999).

The results of our model are consistent with these
data. In our results, as shown in Fig. 5(a) and (b),
orientation changes smoothly in most parts of the map,
and one can find pinwheels. Phase changes randomly
and does not determine the topography; this is an
emergent property of the model, dictated by the statisti-
cal structure of the input. Low-frequency components
are arranged in a single ‘blob’. The fact that we have a
single blob is presumably because the spatial extent of
the patch is so small. With larger patches, the emergence
of several blobs seems likely, especially if a more
strongly high-pass filtering is performed in the prepro-
cessing. The model shows only a local retinotopy,
whereas globally, retinal location is not well ordered. As
with blobs, global retinotopy should be analyzed by
much larger patches, which would probably lead to a
clear global retinotopy.

The properties of the model complex cells also give a
qualitative match with V1 complex cells. The model
complex cells are insensitive to phase and have larger
receptive fields, while still tuned to a specific orientation
and frequency. The two-bar experiment shows excita-
tory and inhibitory regions that are qualitatively very
similar to kernels measured from complex cells
(Movshon et al., 1978; Szulborski & Palmer, 1990),
which may in fact be a rather general property of energy
models (Sakai & Tanaka, 2000).

A further issue is how the spatial maps of the different
parameters are related to each other. There are contra-
dictory results on what the situation is like in primate
V1. It has been reported (DeValois & DeValois, 1988;
Blasdel, 1992) that the CO blobs tend to contain the
centres of the pinwheels, but such an arrangement was
not found by others (Bartfeld & Grinvald, 1992). (In the
cat, contradictory results have been reported as well
(Hübener, Shoham, Grinvald, & Bonhoeffer, 1997;
Kim, Matsuda, Ohki, Ajima, & Tanaka, 1999)). In the
results given by our model, visual inspection of Fig. 5(b)
seems to show that the maps for different parameters
are essentially independent, thus conforming to the
results in (Bartfeld & Grinvald, 1992).

5.2. Comparison with other models

When compared with other models on V1 topogra-
phy, we see three important new features in our model.
First, our model shows emergence of a topographic
organization using the above-mentioned three principal
parameters: location, frequency and orientation. The
use of these particular three parameters is not predeter-
mined by the model, but determined by the statistics of
the input. This is in contrast to most models that only
model topography with respect to one or two parame-
ters (usually orientation possibly combined with binocu-
larity) that are chosen in advance. The results that are
closest to our model in this respect were obtained by the
ASSOM model (Kohonen, 1996), but even in that
model, the nature of the topography was strongly influ-
enced by an artificial manipulation of the input (a
sampling window that moves smoothly in time).

Second, no other model has shown, to our knowl-
edge, the emergence of a low-frequency blob. In fact,
most models have exclusively concentrated on orienta-
tion-preference and ocular-dominance columns.

Third, our model may be the first to explicitly show
a connection between topography and complex cells.
The topographic, columnar organization of the simple
cells is such that complex cell properties are automati-
cally created when considering local activations, which
is related to the randomness of phases.

It is likely that the two latter properties (blobs and
complex cells) can only emerge in a model that, firstly,
uses natural images as input, and, secondly, is based on
simultaneous activation instead of similarity of CRFs,
as measured by Euclidean distances or CRF correla-
tions. This is because Euclidean distances or correla-
tions between basis vectors of different frequencies, or
of different phases, are quite arbitrary: they can obtain
either large or small values depending on the other
parameters. Thus, they do not offer enough information
to qualitatively distinguish the effects of phase vs. fre-
quency, so that phase can be random, and frequency
can produce a blob.

There are also models that do not consider V1 topog-
raphy but are related on the level of theory. Our main
contribution was to combine the basic framework of
sparse coding with the ideas of simultaneous activation
and local pooling. Simultaneous activation can also be
found in some recent models of natural image statistics,
where it has been considered to be related to complex
cells (Zetzsche & Kneger, 1999; Hyvärinen & Hoyer,
2000) or normalization models (Simoncelli & Schwartz,
1999). A more general signal-processing framework with
this kind of dependencies was proposed in Hyvärinen,
Hoyer, and Inki (in press). Some relation may also be
found with the models of positive factor analysis or
non-negative matrix factorization (Paatero, 1997; Lee &
Seung, 1999).
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5.3. Extensions and critique

Extending this modelling approach to non-spatial
properties of complex cells and topography may be
possible by adding these properties to the input data.
The basic ICA model has had some success in modelling
properties of simple cells related to motion (van Hateren
& Ruderman, 1998), color (Hoyer & Hyvärinen, 2000),
and stereopsis (Hoyer & Hyvärinen, 2000). Such exten-
sions would provide further tests on the validity of our
model.

We have used here the basic hierarchical energy
model for complex cells. There is evidence against this
very simple model, and alternatives have been proposed
(see Mel, Ruderman, & Archie, 1998; Sakai & Tanaka,
2000). It remains to be seen if our model could be
modified to work with such alternative models.

