
TEKNILLINEN KORKEAKOULU ERIKOISTYÖ
Teknillisen fysiikan T-61.195 Informaatiotekniikan erikoistyö I
koulutusohjelma July 5, 2004

Feature set selection for inferring relevance from eye movements

Ilkka Kudjoi
58117T

1

Contents

1 Introduction 1

2 Experimental Arrangements 1

2.1 Experimental setup . 1

2.2 Measuring equipment . 1

2.3 Feature extraction . 1

3 Learning a neural network 2

3.1 Multi-Layer Perceptron neural network 2

3.1.1 Evaluating perceptron values 3

3.1.2 Activation function . 3

3.2 Learning MLP . 3

3.2.1 Error function . 3

3.2.2 Back-propagation . 3

3.2.3 Maximum Likelihood . 4

3.2.4 Cross-Validation . 4

3.3 Bayesian learning . 4

3.3.1 Bayes’ rule . 4

3.3.2 Selection of a prior distribution 5

3.3.3 Automatic Relevance Determination (ARD) -prior . . . 5

3.4 Markov Chain Monte Carlo -integration 6

3.4.1 Gibbs Sampling . 6

3.5 The hybrid Monte Carlo algorithm 6

3.5.1 The Metropolis algorithm 7

3.5.2 Energy formulation . 7

3.5.3 Hamiltonian mechanics 7

3.5.4 Leapfrog discretization 8

3.5.5 Hybrid Monte Carlo method description 8

4 Experiments 8

4.1 Radford Neal’s Software for Flexible Bayesian Modeling 8

4.2 Data analysis . 9

4.3 Results and discussion . 9

5 Acknowledgments 9

A Eye movement features 11

B Documentation for use of FBM 12

B.1 Dividing data into validation sets 12

B.2 Command syntax . 12

B.3 Analyzing the results . 13

3

1 Introduction

Assume that a person is reading a text from a com-
puter display and she browses through words and
rows in search of something interesting from the
text. To follow interesting information, the person
must click or check out another page. This and
many other intentions of a reader could be inferred
from reader’s eye movements, i.e. we assume that
the the scan path of the eye of the reader is dif-
ferent when she notices something which she finds
interesting.

If we were able to infer human intentions
from eye movements in general, we could
ultimately create personal assistants.

When reading, reader’s eyes don’t move
smoothly along the rows. They stop (fixate) on
some words. After a few hundred milliseconds the
eye rapidly jumps (makes a saccade) to another
point. The behavior is due to the fact that the
field of accurate vision spans only a small area in
the central fovea. When the eye makes a saccade,
hardly any observations are made.

To study the eye movements, the movements are
tracked in a setup where the test person is asked to
find certain information of twelve shown document
or news titles. We can extract tens of different vari-
ables from the eye movement data including pupilla
diameter, saccade length, position relative to the
words and lines and different counts.

Combining the variables with relevance data we
will learn a system that predicts the most rele-
vant title among others. The learning system in
this work will be Multi-Layer Perceptron Network
(MLP) [3, 12, 8, 1], and it will be learned with
Bayesian methods [5, 11, 2] and Markov Chain
Monte Carlo (MCMC) -integration [2, 10]. The
methods and data retrieval will be discussed in the
next two sections.

The work was carried out within Proactive In-
formation Retrieval [7, 6] by Adaptive Models of
User’s Attention and Interests (PRIMA) research
project. The project is part of the proactive com-
puting (PROACT) research programme funded by
the Academy of Finland.

The data used in this experiment was acquired
through the PRIMA project by co-operating with
CKIR (Helsinki School of Economics: Center for
Knowledge and Innovation Research).

2 Experimental Arrangements

2.1 Experimental setup

In this setup each of three subjects was shown a
question and twelve titles. The subjects were asked
to pick the number of the title that handled the
same topic as the question. One of the titles in-
cluded the answer to the question, three of them
had some information about the question and the
last eight titles were irrelevant.

In the meanwhile, when the subjects were an-
swering the questions, together 20 tasks, the sub-
jects’ eye movements were measured with a gaze
tracking system. The tracking system measured
the location of the pupilla and corneal with fre-
quency of 50Hz, and the raw data was then seg-
mented to a sequence of saccades and fixations by
the software from the manufacturer of the tracking
system.

2.2 Measuring equipment

The measuring equipment consists of a headset
(Figure 1) with a camera and a semi-transparent
mirror. The headset was iView’s gaze tracking sys-
tem from Sensomotoric Instruments Gmbh. When
using the headset the subject looks through a semi-
transparent mirror at a computer screen. The mir-
ror reflects the image of the subject’s eye to the
camera.

The eye was observed in two different ways. One
detector operates in visible light and extracts the
location of the pupilla, and the second one finds the
location of corneal reflex of an infrared led. Also
pupilla diameter is measured. Accuracy of the mea-
surements is about one degree, so we can determine
the word which is being looked at. Figure 2 shows
an example eye scan path.

2.3 Feature extraction

From the raw data we can extract many variables
like eye coordinates, saccade and fixation lengths
and regressions (gaze returns to previous location).
Total 21 of variables (Appendix A) are extracted.
In this work the data consisted of 379 data samples.

