
TEKNILLINEN KORKEAKOULU ERIKOISTYÖ
Teknillisen fysiikan Mat-1.125 Matematiikan erikoistyö
koulutusohjelma September 6, 2004

Data clustering with kernel methods
derived from Kullback-Leibler information

Ilkka Kudjoi
58117T

1



Contents

1 Introduction 1

2 Information measures 1

2.1 Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Kullback-Leibler information . . . . . . . . . . . . . . . . . . . 1

2.2.1 Capasitory discrimination . . . . . . . . . . . . . . . . . 2

3 Kernels and Kernel functions 2

3.1 Information kernels . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2 Kernel functions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.1 Hellinger affinity kernel . . . . . . . . . . . . . . . . . . 3

3.2.2 Count kernel . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.3 Triangular kernel . . . . . . . . . . . . . . . . . . . . . . 3

3.2.4 Beta kernel . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Hellinger integral and distance . . . . . . . . . . . . . . . . . . 4

3.4 Connections between KL and Hellinger distance . . . . . . . . . 4

3.4.1 Small distances . . . . . . . . . . . . . . . . . . . . . . . 5

4 Data and models 5

4.1 Binary relevance model . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Co-occurrence data model . . . . . . . . . . . . . . . . . . . . . 6

5 MCMC-integration 6

5.1 Unidentifiability . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Sampling distributions . . . . . . . . . . . . . . . . . . . . . . . 7

5.2.1 Binary relevance model sampling formula . . . . . . . . 7

5.2.2 Co-occurrence model sampling formula . . . . . . . . . . 7

6 Experiments 8

6.1 Co-occurrence model and increasing noise . . . . . . . . . . . . 8

6.1.1 Kernel visualisations . . . . . . . . . . . . . . . . . . . . 8

6.1.2 Average distances . . . . . . . . . . . . . . . . . . . . . . 8

6.2 Co-occurrence model with sparse data . . . . . . . . . . . . . . 10

6.3 Co-occurrence in forest cover type data . . . . . . . . . . . . . 10

6.4 Movie ratings data and binary relevance -model . . . . . . . . . 10

7 Conclusions and Discussion 12

7.1 Approximating Kullback-Leibler information . . . . . . . . . . 12

7.2 Matrix ordering dilemma . . . . . . . . . . . . . . . . . . . . . 12



8 Acknowledgements 13

A Ordering kernel matrix 14

B Distributions 15

B.1 Multinomial distribution . . . . . . . . . . . . . . . . . . . . . . 15

B.2 Dirichlet distribution . . . . . . . . . . . . . . . . . . . . . . . . 15

B.3 Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . 15

C Divergence limits 15

C.1 Hellinger integral inequality . . . . . . . . . . . . . . . . . . . . 15

C.2 Small Hellinger distances . . . . . . . . . . . . . . . . . . . . . 17

C.3 Kullback-Leibler on short distances . . . . . . . . . . . . . . . . 17

3



1 Introduction

Assume that one has huge statistical data about
some phenomenon like people’s ratings for some
service, statistics from nature, etc. Huge data is
hard to handle and therefore it would be nice if it
could be classified to acquire any generalisation for
the data.

Computer science provides plethora of different
classification methods for Multi-Layer Perceptron
network and other constructions. In this study
we shall measure the true information between the
data instances by applying kernel methods which
are derived from the two most popular informa-
tion definitions, Kullback-Leibler and Fisher infor-
mation.

By assuming that the data is created by a prob-
abilistic model, we acquire expectation estimates
for the kernel functions with Markov Chain Monte
Carlo integration. By sampling we acquire a ker-
nel matrix that indicates the distances between in-
stances in the data. If the data is ordered due to
our prior assumptions, a clear clusterisation of the
matrix may be straight available. Otherwise the
matrix will be reordered with symmetric row and
column changes to reach the clusterisation.

From the ordered kernel matrix we are able to see
which data instances belong to same clusters and
which are distant from other instances. In other
words, we acquire a classification for the data in
form of a kernel matrix.

In this study we shall also infer whether addi-
tional noise in data or data sparsity affects the re-
sult considerably by testing the kernels with suit-
able artificial data sets.

