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Abstract. The paper presents an example of exploratory data analy-
sis of climate measurements using a recently developed denoising source
separation (DSS) framework. We analysed a combined dataset contain-
ing daily measurements of three variables: surface temperature, sea level
pressure and precipitation around the globe. Components exhibiting slow
temporal behaviour were extracted using DSS with linear denoising.
These slow components were further rotated using DSS with nonlin-
ear denoising which implemented a frequency-based separation criterion.
The rotated sources give a meaningful representation of the slow climate
variability as a combination of trends, interannual oscillations, the an-
nual cycle and slowly changing seasonal variations.

1 Introduction

One of the main goals of statistical analysis of climate data is to extract physi-
cally meaningful patterns of climate variability from highly multivariate weather
measurements. The classical technique for defining such dominant patterns is
principal component analysis (PCA) or empirical orthogonal functions (EOF)
as it is called in climatology (see, e.g., [1]). However, many researchers pointed
out that the maximum remaining variance criterion used in PCA can lead to
such problems as mixing different physical phenomena in one extracted compo-
nent [2, 3]. This makes PCA a useful tool for information compression but limits
its ability to isolate individual modes of climate variation.

To overcome this problem, rotation of the principal components proved useful
[2]. The different rotation criteria reviewed in [2] are based on the general “simple
structure” idea aimed at, for example, spatial or temporal localisation of the
rotated components. The rotation of EOFs can be either orthogonal or oblique,
which potentially leads to better interpretability of the extracted components.

Independent component analysis (ICA) is a recently developed statistical
technique for component extraction which can also be used for rotating principal
components. The basic assumption made in ICA is the statistical independence of
the extracted components, which may lead to a meaningful data representation in



a number of applications (see, e.g., [4] for introduction). ICA is based on higher-
order statistics and in this respect bears some similarity to classical rotation
techniques such as the Varimax orthogonal rotation [2]. Several attempts to
apply ICA in climate research have already been made [5, 6].

In this paper, we analyse weather measurements using a novel extension of
ICA called denoising source separation [7]. DSS is a general separation framework
which does not necessarily exploit the independence assumption but rather looks
for hidden components which have “interesting” properties. The interestingness
of the properties is controlled by means of a denoising procedure. For example,
in [8], the sources with most prominent interannual oscillations were identified
using DSS with linear filtering as denoising. The leading components were clearly
related to the well-known El Niño–Southern Oscillation (ENSO) phenomenon
and several other interesting components were extracted as well.

In the present work, we use DSS with linear denoising as the first, prepro-
cessing step of climate data analysis. A wider frequency band in the denoising
filter is used to identify the slow subspace of the climate system. The found
slow components are further rotated using an iterative DSS procedure based on
nonlinear denoising. The rotation is done such that the extracted components
would have distinct power spectra.

The extracted components turned out to represent the subspace of the slow
climate phenomena as a linear combination of trends, decadal-interannual oscil-
lations, the annual cycle and other phenomena with distinct spectral contents.
Using this approach, the known climate phenomena are identified as certain sub-
spaces of the climate system and some other interesting phenomena hidden in
the weather measurements are found.

2 DSS method

DSS is a general algorithmic framework which can be used for discovering in-
teresting phenomena hidden in multivariate data [7]. Similarly to PCA, ICA or
other rotation techniques, DSS is based on the linear mixing model. The basic
assumption is that there are some hidden components s(t) (also called sources
or factors) which are reflected in the measurements x(t) through a linear map-
ping: x(t) = As(t). The mapping A is called the mixing matrix in the ICA
terminology or the loading matrix in the context of PCA.

The goal of the analysis is to estimate the unknown components s(t) and the
corresponding loading vectors (the columns of A) from the observed data x(t).
In the climate data analysis, the components usually correspond to the time-
varying states of the climate system and the loading vectors are the spatial maps
showing the typical weather patterns corresponding to the found components.
The components s(t) are usually normalised to unit variances, and therefore the
spatial patterns have a meaningful scale.

The first step of DSS is so-called whitening or sphering (see Fig. 1). The
goal of whitening is to uniform the covariance structure of the data in such
a way that any linear projection of the data has unit variance. The positive
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Fig. 1. The steps of the DSS algorithm in the general case (above) and in the case of
linear denoising (below).

effect of such transformation is that any orthogonal basis in the whitened space
defines uncorrelated sources. Therefore, whitening is used as a preprocessing
step in many ICA algorithms, which allows restricting the mixing matrix to be
orthogonal afterwards. Whitening is usually implemented by PCA.