The data should be classified to three classes,
non-relevant, relevant but not answer and the an-
swer. The class is the target variable. We want

1

Figure 1: The head-mounted eye tracker device

Haluaisit tietää lisää, miten Kent suhtautuu saamaansa suosioon

Mikä seuraavista otsikoista eniten liittyy asiaan

Näillä autoilla törmäillään

Belgian Mathilde odottaa toista lasta

Retkiluistelijat jäivät jään vangeiksi Ruotsissa

Tupakantuskaan uusi kohulääke

Kent arvostelee Ruotsin valtiota

Hopea ei kelvannut Hermann Maierille

Kent teki biisin suomeksi

Finnair−stadionin tekonurmesta päätös tänään

Menestys ei ole kihahtanut Kentillä hattuun

Gimmelin Ushmaa heitettiin kakulla

Pasi Nielikäinen edes yritti taklata kärppäpaidassa

Kent kahmi ennätysmäärän Grammiksia

Figure 2: An example eye scan path. Circles are
fixation points.

Figure 3: An example MLP network with six input,
seven hidden and three output nodes.

to predict the class of a data sample by learning
a Multi-Layer Perceptron network to classify the
eye movement data. The method will be discussed
more in detail in the next section.

3 Learning a neural network

3.1 Multi-Layer Perceptron neural

network

Multi-Layer Perceptron network (MLP) [3, 12, 8, 1]
is often used in supervised learning, like classifying
tasks. In supervised learning the preferred output
of the model is used in the learning procedure.

The MLP model has a biological origin, since
perceptron, which is a building block of the MLP,
is crude model of how a neuron operates. That is
why MLP is called a neural network. From a math-
ematician’s point of view, MLP is nice because it
is possible to approximate any continuous function
infinitely exactly with it.

The perceptrons [3, page 98.] take one or more
inputs, make a weighted sum of them and nonlin-
earize the sum with an activation function. The
perceptrons in the network form layers and the lay-
ers may then be connected to other layers, forming
then a multi-layer structure (Figure 3).

2

3.1.1 Evaluating perceptron values

Usually one layer is used as an input layer, where
each input data variable is associated with one in-
put layer node. The input nodes are then connected
to nodes in other layers, usually to a hidden layer.
The layer is called a hidden layer because the values
of hidden layer nodes are not studied while learn-
ing the network. A connection between nodes mean
that variable values or distributions are passed from
a node to another along the connection. Each con-
nection is associated with a weight and the passed
variable will be multiplied with the weight.

In each hidden node all the connected input will
be summed together and possibly a bias value is
added to the sum. The sum is then passed to a
activation function f (see Section 3.1.2). The result
is the value of a single perceptron and a hidden
node.

Hj = f(

L∑

i=1

Iiw
I
ij + aj). (1)

The perceptron and the hidden node value is eval-
uated from input values Ii, weights wI

ij and from
bias values aj . i is index that iterates through input
nodes and j hidden nodes.

The values of hidden layer perceptrons are con-
sidered input values for an output layer or another
hidden layer. Usually there are one or more hidden
layers. In output nodes values are again summed
and passed again to an activation function.

Ok = f(

M∑

j=1

Hjw
O
jk + bk). (2)

Hidden node values Hj , output weights wO
jk and

output biases bk are used when evaluating output
node value Ok. Again there is also an activation
function f , but in the output layer the function
may also be linear or e.g. a Softmax activation
function discussed in section 3.1.2.

The previous formula with Hj extracted from (1)

Ok = f(

M∑

j=1

f(

L∑

i=1

Iiw
I
ij + aj)w

O
jk + bk).

The weights and biases are together the parame-
ters of the network.

3.1.2 Activation function

In the hidden layer the activation function is usu-
ally a nonlinear function that scales the sum so that
the value of the function is in (-1,1) or (0,1). The
most popular nonlinear functions used are sigmoid
(3) or tanh -functions.

f(x) =
1

1 + e−x
. (3)

However later introduced software (FBM) uses
plain tanh (hyperbolic tangent) as a hidden layer
activation function. And especially in this classi-
fication task a Softmax activation function [10] is
used as the output layer activation function. A
Softmax activation function is

p(O = `|I) =
eo`

∑
k eok

(4)

where ok:s are the same as the argument of f
in (2).

3.2 Learning MLP

3.2.1 Error function

Initially the weights are set to a random state. In
supervised learning the output data is known and
it is used to adjust the weights so that they give
correct answers. The problem is, how to adjust the
weights to get the correct answer. Lets introduce
an error function that we should minimize:

E =
N∑

k=1

(Dk − Ok)2, (5)

where Ok is k:th output and Dk is the correct
output. This is called minimum squared error
(MSE).

3.2.2 Back-propagation

There is no single Back-propagation method, the
main idea of back-propagation methods is to mini-
mize the error function. For thorough introduction
to back-propagation, please see [3, pages 140-148.].
Here we introduce the gradient descent method as
a simple back-propagation method for an MLP.