2 Information measures

A sufficient statistic should contain all the infor-
mation about parameters of a probabilistic model.
Information is a measure of the evidence that a
data set provides about a parameter in a paramet-
ric family. To make the idea more precise, two pop-
ular definitions of information is introduced in next
sections, the Fisher Information [18, 8, 21] and the
Kullback-Leibler information [11, 18, 21, 20, 22].

2.1 Fisher information

The Fisher information is designed to provide a
measure of how much information a data set pro-
vides about a parameter.

Fisher information is defined with help of the
Fisher score, gradient of the log-likelihood of the
probability density function

U(x, θ) = ∇θ log f(x|θ) (2.1)

In the definition it is required that the partial
derivatives of f(x|θ) exist.

The Fisher score maps an example point x into a
feature vector in the gradient space. This is called
Fisher score mapping. The Fisher information ma-

trix is defined then by the score by expected value
of the outer product

I(θ) = E[U(x, θ)U(x, θ)T | θ] (2.2)

=

∫

Ω

f(x|θ)U(x, θ)U(x, θ)T dx , (2.3)

where we have to require that the score is squarein-
tegrable.

The Fisher Kernel [8] is defined then by the
equation

K(xi, xj) = U(xi)
T I−1U(xj) . (2.4)

The Fisher information is designed to associate a
distribution with a scalar value that tells how much
information the distribution gives about the data.
For example, the information that a sharp normal
distribution gives is greater than the information
given by a broad distribution.

For more complete introductions to the Fisher
information, please refer to [18, 8, 21].

2.2 Kullback-Leibler information

Kullback-Leibler (KL) information or divergence
[18, 21, 20, 22] is another definition for information
between two distributions proposed by S. Kullback
and R.A. Leibler in 1951 [11]. Fisher information
is designed for one distribution but even then the
Kullback-Leibler has a certain connection to Fisher
information that will be discussed in Section 3.4.

Kullback-Leibler divergence is often recognised
as a valid divergence measure between distribu-
tions, but unfortunately it is not straightforward
to use the Kullback-Leibler divergence as a kernel,
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because it is neither symmetric or it does not be-
have like inner product. Even so, the KL can be
approximated with valid kernel functions which will
discussed later.

S. Kullback and R.A. Leibler introduced the in-
formation in x for discrimination between two prob-
ability measures by

log
p(x)

q(x)
. (2.5)

The mean information between p(x) and q(x) re-
spect to p(x) is defined then by1

KL(p || q) = Ep

[
log

p(x)

q(x)

]

=

∫

Ω

p(x) log
p(x)

q(x)
dx .

(2.6)

The Kullback-Leibler divergence is the expected
amount of information that a sample from p gives
of the fact that the sample is not from distribution
q.

If the probability distribution is discrete, equa-
tion (2.6) can be written as follows:

KL(p || q) =
N∑

i

pi log
pi

qi

. (2.7)

Note that KL is not symmetric.
From the definition (2.6) it follows that if q(x) is

zero wherever p(x) is not, the information is infi-
nite. In other words, this means that if there ex-
ists even a single point x such that p(x) 6= 0 and
q(x) = 0, then the p cannot be from q. Note that
this will not necessarily apply vice-versa. On the
other hand, if p and q are equal, the amount of
information that p is not from q is zero.

The Kullback-Leibler divergence has a clear con-
nection to Shannon’s entropy and coding theory
[19]. Shannon’s entropy for a set of probabilities
is defined by

H(p) = Ep(x) (− log p(x)) (2.8)

=

∫

Ω

−p(x) log p(x)dx , (2.9)

or by discrete version

1In the definition the convention x log x|x→0 = 0 is used.

H(p) = −
n∑

i

pi log pi . (2.10)

In the definition − log pi is the optimal coding
length of sequence xi, where pi is probability of
xi. The Shannon’s entropy gives expected coding
length of a message when optimal coding is used.
Smaller entropy allows better data compression ra-
tio.

2.2.1 Capasitory discrimination

The capasitory discrimination is defined by

C(p, q) = KL(p ‖ m) + KL(q ‖ m) , (2.11)

where m = 1
2 (p + q).

