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Abstract. The paper presents an algorithm for identifying the indepen-

dent subspace analysis model based on source dynamics. We propose to

separate subspaces by decoupling their dynamic models. Each subspace

is extracted by minimizing the prediction error given by a first-order non-

linear autoregressive model. The learning rules are derived from a cost

function and implemented in the framework of denoising source separa-

tion.

1 Introduction

Blind source separation (BSS) is a research problem which has recently received
a lot of attention. The basic modeling assumption of linear BSS methods is that
the observed signals form a linear combination of some underlying sources (also
called components):

x(t) = As(t) , (1)

where x(t) denotes the vector of observations xk(t), s(t) is the vector of source
signals sj(t) and A is called a mixing matrix. Both the sources s(t) and the
mixing matrix A are unknown and have to be estimated from the measurements.

Independent component analysis (ICA) is a popular method for solving the
BSS problem. ICA algorithms identify the model in (1) using the only assump-
tion of the statistical independence of the sources: Each sj(t) is regarded as
a sample from a random variable sj and these variables are assumed mutually
independent. Independence of random variables is a stronger assumption than
uncorrelatedness and therefore ICA methods are typically based on higher-order
statistics (see, e.g., [1] for introduction). Multidimensional ICA [2] or indepen-
dent subspace analysis [3] is a natural extension of ICA. There, the source vector
s is decomposed into several groups (linear subspaces):

s =
[

sT
1

. . . sT
n

]T
, (2)

and the sources within one group si are generally assumed dependent while
components from different groups are mutually independent.

The BSS problem can also be solved by analyzing the source temporal struc-
ture. Several researchers have shown that the sources can be separated by joint
diagonalization of the autocorrelation matrices calculated for several time lags
[4, 5] or by using linear predictors [6, 7]. The advantage of these methods is that
they are typically based on second-order statistics and they can separate sources
with Gaussian distributions provided that their time structure is different.

In this paper, we propose an algorithm which uses the source temporal
structure to estimate independent subspaces. Each group of sources si in (2)



is assumed to have independent dynamics which is modeled by a first-order
nonlinear autoregressive process. The dimensionality of each group is assumed
to be known. Similarly to [6], the subspaces are estimated so as to minimize the
prediction error given by the subspace dynamic model. We call the resulting
algorithm independent dynamics subspace analysis (IDSA).

The idea and motivation for the proposed method comes from the analysis
of the complex climate data [8]. Climate phenomena constantly interact with
each other and cannot be independent. They can usually be described by multi-
dimensional dynamic processes and a meaningful separation criterion would be
making the dynamics of different groups of sources decoupled as much as possi-
ble. A similar separation criterion was expressed using the variational Bayesian
principles in [9].

2 Independent dynamics subspace analysis

2.1 The model

We consider the linear mixing model (1) in which the source vector is decom-
posed into groups as in (2). Each group si is assumed to be of a known dimen-
sionality and to follow an independent first-order nonlinear dynamic model:

si(t) = fi(si(t − 1)) + mi(t) , i = 1, . . . , n , (3)

where fi is an unknown nonlinear function and mi(t) is a noise vector. Thus, the
IDSA model resembles linear dynamic factor analysis [10]. Assuming separate fi
in (3) means that the subspaces have decoupled dynamics, that is sources from
one subspace do not affect the development of sources from other subspaces. In
the special case of linear dynamics s(t) = Bs(t − 1) + m(t) , this is equivalent
to having a block-diagonal matrix B.

Without loss of generality, we can make the additional assumption that all
the sources are mutually uncorrelated and of unit variance. The sources from
different subspaces are uncorrelated due to independence and the correlations
within the subspaces can always be removed by a linear transformation. Note
that IDSA identifies the sources only up to linear rotations within the subspaces,
which is a known indeterminacy of multidimensional ICA [2].

2.2 Preprocessing and separating structure

The first step of the IDSA algorithm is called whitening. It is a linear transfor-
mation of data (usually implemented by principal component analysis) which
makes the data covariance matrix an identity matrix. After whitening, any
orthogonal basis in the data space defines uncorrelated sources of unit vari-
ance. Therefore, whitening is a way to assure that the extracted components
are mutually uncorrelated (see more details in, e.g., [1]).

The sources are extracted from the whitened data using a demixing matrix
W as in denoising source separation (DSS) [11]:

S = WX . (4)



Here, we use the notation in which the matrices X and S contain respectively
the whitened observations x(t) and the source vectors s(t) in their columns.
Similarly to (2), the rows of matrices W and S are decomposed into groups
and each group Wi estimates one independent subspace Si = WiX. In the
whitened space, W equals the inverse of the mixing matrix and it can therefore
be restricted to be orthogonal. Note that this separating structure differs from
[10] where the generative model is learned.

As in many ICA algorithms, the subspaces can be estimated either simul-
taneously (symmetric approach) or one after another (deflation approach). In
the following, we assume that the deflation approach is used and we estimate
one of the subspaces Si = WiX. In order to simplify the notation, we drop the
subscript i from the formulas and therefore we assume that W = Wi.

2.3 Derivation of the algorithm

2.3.1 Cost function

The demixing matrix W is estimated such that the prediction error of the cor-
responding subspace dynamic model (3) is minimized. Hence, the cost function

C =
1

2

∑

t

‖s(t) − f(s(t − 1))‖2 , (5)

where s(t) = Wx(t), is minimized w.r.t. W and f .