If we had only 2-2-2 (input-hidden-output) MLP,
the error function could be imagined as a two-
dimensional surface in three-dimensional space.

3

Then we could minimize error by moving the
weights toward the minima of the error function.
The same applies also to higher dimensional cases,
and we can minimize the error by moving the
weights in the direction of the negative gradient.
This way we can iterate the weights toward the
correct ones. On each iteration the gradient is mul-
tiplied by a step parameter η and the step is added
to the previous state. The formulation is

∆w(τ) = −η∇E|w(τ)

w(τ+1) = w(τ) + ∆w(τ),

where w(τ) denotes the model parameters.
In gradient descent, the weights won’t necessarily

converge and there might also exist local minimas.
One way to solve these problems is to start over
with different initial weights, but still the global
minima can be unreachable.

3.2.3 Maximum Likelihood

Maximum Likelihood (ML) [3] is a simple training
method. The idea of ML is simply to maximize
the likelihood that the input data matches the cor-
rect output by altering the model parameters. This
could be done by maximizing the likelihood func-
tion

L =
∏

n

p(xn, yn) (6)

=
∏

n

p(yn|xn)p(xn),

where xn is the input and yn the output vector.
Often it is more convenient to minimize the neg-

ative logarithm of the likelihood function

E = − logL

= −
∑

n

log p(yn|xn) −
∑

n

log p(xn)

∝ −
∑

n

log p(yn|xn) (7)

This is also called an error function.
The second term does not depend on the model

parameters, so it remains an additive constant
which can be dropped away from the error func-
tion. The idea of Maximum Likelihood method is
then to minimize an error function defined by (7).

ML is very straightforward training method but
it comes with dangers of overfitting. Overfitting
means that the model works so well with the train-
ing data, that it would give false results with other
data that isn’t included in the training set.

3.2.4 Cross-Validation

Overfitting of ML and other training methods may
be avoided easily with Cross-Validation (CV) [3]
Idea of CV is to divide the test sample into two
sets, to a training set and a test set. Usually the
test set is relatively small compared to the train-
ing set. The MLP is learned with the training set
and tested with the test set. Then another test
set is chosen and learning is repeated for all set
combinations. This is called Leave-One-Out-Cross-
Validation (LOOCV) [3].

If we used all data for training only, the model
would fit too tightly to the data and external data
would propably be misclassified. By excluding part
of the data this is better avoided. Unfortunately
Cross-Validation often increases calculation time so
immensely, that compromises have to be carried
out.

3.3 Bayesian learning

In this learning task we decided to try to use
Bayesian approach. The philosophy of the Bayesian
model is different from other models. In Bayesian
approach we must have some knowledge of the
model parameters a priori. In spite of this fact
Bayesian approach is considered efficient and much
more versatile model than others. Benefits of Bayes
methods are e.g. that vague or missing variables
can be regenerated from posterior probabilities.

Good introductions to Bayesian learning can be
found from [10, 11, 5].

3.3.1 Bayes’ rule

The simple rule behind Bayesian methods is the
Bayes’ formula of conditional probability. To use
Bayesian methods, we must define a prior distri-
bution over the model parameters according to our
initial beliefs about the model. In Bayesian meth-
ods point estimates of parameters become distribu-
tions.

4

When the variables are observed a posterior dis-
tribution is acquired from Bayes’ rule.

p(θ|X) =
p(X |θ)p(θ)

p(X)
(8)

Here p(θ) is the prior distribution, θ are the
model parameters, input data is X and the denom-
inator is a normalization factor called marginalized
likelihood or model evidence (9). p(θ|X) is the
probability distribution of the model parameters
given the data X, the likelihood of the parame-
ters p(X |θ), and the prior distribution p(θ). The
marginalization principle is

p(X) =

∫
p(X |θ)p(θ)dθ. (9)

We may also take the output data Y in consid-
eration.

p(θ|X, Y) =
p(X |θ, Y)p(θ, Y)

p(X, Y)

A formula for predictive distribution of output
value is

yi ∈ Y, xi ∈ X,
p(yn+1|xn+1, (x1, y1), . . . , (xn, yn)) =∫

p(yn+1|xn+1, θ)p(θ|(x1, y1), . . . , (xn, yn))dθ
(10)

and a formula for expected value of the distribu-
tion:

ŷn+1
k =

∫
Ok(xn+1, θ)p(θ|(x1, y1), ..., (xn, yn))dθ

(11)
where Ok is the k:th output function and p(θ|) is
the posterior distribution.

The idea of Bayesian methods lies in these for-
mulae. The introduction of a prior distribution is a
crucial step that allows us to go from a likelihood
function to a probability distribution.

The need of a prior distribution is often criticized
in Bayesian methods, but the bayesist (e.g. Harri
Valpola, [11, page 16.]) argue that learning cannot
start without any prior assumptions. In Bayesian
learning the prior distributions are stated explic-
itly. Another argument is that distributions are
safer than the point estimates provided by e.g. the
Maximum Likelihood (see Section 3.2.3) method.
That is, Bayesian learning avoids better overfitting
of the parameters.