Capasitory discrimination is symmetrical and be-
haves like Kullback-Leibler for small distances. To
prove the argument, consider two distributions,
p(θ) = f(θ) and q(θ) = f(θ + δ). If we assume f

to be continuous, we may approximate the average
distribution m by m(θ) = f(θ + 1

2δ). Now we ac-
quire by adapting the proof provided in Appendix
C.3 that

C(p, q) ≈ 2KL(p ‖ q) , (2.12)

when p ≈ q.

3 Kernels and Kernel func-

tions

3.1 Information kernels

Information kernels [21, 17, 9, 5] are functions in in-
formation space that aim at measuring the similar-
ity between instances. The kernel value is greater
if two samples of information are similar and in
contrary it limits to zero if pieces are distant. The
kernel may be seen as a distance measure, although
it cannot be considered as a metric. The kernel is
a measure of similarity.

Gärtner discusses the connection between kernels
and inner product of in a Hilbert space [5]. Often
there exist a feature transformation from the infor-
mation space to the Hilbert space so that the kernel
function may be defined by the inner dot product
by mapping the information into the Hilbert space.

Kernel distance is a bit different from a metric.
A general metric has following properties
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∀x0, x1, x2 ∈ Ω ,

d(x0, x1) ≥ 0 , (3.1a)

d(x0, x1) = d(x1, x0) , (3.1b)

d(x0, x2) ≤ d(x0, x1) + d(x1, x2) ,(3.1c)

d(x0, x0) = 0 . (3.1d)

The kernel function should fulfil

∀x0, x1 ∈ Ω ,

K(x0, x1) ≥ 0 , (3.2a)

K(x0, x1) = K(x1, x0) , (3.2b)

and the features mentioned earlier in this sec-
tion, i.e. the kernel value decreases when x0 and
x1 become distant but the distance increases.

A metric can emerge a kernel function e.g. by

K(x0, x1) = e−d(x0,x1)
2

, (3.3)

Often, but not generally, a kernel function may
be converted to a metric by (3.3) or by

d(x0, x1) =
√

K(x0, x0) + K(x1, x1) − 2K(x0, x1).
(3.4)

In the previous equation we need to assume that

∀x0, x1 ∈ Ω ,

K(x0, x0) ≥ K(x0, x1) .

3.2 Kernel functions

In this study we compare different kernel functions
and their relation to the Kullback-Leibler diver-
gence.

3.2.1 Hellinger affinity kernel

In Section 3.4 we shall prove that Hellinger distance
approximates true information (Kullback-Leibler
divergence) between two distributions. Hellinger
distance between two distributions is defined by

d2(p, q) = 1
2

∫

Ω

(
√

p(x) −
√

q(x))2dx

= 1
2

∫

Ω

(p(x) − 2
√

p(x)q(x) + q(x))dx

= 1 −
∫

Ω

√
p(x)q(x)dx .

(3.5)

To derive a valid kernel function from kernel dis-
tance, we make use of the affinity term of the dis-
tance.

k(p, q) =

∫

Ω

√
p(x)q(x)dx , (3.6)

or its discrete version

k(p, q) =

n∑

i

√
piqi . (3.7)

In some instances [9, 10] this kernel is also known
as Bhattacharyya Kernel, because in statistics lit-
erature it is known as Bhattacharyya’s measure of
affinity between distributions.

3.2.2 Count kernel

Count kernel is much like Hellinger affinity kernel,
but it hasn’t such connection to valid information
like Kullback-Leibler information as the Hellinger
affinity has. The count kernel is defined by

k(p, q) =

∫

Ω

p(x)q(x)dx , (3.8)

k(p, q) =

n∑

i

piqi . (3.9)

The count kernel is often used with sequence
data, like in text analysis. In text processing, pi

is the count of symbol i in a sequence normalised
by the length. That is why the kernel function is
called count kernel. Koji Tsuda et al discuss the
count kernel with modifications in [21] and Tony
Jebara et al discuss the kernel as a product kernel

in [10].