The following stage is an orthogonal rotation of the white components Y

based on the source separation criterion defined in the form of a denoising pro-
cedure. It is in general done using an iterative algorithm with three steps: source
estimation, denoising of the source estimates and reestimation of the demixing
matrix. Without denoising, this procedure is equivalent to the power method for
computing the principal component of Y . Since Y is white, all the eigenvalues
are equal and the solution without denoising becomes degenerate. Therefore,
even slightest changes made by denoising can determine the DSS rotation. Since
the denoising procedure emphasises the desired properties of the sources, DSS
can find the rotation where the properties of interest are maximised.

Linear denoising is a simpler case as it does not require the described it-
erative procedure. DSS based on linear denoising can be performed in three
steps: whitening, denoising and PCA on the denoised data (see Fig. 1). The
idea behind this approach is that denoising renders the variances of the sphered
components different and PCA can identify the directions which maximise the
properties of interest. The eigenvalues given by PCA tell the ratio of the vari-
ance of the sources after and before filtering which is the objective function in
linear denoising. The components are ranked according to the prominence of the
desired properties the same way as the principal components in PCA are ranked
according to the amount of variance they explain.

More general nonlinear denoising can implement more complicated separa-
tion criteria (see [7, 9] for several examples). The objective function is usually
expressed implicitly in the denoising function. Therefore, ranking the compo-
nents is more difficult in this case and depends on the exact separation criterion
used in the denoising procedure.

In the present work, DSS is exploited twice. First, DSS with linear denoising
extracts components which exhibit most prominent variability in the slow time
scale. Therefore, linear denoising is implemented using a low-pass filter whose
frequency response is shown in Fig. 2. A similar approach (but with another
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Fig. 2. Frequency response of the filter used in DSS with linear denoising. The abscissa
is linear in frequency but is labeled in terms of periods, in years.

type of filter) was introduced in [8] to identify the subspace with most prominent
interannual variability.

After that, the slow components are rotated such that they would have dis-
tinct power spectra. This is done by DSS with the general iterative procedure in
which denoising implements a frequency-based separation criterion. Practically,
the denoising procedure is based on whitening smoothed discrete cosine trans-
form (DCT) power spectra of the components and using inverse DCT to calculate
the denoised sources f(S). This denoising mechanism is somewhat similar to the
whitening-based estimation of the source variance proposed in [9]. The algorithm
also tries to order the sources according to their frequencies using topographic
ideas somewhat similar to [10].

3 Data and Preprocessing Method

The proposed technique is applied to measurements of three major atmospheric
variables: surface temperature, sea level pressure and precipitation. This set of
variables is often used for describing global climate phenomena such as ENSO
[11]. The datasets are provided by the reanalysis project of the National Cen-
ters for Environmental Prediction–National Center for Atmospheric Research
(NCEP/NCAR) [12].3

The data represent globally gridded measurements over a long period of time.
The spatial grid is regularly spaced over the globe with 2.5◦ × 2.5◦ resolution.
Although the quality of the data is worse for the beginning of the reanalysis
period and it considerably varies throughout the globe, we used the whole period
of 1948-2004.

The long-term mean was removed from the data and the data points were
weighed similarly to [8] to diminish the effect of a denser sampling grid around
the poles. Each data point was multiplied by a weight proportional to the square
root of the corresponding area of its location. The spatial dimensionality of the
data was reduced using the PCA/EOF analysis applied to the weighed data. For
each dataset, we retained 100 principal components which explain more than 90%
of the total variance. The DSS analysis was then applied to the combined data
containing the measurements of the three variables.

3 The authors would like to thank the NOAA-CIRES Climate Diagnostics Center,
Boulder, Colorado, USA, for providing NCEP Reanalysis data from their Web site
at http://www.cdc.noaa.gov.



4 Results

First, we identified the subspace of slow climate phenomena by applying DSS
with low-pass filtering as linear denoising to the daily weather measurements.
The time course of the most prominent slow components extracted from highly
multidimensional data is shown in the leftmost column of Fig. 3. The annual cycle
appears in the two leading components as the clearest slow source of the climate
variability. The following components also possess interesting slow behaviour.