3.3.2 Selection of a prior distribution

Initially, if only little is known of the prior dis-
tribution of the parameters, a broad prior distri-
bution should be selected. Vice-versa, if we have
strong beliefs about the parameters values, then
we can choose narrow distributions to describe our
assumptions.

The superiority of a prior distribution against an-
other can be determined easily. For each iteration
we get a new posterior distribution that can be used
as a prior distribution for the next iteration run.
If the prior selection was correct, we get narrower
probability distributions, which converge to “true”
values of the weights.

3.3.3 Automatic Relevance Determination
(ARD) -prior

Prior selection can have a significant effect on the
result. Different priors do not necessarily converge
to the same distribution. The prior distribution
should be broad enough, but if they were too broad,
the results would be vague. With narrow prior dis-
tribution, however, you are more likely to get false
results. More information about priors in general
can also be found in [12, 2, 10].

In ARD model each connection weight is associ-
ated with a hyperparameter that controls the vari-
ance of the weight. The weight hyperparameters of
the same input node should then have a common
prior distribution. When learning the network, if
the variance of some input becomes narrow, the
expectated value of them would more likely to be
small and they could be pruned away. In contrary
to narrow distributions broad ones means that that
input are more significant. Pruning irrelevant fea-
tures away from the model allows us to make clas-
sification more faster and efficient.

An example ARD-prior [8] is

ωij ∼ N(0, αj),

αj ∼ Inv-Gamma(αave, να),

αave ∼ Inv-Gamma(α0, να,ave),

Where ωij is some weight in the network, αj is
the common variance parameter for weights con-
nected to the same node, αave is the expecta-
tion hyperparameter for αj and να and να,ave are

5

some fixed parameters for the distribution vari-
ances. Moreover N is a Gaussian distribution
and Inv-Gamma is an inverse Gamma distribution
which has the density function

p(x) =
1

baΓ(a)
x1−ae−

1
bx .

The Inv-Gamma-distribution is used because it is
always positive. (Variance must be non-negative).

3.4 Markov Chain Monte Carlo -

integration

The objective in Bayesian learning is to compute
posterior distributions for the model parameters.
We can acquire distributions from the Equation 10
or single values by calculating expected values of
the equation. In both tasks we need to evaluate the
expectation with respect to the posterior distribu-
tion Q(θ) (8) for model parameters. The expected
value of some function a(θ) is then

E[a] =

∫
a(θ)Q(θ)dθ

If we insert a(θ) = Ok(xn+1, θ), we get Equation
11. The integral can be approximated by Monte
Carlo integration [10] methods, which give a sample
of values from distribution Q,

E[a] ≈
1

N

N∑

t=1

a(θ(t)). (12)

Here θ(1), . . . , θ(N) are the samples from Q. The
main problem with MCMC-integration is generat-
ing samples from the distributions. The samples
should be independent, but it is often impossible
in practice. The sum (12) will nevertheless con-
verge to the expected value if the dependence is
not too great. A Markov Chain [4], having Q as
its stationary distribution would be a good way to
generate such samples [10].

3.4.1 Gibbs Sampling

Gibbs sampling [1, 10] is a way to draw samples
from multi-dimensional distributions. According to
Neal [10], Gibbs Sampling is also known as the heat
bath method especially in physics literature. Gibbs
Sampling is a part of hybrid Monte Carlo (Section
3.5) -method.

The idea of Gibbs Sampling is that often the dis-
tribution Q(θ) is too complex, that it is impossi-
ble to draw samples of it directly. Although Q(θ)
can be too hard to sample, conditional distribu-
tions Q(θi|{xj}i6=j) (where x is a parameter) can
be tractable. The Gibbs algorithm gives us θ(t+1)

from θ(t) as follows (θ(0) should be selected wisely.):

Pick θ
(t+1)
1 from Q(θ1|θ

(t)
2 , . . . , θ

(t)
n)

Pick θ
(t+1)
2 from Q(θ2|θ

(t+1)
1 , θ

(t)
3 , . . . , θ

(t)
n)

...

Pick θ
(t+1)
n from Q(θn|θ

(t+1)
1 , . . . , θ

(t+1)
n−1)

Note that new values θ
(t+1)
j are used immediately

when drawing θ
(t+1)
j+1 .

3.5 The hybrid Monte Carlo algo-

rithm

Neal argues in his thesis [10] that MCMC is the
only feasible method to approximate the posterior
distribution in the Bayes’ rule (8), because does
not take any assumptions about the distribution.
In some methods the distribution might be approx-
imated e.g. with a Gaussian distribution (For ex-
ample by Laplace approximation [9]). In addition,
MCMC’s performance doesn’t depend on the di-
mension of the distribution being sampled.

Nevertheless, Neal also claims that MCMC is
too slow and that a hybrid Monte Carlo (HMC)
-method would be better because its random walk
behavior is more restricted. The restriction feature
is gained by modeling the chain as a physical pro-
cess and by taking the benefits of the Metropolis
algorithm and Gibbs sampling while avoiding the
weaknesses of the methods.

In HMC, the state of the Markov Chain will have
location and momentum attributes and they will
be changed following later described dynamics and
energy conservation law.