3.2.3 Triangular kernel

Triangular discrimination is introduced by Flem-
ming Topsøe in [20]. Topsøe proves that triangular
discrimination has a strong connection to Kullback-
Leibler divergence, especially to the capasitory dis-
crimination (2.11). The triangular discrimination
is defined by

∆(p, q) =
n∑

i

(pi − qi)
2

pi + qi

. (3.10)
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The discrimination is equal to capasitory discrimi-
nation (2.11) in the sense of metrics

1
2∆(p, q) ≤ C(p, q) ≤ log(2) ∆(p, q).

(3.11)
This is proved by Topsøe in [20].

Again, triangular discrimination is not valid ker-
nel function as such. In this assignment, a valid
kernel function is derived from the triangular dis-
crimination by

k(p, q) = 1 − ∆̃(p, q), (3.12)

where the target values of ∆̃ is normalised to inter-
val [0,1].

3.2.4 Beta kernel

The name of the beta kernel is fully fictitious. The
kernel is derived from the Multinomial distributions
β in the co-occurrence model introduced in Section
4.2.

Actually beta kernel is only application of the
Hellinger kernel (3.6). As in the ordinary Hellinger
kernel we measure the distance between cluster
probabilities p(z|x) and p(z|x′), in this variation
the distance will be measured between p(Y, θ|x) and
p(Y, θ|x′) by the Hellinger distance. In the distri-
bution parameters z is the cluster, x is instance
in the data, Y is the other data collection and θ

denotes the model parameters in general. The ac-
tual distance sampling formulas will be discussed
in MCMC-section 5.2.

3.3 Hellinger integral and distance

Hellinger integral [4, 13] is defined by

f(α; x, y) = xα y1−α , (3.13)

H(α; p, q) =

∫

Ω

f(α; p(x), q(x)) dx , (3.14)

α ∈ (0, 1) .

Another function is defined by the Hellinger in-
tegral because it proves to be helpful,

L(α; p, q) =
1 − H(α; p, q)

α
. (3.15)

Hellinger distance can be defined by the previous

equation by setting α = 1
2 ,

d2(p, q) = 1
2 L(1

2 ; p, q) ,

= 1 − H(1
2 ; p, q) ,

= 1 −
∫

Ω

√
p(x)q(x)dx .

(3.16)

Some interesting results have been derived with
the Hellinger integral [4]. The function L behaves
like Kullback-Leibler divergence when α limits to
zero, because

lim
α→0+

f ′
α(α; x, y) = − y log

y

x
. (3.17)

The same written as a difference quotient

lim
α→0+

L(α; p, q) = lim
α→0+

1 − H(α; q, p)

α

= KL(p ‖ q) . (3.18)

Particular proofs for (3.17) and (3.18) are pro-
vided in Appendix C.1.

3.4 Connections between KL and

Hellinger distance

Kullback-Leibler itself does not satisfy require-
ments of a kernel function, but there are several rea-
sons that kernel distances derived from Kullback-
Leibler divergence would be good information mea-
sures. From (3.17) and (3.18) we see that Hellinger
integral and distance might be good approxima-
tions for Kullback-Leibler divergence. By writing
(3.13) in exponential form we are able to see that
it is convex2 and monotonic function (which are
features of an exponential function).

f(α; x, y) = yeα log y

x . (3.19)

Therefore we obtain ∀ 0 < α̃ < α

f ′
α(0; p, q) ≤ f(α̃; x, y) − f(0+; x, y)

α̃
,

≤ f(α; x, y) − f(0+; x, y)

α
.

(3.20)

From the inequality we see that L (3.15) is de-
creasing function and we acquire from (3.18) that

L(α; p, q) ≤ KL(p ‖ q) ∀ p, q. (3.21)

2f is convex if f( 1

2
(x1 + x2)) ≤ 1

2
(f(x1) + f(x2))∀x1, x2

4



By combining (3.21) and (3.16) we acquire

d2(p, q) ≤ 1

2
KL(p ‖ q) . (3.22)

The inequality means that Hellinger distance can
be majored by Kullback-Leibler divergence. The
inequality also proves that Kullback-Leibler is pos-
itive semidefinite. With this inequality and the def-
inition (2.6) it follows that the divergence is zero
only if the distributions are equal.