2.3.2 Minimization w.r.t. W

It follows from (4) that for whitened data X with t = 1, . . . , N it holds that

W =
1

N
SXT . (6)

Using (6) and (4), the gradient descent step for W can be written as

Wnew = W − µ
∂C

∂W
=

1

N

(

S− Nµ
∂C

∂S

)

XT , (7)

where ∂C/∂W, ∂C/∂S denote the matrices of the gradients of C w.r.t. the
elements of W and S respectively, and µ is the step size. Hence, one step for
optimizing W can be performed by first updating the sources with the step size
µs:

Snew = S− µs

∂C

∂S
, (8)

then calculating the new value for W using (6) and finally projecting W onto
the set of orthogonal matrices. This is the optimization strategy used in DSS.

Taking the derivative of the cost function (5) w.r.t. the sources is straight-
forward. The t-th column of the matrix gradient ∂C/∂S is equal to

∂C

∂s(t)
= s(t) − f(s(t − 1)) −

(

∂f(s(t))

∂s

)T

(s(t + 1) − f(s(t))) (9)



with the following exceptions: when t = 1, the term s(t)− f(s(t−1)) is omitted;

and when t = N , the term (∂f(s(t))/∂s)T (. . .) is omitted. Here ∂f(s(t))/∂s

denotes the Jacobian matrix of f(s) calculated at s(t).
In the case of linear dynamics, (9) is simplified as f(s(t)) = Bs(t) and

∂f(s(t))/∂s = B.

2.3.3 Minimization w.r.t. f

It is possible to use any model for f , for example, radial-basis function or mul-
tilayer perceptron (MLP) networks [12]. In the experiments, we use a MLP

f(s) = D tanh(Cs + c) + d . (10)

The Jacobian matrix required in (9) is given by

∂f(s)/∂s = Ddiag(tanh′(Cs + c))C , (11)

where diag(v) denotes a diagonal matrix with the elements of v on its main
diagonal.

The parameters of the MLP (10) can be updated by minimizing the cost
function (5) using any standard algorithm for training MLPs (see, e.g., [12]). It
should be noted that regularization is crucial when updating a nonlinear model
for f . Too flexible a model would easily overfit to current source estimates and
the algorithm would stop in a degenerate solution.

In the case of linear dynamics, minimizing the cost (5) w.r.t. B is straight-
forward.

2.3.4 Outline of the algorithm

All the steps of the IDSA algorithm are outlined in the following. Note that the
presented implementation follows the framework of denoising source separation:

1: Whiten the data, initialize W.

2: Update the sources S using (4).

3: Update the source dynamics f (see Section 2.3.3), calculate new values for
S using (8)-(9). This is the denoising procedure in terms of DSS.

4: Reestimate W using (6) and project W onto the set of orthogonal matrices
using symmetric or deflation orthogonalization (see, e.g., [1]).

5: Go to step 2 until convergence.

3 Experiments

We test the proposed algorithm on artificially generated data. The data is a
linear mixture of two independent Lorenz processes with parameters [3 26.5 1]
and [4 30 1], a harmonic oscillator and two white Gaussian noise signals. The
original sources and their mixtures are shown in Fig. 1.
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Fig. 1: Left: Original sources: two independent Lorenz processes (sources 1–3
and 4–6), a harmonic oscillator (7–8) and two Gaussian noise signals (9–10).
Right: Linear mixture of the sources.
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Fig. 2: Left: Sources extracted by IDSA using the symmetric approach.
Right: Hinton diagram of the matrix reconstructing the found sources from
the original ones. The three original subspaces (columns 1–3, 4–6, 7–8) have
been recovered by the estimated components (rows 3–5, 6–8, 1–2 respectively).

The algorithm is set to extract three independent subspaces: a two-dimensional
subspace with linear dynamics and two three-dimensional subspaces with non-
linear dynamics. The recovered sources are shown in Fig. 2. The least-square
reconstruction of the found sources using the original signals (see Fig. 2) indi-
cates that the three original subspaces are correctly identified.

4 Discussion

We presented an algorithm called independent dynamics subspace analysis which
identifies independent groups of sources by decoupling their dynamics. The cur-
rent implementation of IDSA is based on the first-order autoregressive model
for subspace dynamics. Including more time delays in the dynamic model can
be useful when some of the subspace dimensions are not present in the data.

The independent subspaces can be estimated either symmetrically or by



using deflation. The possibility to extract subspaces one by one provides a
useful tool for finding components with the most predictable time course in
multivariate time series such as climate data [8]. This is an important advantage
compared to, for example, [10] where the model is learned for all data, which
can be very difficult for highly multidimensional and noisy measurements.

The proposed algorithm is computationally very efficient compared to gen-
erative models estimated using the variational Bayesian principles, such as [10]
or [9]. In practice, a frequency-based representation of data [8] might be useful
before performing IDSA. Slower components are generally easier to predict and
the algorithm can favor the slower solutions. Therefore, it is preferable that all
subspaces in the data would have the same timescale of oscillations.
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[10] J. Särelä, H. Valpola, R. Vigário, and E. Oja. Dynamical factor analysis of rhythmic mag-
netoencephalographic activity. In Proc. Int. Conf. on Independent Component Analysis
and Signal Separation (ICA’2001), pages 451–456, San Diego, USA, 2001.
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