If the algorithm was exact, the total energy in the
system wouldn’t change and only part of the states
would be visited. But because this is an approxi-
mate discretization of a physical process, the total
energy in the system may change, and all states will
be visited sooner or later. Sometimes phase state
changes are rejected based on energy changes. That
should eliminate the bias produced by the inexact

6

simulation. The details of the algorithm will be
explained in the next sections.

3.5.1 The Metropolis algorithm

New state candidates in Monte Carlo type algo-
rithms, for example in Gibbs sampling are produced
with the Metropolis algorithm [10]. In Metropo-
lis a new state θ(t+1) is generated from the previ-
ous state θ(t) using a specified proposal distribution
that must be symmetrical,

S(θ′|θ) = S(θ|θ′)

The example proposal distribution can be for ex-
ample a Gaussian distribution having mean θ(t) and
variance selected so that the probability of the can-
didate state being accepted is reasonably high rel-
ative to the distribution Q, which is the desired
stationary distribution of the Markov chain.

The next state is picked using the proposal dis-
tribution as follows:

1. Draw a candidate state, θ∗ from a proposal
distribution S(θ∗|θ(t)).

2. If Q(θ∗) ≥ Q(θ(t)), accept the candidate
state. Otherwise accept it with probability
Q(θ∗)/Q(θ(t)).

3. If the candidate state is accepted, let θ(t+1) =
θ∗. Else leave the state unchanged, θ(t+1) =
θ(t).

Unfortunately Metropolis algorithm won’t neces-
sarily give an ergodic Markov chain if the details of
Q aren’t adequate (the distribution is too complex)
or the proposal distribution isn’t properly selected
(for example, a Gaussian would be a good choice).
Highly dependent states and random walk behavior
are also unfavorable properties of Metropolis algo-
rithm.

The Metropolis-Hastings algorithm [3] is an im-
proved version, where the proposal distribution
does not have to be symmetrical.

3.5.2 Energy formulation

The random walk behavior in hybrid Monte Carlo
is avoided with formulating the chain in terms of
a physical model. In this formulation the distribu-
tion being sampled has to be in canonical form. A
canonical distribution is defined by

P (q) ∝ e−E(q) (13)

where E(q) is an “energy function”. Fortunately
almost any positive distribution can be formulated
this way, by simply defining E(q) = −logP (q) −
logZ for some Z.

Next we replace E(q) with a Hamiltonian func-
tion H(q, p), introducing so called momentum vari-
ables, pi. We assume that the Hamiltonian func-
tion, total energy of the system, can be expressed
in form

P (q, p) ∝ e−H(q,p) = e−E(q)−K(p), (14)

where the kinetic energy, K(p) can be conveniently
defined by

K(p) =

n∑

i=1

p2
i

2mi

A good selection of masses mi can improve algo-
rithm performance, but for moment the may be
assumed to be one.

3.5.3 Hamiltonian mechanics

After energy formulation the state phases will be
changed following Hamiltonian dynamics formulae
combined with the Metropolis algorithm. Now the
distribution being sampled is the energy distribu-
tion (14). In a fictitious time τ , the state evolves

dqi

dτ
=

∂H

∂pi

=
pi

mi

(15)

dpi

dτ
= −

∂H

∂qi

=
∂E

∂qi

(16)

Due to the energy conservation law the Hamil-
tonian function H must be constant, that is

dH

dτ
=

∑

i

[∂H

∂qi

dqi

dτ
+

∂H

∂pi

dpi

dτ

]

=
∑

i

[∂H

∂qi

∂H

∂pi

−
∂H

∂pi

∂H

∂qi

]
= 0

Secondly, the volumes of the regions of the phase
state must preserve. So the divergence of motion
in phase space must also be zero:

7

∑

i

[∂

∂qi

(dqi

dτ

)
+

∂

∂pi

(dpi

dτ

)]

=
∑

i

[∂H

∂qi∂pi

−
∂H

∂pi∂qi

]
= 0

The third feature of Hamiltonian dynamics is
that the phase system is reversible. The original
state can be recovered by following the dynamics
backward.

Together these properties imply that any tran-
sition following Hamiltonian dynamics leaves the
canonical distribution (13) invariant for a fixed
value of H due to the energy conservation law. This
actually means that those transitions will eventu-
ally explore the whole region of phase space for a
fixed value of H .

An ergodic Markov chain can be obtained by
making dynamical transitions with the Gibbs Sam-
pling (3.4.1) updates for the momentum variable.
By combining momentum and location and making
the momentum change its direction on every step,
it is more likely that we get an ergodic chain, in
contrary to ordinary Gibbs sampling.

A new value for the momentum variable p can be
drawn from a distribution proportional to e−K(p).
The updates allow the total energy H to remain
constant and we have an ergodic Markov chain that
explores the entire phase space where H is constant.
We still need to explore the entire phase state for
different values of H . That is why we need Leapfrog
discretization.

3.5.4 Leapfrog discretization

In (15) and (16) we introduced a fictitious time, τ .
Since the Hamiltonian formulae cannot be followed
exactly, the time must be discretized. The length of
the time step then becomes an adjustable parame-
ter of the stochastic dynamics. Using a time step
which is long enough is better, because it results in
large changes of q. The chain then better avoids
the random walk behavior.