One argument against our model could be made by
referring to results that show that even in the absence of
visual input, some orientation preference can be found
in simple cells (Hubel & Wiesel, 1963), and rearing in a
visually restricted environment has only limited influ-
ence on the response properties of the neurons (Seng-
piel, Stawinski, & Bonhoeffer, 1999). This is in fact not
in contradiction with our modelling approach since we
are modelling the combined effect of evolution and
prenatal as well as postnatal development. Quite proba-
bly, part of the ‘estimation’ of the model is accom-
plished by genetic instructions. Presumably, these
instructions in their turn have been influenced by the
natural environment. Therefore, our estimation proce-
dure is not meant as a concrete developmental learning
rule, although part of the estimation could be accom-
plished by such a rule.

Another point to note is the relation between the
basis vectors, ai, and the filters wi. We have shown the
basis vectors in Fig. 4, following Olshausen and Field
(1996), although it is the wi that more closely corre-
spond to the CRF’s of the model cells. It should be
noted here that the ai are basically low-pass filtered
versions of the wi. In fact, simple calculations show3 that
the ai can be obtained by filtering the wi (considered as
image patches as in Fig. 4) by a filter whose coefficients
are given by the autocovariance function of the data.
This filter is a symmetric, approximately isotropic low-
pass filter (Ruderman & Bialek, 1994). Thus, ai and wi

have essentially the same orientation, location and fre-
quency tuning properties. However, the ai are better to
visualize because they actually correspond to parts of
the image data; especially with data that are not purely
spatial, visualization of the filters would not be straight-

forward (Hoyer & Hyvärinen, 2000).
Finally, the choice of the images that we used may be

criticized as too limited. We used 13 images of natural
scenes, with a large emphasis on forests, mountains, and
fields, as well as animals. This may not be a very
representative set of the visual input that has shaped the
visual system. However, the very definition of a repre-
sentative set of visual input is not clear-cut. In particu-
lar, it is not clear to what extent the direction of eye gaze
should be taken into account. This may greatly affect
the input (Reinagel & Zador, 1999), especially as the
fovea probably receives more input from ‘meaningful’
parts of the visual scene. In future research, more
emphasis may need to be laid on data acquisition. On
the positive side, the results of basic ICA seem to be
quite robust regarding the choice of the data set, since
qualitatively similar results have been obtained with
different data sets collected by rather different means
(Olshausen & Field, 1996; van Hateren & van der
Schaaf, 1998; van Hateren & Ruderman, 1998; Hoyer &
Hyvärinen, 2000), and one may assume that this robust-
ness should also be found in the results of the present
model.

5.4. Conclusion

We extended the ICA or sparse coding approach to a
model that learns a two-layer representation for natural
image data. The model exploits the fact that the compo-
nents given by ICA are not actually independent. The
dependencies that are not cancelled by ICA are utilized
to determine a topographic (that is, columnar) organiza-
tion for the simple cells.

The learning is based on finding a representation
where the local activations in the first layer are maxi-
mally sparse. In other words, complex cells pool inputs
from their immediate neighborhood only, and the spar-
sities of their outputs are maximized. In contrast to
most models, the topography is thus determined by the
simultaneous activities of neighboring cells and only
indirectly by the similarity of their CRFs.

The model shows emergence of a topographic organi-
zation, in addition to the simple cell properties that were
already seen in the original ICA model. The topography
that emerges is similar to that found in V1 in that it is
based on location, frequency and orientation and is
independent of phase. Moreover, the topography has
the property that the local activations are similar to
complex cell responses.

Thus, the model shows that natural image statistics
have a clear connection to the columnar organization of
V1, in addition to the tuning properties of the individual
cells. This lends further support to the hypothesis that
the structure of the early visual system is strongly
influenced by the input that it receives in a natural
environment.

3 The autocovariance c(x, y ; x �, y �) of the data in this model equals
�ij ai(x, y)aj(x �, y �)E{sisj}=�i ai(x, y)ai(x �, y �), because the si are
uncorrelated and have unit variance. Thus, we have �x�, y� c(x, y ; x �,
y �) wi(x �, y �)=ai(x, y) by definition of the wi.
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Hübener, M., Shoham, D., Grinvald, A., & Bonhoeffer, T. (1997).
Spatial relationships among three columnar systems in cat area
17. Journal of Neuroscience, 17(23), 92709284.

Hyvärinen, A., & Hoyer, P. O. (2000). Emergence of phase and shift
invariant features by decomposition of natural images into inde-
pendent feature subspaces. Neural Computation, 12(7), 1705–
1720.

Hyvärinen, A., & Oja, E. (2000). Independent component analysis:
algorithms and applications. Neural Networks, 13(4–5), 411–
430.

Hyvärinen, A., Hoyer, P.O., & Inki, M. (in press). Topographic
independent component analysis. Neural Computation.

Jutten, C., & Herault, J. (1991). Blind separation of sources, part I:
an adaptive algorithm based on neuromimetic architecture. Sig-
nal Processing, 24, 1–10.