However, the sources found at this stage appear to be mixtures of several
climate phenomena. For example, the third and the fourth components are mix-
tures of slow trends and the prominent ENSO oscillations. Similar mixed phe-
nomena can be found in other components as well. This effect is also seen from
the power spectra of the components (not shown here). Many components pos-
sess very prominent slowest, decadal or close-to-annual frequencies. Except for
the two annual cycle sources, none of the components has a clear dominant peak
in its power spectrum.

The first sixteen slow components extracted by DSS with linear denoising
were further rotated using frequency-based DSS described in Section 2. To dis-
card high-frequency noise, the monthly averages of the slow components were
used at this stage. The time course of the rotated sources is presented in Fig. 3
and the spatial patterns corresponding to some of the sources are shown in Fig. 4.
The components now have more clear interpretation compared to the original
slow components.

The power spectra of the rotated components are more distinct (see the right-
most column of Fig. 3). However, some of the power spectra look quite similar
and we can roughly categorise the found sources into three subspaces with dif-
ferent variability time scales: trends (components 1–5), interannual oscillations
(components 6–11) and components 12–16 with dominating close-to-annual fre-
quencies in their spectra. The subspaces are identified reliably due to the distinct
differences in the corresponding power spectra but the components within the
subspaces may remain mixed.

Among the slowest climate trends, the most prominent one is component 3
which has a constantly increasing time course. This component may be related
to global warming as the corresponding surface temperature map has mostly
positive values all over the globe (see Fig. 4). The highest temperature loadings
of this component are mainly concentrated around the North and South Poles,
the sea level pressure map has a clear localisation around the South Pole and
the precipitation loadings are mostly located in the tropical regions.

Components 6–11 exhibit prominent oscillatory behaviour in the interannual
time scale. The most prominent sources here are components 7 and 8 which
are closely related to the ENSO oscillations both in the time course and in the
corresponding spatial patterns (see Fig. 4). They are very similar to the first
two components extracted in [8]: component 7 is similar to the ENSO index and
component 8 bears resemblance with the differential ENSO index. Component
6 may be related to the slower behaviour of ENSO. Component 10 has very
distinct spatial patterns with a prominent dipole structure over the continents
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Fig. 3. Left: The monthly averages of the components extracted by DSS with linear
denoising. Middle: The rotated slow components estimated by frequency-based DSS.
The variances of all the components are normalised to unity. Right: The power spectra
of the components found by frequency-based DSS. The abscissa is linear in frequency
but is labeled in terms of periods, in years.

in the Northern Hemisphere in the temperature maps. A similar source was also
extracted in [8].

Components 12–16 have prominent close-to-annual frequencies in their power
spectra. The annual cycle now appears in components 15–16. The rest of the
sources resemble the annual oscillations modulated (multipiled) by some slow
signals. Thus, this set of components may be related to some phenomena slowly
changing the annual cycle. However, as we already pointed out, the found rota-
tion within this subspace may not be most meaningful.
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Fig. 4. The spatial patterns of several components found by frequency-based DSS. The
label on the left indicates the number of the component in Fig. 3.

5 Discussion

In this paper, we showed how the DSS framework can be applied to exploratory
analysis of climate data. We used a frequency-based separation criterion to iden-
tify slow varying climate phenomena with distinct temporal behaviour. The pre-
sented algorithm can be used for both finding a physically meaningful repre-
sentation of the data and for an easier interpretation of the complex climate
variability. It can also be useful for making predictions of future measurements
or for detecting artifacts produced during the data acquisition.

Representing climate variability as a combination of hidden phenomena does
not have a unique solution because of the high complexity of the climate system
where different phenomena constantly interact with each other. This task always
allows some subjectivity where the exact details of the separation procedure de-



pend on the ultimate goal of research. A good example of such subjectivity
is choosing the number of extracted components in the proposed DSS proce-
dure. In the presented experiments, we chose this number such that the compo-
nents would easily be interpretable. According to our experience, increasing the
number of components usually results in describing one phenomenon by several
components having slightly different frequency contents. This may be useful for
better understanding of well-known climate phenomena or for discovering new,
not easily observable phenomena, but it may also be counter-productive if the
solution becomes overfitted.

Note also that the proposed method may sometimes identify reliably only the
subspaces of components having similar power spectra and the rotation within
the subspaces may not be most meaningful. Some other separation criteria based
on, for instance, dynamical modelling or the interaction with the seasonal vari-
ations is an important line of future research.
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