In Leapfrog discretization new q̂(τ+ε) and p̂(τ+ε)
can be obtained from old q̂(τ)n and p̂(τ)n following
these equations:

p̂i(τ +
ε

2
) = p̂i(τ) −

ε

2

∂E

∂qi

(q̂(τ)) (17)

q̂i(τ + ε) = q̂i(τ) + ε
p̂i(τ + ε

2)

mi

(18)

p̂i(τ + ε) = p̂i(τ +
ε

2
) −

ε

2

∂E

∂qi

(q̂(τ + ε)) (19)

The momentum variable step is made in two half-
steps.

To follow the dynamics for a time ∆t, a conve-
nient value for the leapfrog step ε must be chosen.
Then equations (17)-(19) are followed for L = ∆t

ε

times.
The leapfrog discretization preserves the phase

space volume because the changes of p and q don’t
depend on the components, not on theirselves. The
system is still reversible, but the energy H is not
constant. Therefore there will be a systematic error
that decreases if the leapfrog step is shortened.

3.5.5 Hybrid Monte Carlo method descrip-
tion

Hybrid Monte Carlo updates are made following
these steps:

1. Starting from the current state, (q, p) =
(q̂(0), p̂(0)), perform L leapfrog steps with a
step size ε, resulting in a state (q̂(εL), p̂(εL)).

2. Create a candidate state by negating momen-
tum variables

(q∗, p∗) = (q̂(εL),−p̂(εL))

3. Accept the candidate state with probability

min(1, e−H(q∗,p∗)−H(q,p))

If the candidate state is rejected the state re-
mains unchanged.

4 Experiments

4.1 Radford Neal’s Software for

Flexible Bayesian Modeling

The work was done with Radford Neal’s software
for Flexible Bayesian Modeling (FBM)1. The ex-
periment was carried out mainly by following soft-
ware documentation for three way-classification2.

1http://www.cs.toronto.edu/∼radford/fbm.software.html
2http://www.cs.toronto.edu/∼radford/

fbm.2003-06-29.doc/Ex-netgp-c.html

8

The software version used in this experiment was
released 29th June 2003.

4.2 Data analysis

More thorough documentation for the software us-
age can be found in Appendix B. Here is a compact
description of the calculations.

To get more reliable results cross-validation (see
section 3.2.4) was used in this work. The avail-
able data, 379 rows of ASCII data was divided into
training and test data by taking 360 rows for train-
ing and 19 for testing. Twenty validations sets were
created this way.

The MLP (see section 3.1) used eight different
hidden node configurations, from three to ten hid-
den nodes. Each of the 21 input variables had its
own input node, and there was three output nodes.
The three output nodes were linked to the target
value with Softmax function (4). Also the weight
priors had to be be introduced in the beginning.

After the program is initialized, the sampling is
begun with one hundred steps with a small tra-
jectory. The initially randomly chosen weights are
updated once this way.

The step size is next increased slightly and also
the hyperparameters are updated on every step.
The serious sampling from the posterior distribu-
tion is carried out with 1999 iterations. The pro-
cedure can be monitored on-line (Figure 5). After
sampling the program will give the classification
results straight with one command. Results were
processed into graphs with Matlab.

4.3 Results and discussion

After cross-validation with twenty training and test
sets and eight different hidden node configurations
(from three to ten hidden nodes) we acquired rel-
evances shown in Figure 4. Classification results
(Table 1) were not so perfect, since from 13 to
34 percent of guesses were wrong. In Figure 4,
the sum of all cross-validation case weights with
different hidden node configurations and over all
configurations is plotted. We can easily see that
variables number 1, 2, 13, 18 and 21 are relevant.
Also 3, 5, 6 and 16 seem to have some relevance
while others seem to be irrelevant. In this point
of view, total regression durations to a word (re-
gressDur), the relative duration of the first fixation

Table 1: Classification results with different num-
ber of hidden nodes. With two nodes the result was
precisely same in all twenty cross-validation sets
Hidden
nodes

Average
validation
result (%)

95%
confidence
interval (%)

2 84.21 ± 0.00
3 82.63 ± 8.92
4 82.37 ± 13.50
5 81.58 ± 14.78
6 81.31 ± 14.77
7 81.84 ± 14.39
8 81.31 ± 14.39
9 81.31 ± 13.99
10 81.58 ± 13.60
ALL 82.02 ± 12.71

(timePrct), the total duration to a word (totalFix-
Dur), number of the fixations to a word when first
encountered (FirstPassCnt) and the total number
of fixations (fixCount) are the most relevant in that
order. These acronyms are explained in Appendix
A.

It’s difficult to say which hidden node configura-
tion would be the best alternative given these re-
sults. It seems though that increasing the hidden
node count won’t necessarily increase validation re-
sult.

5 Acknowledgments

The experiment was mainly devised by the author
with strong support of Jarkko Salojärvi. I also want
to thank Kai Puolamäki, Eerika Savia and every-
one else in the lab who helped me during my as-
signment.