Kim, D.-S., Matsuda, Y., Ohki, K., Ajima, A., & Tanaka, S. (1999).
Geometrical and topological relationships between multiple func-
tional maps in cat primary cortex. Neuroreport, 10(12), 2515–
2522.

Kohonen, T. (1982). Self-organized formation of topologically cor-
rect feature maps. Biological Cybernetics, 43(1), 56–69.

Kohonen, T. (1996). Emergence of invariant-feature detectors in the
adaptive-subspace self-organizing map. Biological Cybernetics,
75, 281–291.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by
non-negative matrix factorization. Nature, 401, 788–791.

Linsker, R. (1988). Self-organization in a perceptual network. Com-
puter, 21, 105–117.

Mel, B. W., Ruderman, D. L., & Archie, K. A. (1998). Translation-
invariant orientation tuning in visual ‘complex’ cells could derive
from intradendritic computations. Journal of Neuroscience, 18,
4325–4334.

Miller, K. D. (1995). Receptive fields and maps in the visual cortex:
models of ocular dominance and orientation columns. In E.
Domany, J. L. van Hemmen, & K. Schulten, Models of neural
networks III (pp. 55–78). New York: Springer.

Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978). Recep-
tive field organization of complex cells in the cat’s striate cortex.
Journal of Physiology, 283, 79–99.

Obermayer, K., Ritter, H., & Schulten, K. (1990). A principle for
the formation of the spatial structure of cortical feature maps.
Proceedings of the National Academy of Science (USA), 87,
8345–8349.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images. Nature, 381, 607–609.

Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an
overcomplete basis set: a strategy employed by V1? Vision Re-
search, 37, 3311–3325.

Paatero, P. (1997). Least squares formulation of robust non-negative
factor analysis. Chemometrics and Intelligent Laboratory Systems,
37, 23–35.

Pham, D.-T., Garrat, P., & Jutten, C. (1992). Separation of a
mixture of independent sources through a maximum likelihood
approach. In Proceedings of EUSIPCO (pp. 771–774).

Pollen, D., & Ronner, S. (1983). Visual cortical neurons as localized
spatial frequency filters. IEEE Transactions on Systems, Man and
Cybernetics, 13, 907–916.

Reinagel, P., & Zador, A. (1999). Natural scenes at the center of
gaze. Network: Computation in Neural Systems, 10, 341–350.

Ruderman, D. L., & Bialek, W. (1994). Statistics of natural images:
scaling in the woods. Physics Re�iew Letters, 73(6), 814–817.

Sakai, K., & Tanaka, S. (2000). Spatial pooling in the second-order
spatial structure of cortical complex cells. Vision Research, 40,
855–871.



A. Hy�ärinen, P.O. Hoyer / Vision Research 41 (2001) 2413–2423 2423

Sengpiel, F., Stawinski, P., & Bonhoeffer, T. (1999). Influence of
experience on orientation maps in cat visual cortex. Nature Neu-
roscience, 2(8), 727–732.

Silverman, M. S., Grosof, D. H., DeValois, R. L., & Elfar, S. D.
(1989). Spatial-frequency organization in primate striate cortex.
Proceedings of the National Academy of Sciences (USA), 86(2),
711–715.

Simoncelli, E. P., & Schwartz, O. (1999). Modeling surround suppres-
sion in V1 neurons with a statistically-derived normalization
model. In Ad�ances in neural information processing systems 11
(pp. 153–159). Cambridge, MA: MIT Press.

Swindale, N. V. (1996). The development of topography in the visual
cortex: a review of models. Network, 7(2), 161–247.

Szulborski, R. G., & Palmer, L. A. (1990). The two-dimensional
spatial structure of nonlinear subunits in the receptive fields of
complex cells. Vision Research, 30(2), 249–254.

Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., Switkes, E., &
Valois, R. L. D. (1988). Functional anatomy of macaque striate

cortex. V. Spatial frequency. Journal of Neuroscience, 8, 1610–
1624.

van Hateren, J. H., & Ruderman, D. L. (1998). Independent compo-
nent analysis of natural image sequences yields spatiotemporal
filters similar to simple cells in primary visual cortex. Proceedings
of the Royal Society Series B, 265, 2315–2320.

van Hateren, J. H., & van der Schaaf, A. (1998). Independent
component filters of natural images compared with simple cells in
primary visual cortex. Proceedings of the Royal Society Series B,
265, 359–366.

Von der Malsburg, C. (1973). Self-organization of orientation-sensi-
tive cells in the striate cortex. Kybernetik, 14, 85–100.

Zetzsche, C., & Kneger, G. (1999). Nonlinear neurons and high-order
statistics: new approaches to human vision and electronic image
processing. In B. Rogowitz, & T. Pappas, Human �ision and
electronic imaging IV (Proceedings of SPI), vol. 3644 (pp. 2–33).
Bellingham, WA: SPIE.

.