When devising this work I was a summer stu-
dent at the lab, and this work will be graded as
my first special assignment in Helsinki university
of technology.

References

[1] Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press,
2003.

9

2 hidden nodes 3 hidden nodes

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

4 hidden nodes 5 hidden nodes

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

6 hidden nodes 7 hidden nodes

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

8 hidden nodes 9 hidden nodes

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

10 hidden nodes average

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

Figure 4: Values of the low-level input-hidden hyperparameters. The bigger pillar, the more relevant
variable. Sum of relevances is scaled to one.

10

[2] Matthew J. Beal. Variational Algorithms for
Approximate Bayesian Inference. PhD thesis,
University of London, 2003.

[3] Christopher M. Bishop. Neural Networks for
Pattern Recognition. Oxford University Press
Inc., New York, 1995.

[4] Richard Durrett. Essentials of Stochastic Pro-
cesses. Springer Verlag, July 1999.

[5] J. Karhunen H. Valpola. An unsupervised
ensemble learning method for nonlinear dy-
namic state-space models. Neural Computa-
tion, 2002.

[6] Kai Puolamäki Jarkko Salojärvi and Samuel
Kaski. Relevance feedback from eye move-
ments for proactive information retrieval.
Technical report, Helsinki University of Tech-
nology, 2003.

[7] Samuel Kaski Jarkko Salojärvi, Ilpo Kojo. Can
relevance be inferred from eye movements in
iformation retrieval?

[8] Jouko Lampinen and Aki Vehtari. Bayesian
approach for neural networks – review and case
studies. Neural Networks, 2001.

[9] David J. C. MacKay. Choice of basis for
laplace approximation. Machine Learning,
33(1):77–86, 1998.

[10] Radford M. Neal. Bayesian Learning for Neu-
ral Networks. Springer-Verlag New York, 1996.

[11] Harri Valpola. Bayesian Ensemble Learning
for Nonlinear Factor Analysis. PhD thesis,
Helsinki University of Technology, 2000.

[12] Aki Vehtari and Jouko Lampinen. Bayesian in-
put variable selection using posterior probabil-
ities and expected utilities. Technical report,
Helsinki University of Technology, Laboratory
of Computational Engineering, 2002.

A Eye movement features

The eye movement features used in this paper:

1. fixCount: Total number of fixations to the
word.

2. FirstPassCnt: Number of fixations to the
word when the word is first encountered.

3. P1stFixation: Did a fixation to a word occur
when the sentence that the word was in was
encountered for the first time?

4. prevFixLen: Duration of the previous fixa-
tion when the word is first encountered.

5. firstFixDur: Duration of the first fixation
when the word is first encountered.

6. firstPassFixDur: Sum of durations of fixa-
tions to a word when it is first encountered.

7. nextFixDur: Duration of the next fixation
when the gaze initially moves on from the
word.

8. firstSaccLen: Distance (in pixels) between
the first fixation on the word and the previ-
ous fixation.

9. lastSaccLen: Distance (in pixels) between
the last fixation on the word and the next fix-
ation.

10. prevFixPos: Distance between the fixation
preceding the first fixation on a word and the
beginning of the word (in pixels).

11. landingPosition: Distance of the first fixa-
tion on the word from the beginning of the
word (in pixels).

12. leavingPosition: Distance between the last
fixation before leaving the word and the be-
ginning of the word (in pixels).

13. totalFixDur: Sum of all durations of fixa-
tions to the word.

14. meanFixDur: Mean duration of the fixations
to the word.

15. nRegressionsFrom: Number of regressions
leaving from the word.

16. regressLen: Sum of durations of fixations
during regressions initiating from the word.

17. nextWordRegress: Did a regression initiate
from the following word.

11

18. regressDur: Sum of the durations of the fix-
ations on the word during a regression.

19. pupilDiamX: Mean horizontal pupil diame-
ter during fixations on the word minus mean
pupil diameter of the subject during the ex-
periment.

20. pupilDiamStd: Standard deviation of the
pupil horizontal diameter during fixations on
the word.

21. timePrctg: First fixation duration divided by
the total duration of fixations on the display.

B Documentation for use of

FBM

Radford’s software is based on Delve-environment3

(Data for Evaluating Learning in Valid Experi-
ments). (Radford is himself a member of DELVE’s
development group.) Here are almost complete in-
structions for calculations made before in previous
section.

B.1 Dividing data into validation

sets

In this learning task the data was divided to twenty-
fold cross-validation. Each training set consist of
360 samples and each test set consists of 19 sam-
ples. Before the creation of validation sets the lines
were randomized, because the file originally con-
tained lines in order of subjects.

First we had only one text file containing eye
movement data:

21

#n fixCount FirstPassCnt P1stFixation

prevFixLen firstFixLen firstPassFixLen

nextFixLen firstSaccLen lastSaccLen

prevFixPos landingPosition

leavingPosition totalFixLen

meanFixDuration nRegressionsFrom

regressLength nextWordRegress

regressDuration pupilDiamX

pupilDiamStd timePrct

-0.166074 0.161154 1.09019 0.850887

3http://www.cs.toronto.edu/∼delve/

-0.0944882 -0.484063 0.0973345

0.273784 1.28229 0.312651

0.262353 0.00648624 -0.211101

-0.236752 -0.425295 -0.230825

-0.322011 -0.409793 -0.347073

0.520749 1.49323 1

And similar numerical data yet another 378 lines.
The data division was done with Matlab g.e with
SOM Toolbox4. I used m-file som_read_data.m
to load the file in Matlab, and then I divided
the data and wrote it in multiple files with
som_write_data.m.

B.2 Command syntax

Then I started to follow the instructions for Rad-
ford’s Software for Flexible Bayesian Modeling5.
There exists plenty of different instructions, but
there was one exactly designed for my job, A three-
way classification problem. There is an example,
how to classify example test data, but It can easily
be modified for my task. On the instruction page
there are two alternate examples, but the latter one
seems not to have any hidden layer in the network.
I tried shortly to use the alternate example, but the
classification results were inadequate.

The more successive example is done with these
Unix commands:

1. First the MLP must be initialized with com-
mand net-spec. Here is an example command:

net-spec r31 21 3 3 / \

- x0.2:0.5:0.5 0.05:0.5 \

- x0.05:0.5 - 0.05:0.5 ;

Here r31 is the name of the log file, 21 is the
number of input nodes (variables), first 3 is
the number of hidden nodes, second one is the
number of output nodes.

After that follows ARD specification. First
input-to-hidden weight priors are specified, as
instructions say “x0.2:0.5:0.5”, has two "alpha"
values, indicating that there is both a high-level
hyperparameter controlling the overall magni-
tude of input-to-hidden weights. I also tried to

4http://www.cis.hut.fi/projects/somtoolbox/
5http://www.cs.toronto.edu/∼radford/

fbm.2003-06-29.doc/

12

modify prior specifications, but neither noth-
ing changed nor things got worse. The latter
three priors are for input units, which control
the magnitudes of weights out of each input.
These priors should wipe out inputs that are
irrelevant.

2. Secondly we must tell that our problem is a
classification problem. This is done with com-
mand

model-spec r31 class

3. Third command gives the program the data
files:

data-spec r31 21 1 3 / \

./data/tr201@1:360 . \

./data/t201@1:19 .

First two arguments are the numbers of input
and target values and third argument, 3 fol-
lowed by / means that output values are “0”,
“1” and “2”. Then follows training data file (af-
ter @-sign there are the lines that should be
included from the file), and test data file. This
command should give output like this:

Number of training cases: 360

Number of test cases: 19

4. Fourth command initializes the network. It
stores the initial phase to the log file and fixes
the weight hyperparameters to 0.5.

net-gen r31 fix 0.5

5. Fifth command, mc-spec specifies the Markov
chain operations to be performed in the initial
phase. Following steps are repeated ten times:
A heatbath replacement of the momentum vari-
ables, and a hybrid Monte Carlo update with a
trajectory 100 leapfrog steps long, using a win-
dow of 10, and a step size adjustment factor of
0.2.

mc-spec r31 repeat 10 sample-noise \

heatbath hybrid 100:10 0.2

6. Previous command only specifies how the sam-
pling should be done. This net-mc command
updates the hyperparameters with a single it-
eration.

net-mc r31 1

7. The ’mc-spec’ command appends a new set of
Markov chain operations to the log file, which
will override the previous set. These opera-
tions are Gibbs sampling for the hyperparam-
eters and, a heatbath update for the momen-
tum variables, and a hybrid Monte Carlo up-
date with a trajectory 100 leapfrog steps long,
a window of 10, and a step size adjustment
factor of 0.3. In practice this means that the
stepsize is increased slightly.

mc-spec r31 repeat 10 sample-sigmas \

heatbath 0.95 hybrid \

100:10 0.3 negate ;

8. And this command does the previously speci-
fied sampling for 1999 iterations.

net-mc r31 2000

These commands were only one example of the
scripts I used. I made a script that created
scripts that included shell commands for dif-
ferent hidden node configurations and for ev-
ery cross-validation set. The net-mc procedure
is very intensive and it takes huge amount of
resources and time. Actually I was accused
for taking all the processor time. I adjusted
efficiency with nice and left the machines to
calculate chains over a weekend.

B.3 Analyzing the results

1. Hours and days after we can analyze the re-
sults. Command net-plt allows us to plot the
evolution of the low-level input-hidden hyper-
parameters, even during the simulation run
with command

net-plt t h1@ r31 | plot

13

Figure 5: An example plot program output. The
hyperparameters behave pretty wildly.

where plot should be a suitable plotting pro-
gram like xgraph6. Here (5) is an example plot.

2. Command net-pred tells us the estimated clas-
sification performance.

net-pred ma r31 101:

The option “a” means that only the average log
is displayed. With option “m” the fraction of
wrong guesses are displayed. The number 101
and colon indicates that only iterations begin-
ning from 101 should be taken into considera-
tion. With option “n” the program will print
weight means that can be used when assessing
relevance.

6David Harrison
http://jean-luc.ncsa.uiuc.edu/Codes/xgraph/

14