Unfortunately the distance and divergence can-
not be considered as equivalent metrics, because

6 ∃C > 0, KL(p ‖ q) ≤ C d2(p, q) ∀ p, q.

(3.23)
This may be easily proved by setting q to zero

at some point x that fulfils p(x) 6= 0. In this
case, Kullback-Leibler information is infinite but
Hellinger remains finite. Actually, Hellinger dis-
tance is always finite, and therefore equation (3.23)
cannot hold.

In practise, this is not a problem, because the
approximations are good enough. They are locally
equivalent and the they behave nicely.

3.4.1 Small distances

The limiting behaviour of Hellinger distance and
Kullback-Leibler divergence proves to be equal. I.e,
when the distribution changes slightly, the change
in the divergence may be approximated by the
Hellinger distance. Both measures have the con-
nection to Fisher information [18, 8, 21] with small
distances. Proof for both equations are provided in
Appendixes C.2 and C.3.

KL(f(x|θ) ‖ f(x|θ + δ)) = 1
2

N∑

i,j

Iij(θ)δiδj ,

(3.24)

d2(f(x|θ), f(x|θ + δ)) = 1
8

N∑

i,j

Iij(θ)δiδj .,

(3.25)

where θ is a parameter vector, n is a limiting
scalar, δ is small parameter step and I(θ) is the
Fisher information matrix.

On the basis of equations (3.22), (3.24) and
(3.25) we propose that Hellinger distance can be

used to approximate the Kullback-Leibler diver-
gence, because they limit to the same expression
fixed by a scalar.

4 Data and models

In this assignment we conducted a few test
with different kernels and with artificial and
natural data. We measured distances between
users and documents in binary relevance data
{user, document, boolean relevance} and between
instances in two-column co-occurrence data. To
measure the distances, we must assume that the
data is created through some probability model,
which we shall introduce in next sections.

4.1 Binary relevance model

Experiments were originally started with movie rat-
ings data that also being used in our research group
for relevance prediction [15]. The data consists
of 29,180 ratings from 134 users to 1282 movies.
In this assignment the goal is to find out, in how
many clusters the movies might divide, when the
distances between movies are measured with kernel
methods. The data model is specified as follows.

The model is a generative model where the data
is considered triplets (u,d,r) where u,d and r are
user, document and rating respectively. For the
user collection, a vector of Multinomial parameters
θU is drawn from Dirichlet(θũ). The parameter vec-
tor θU contains a probability for each user to belong
to user group ũ.

A user group ũ is drawn from Multinomial(θU ).
Thereafter corresponding parameters βU (ũ) may be
chosen to be used when drawing the user u from
Multinomial(βU (ũ)).

The document distributions are drawn symmet-
rically. A vector of Multinomial parameters θD is
drawn from Dirichlet(αd̃). Like with users, the vec-
tor contains occurrence probabilities for document
clusters d̃.

A document cluster d̃ is drawn from
Multinomial(θD). As the document cluster is fixed,
corresponding parameters βD(d̃) may be taken and
used to draw d from Multinomial(βD(d̃)).

When the cluster pair (ũ, d̃) is drawn, a vec-
tor of Binomial parameters should be drawn from
Dirichlet(αR). Parameters θR(ũ, d̃) indicate the

5
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α
d
~

θU

θD

u~

d
~

αD βD d

αU βU u

Rα θR r

K

KU

D

N

Figure 1: Binary relevance data model. The grey
variables are the observables

probability of group ũ to consider group d̃ relevant.
For each cluster pair (ũ, d̃), a binary relevance r

is drawn from Binomial(θR(ũ, d̃)). Now the model
has generated a triplet (u, d, r) with binary rele-
vance r, which indicates whether the user likes the
document or not. A figure of the model is provided
in Figure 1.

4.2 Co-occurrence data model

Secondly we applied kernel methods to co-
occurrence data. Intuitively, the kernel methods
measure how often data points occur together.
Here is the specification of the co-occurrence data
model.

First, a vector of Multinomial parameters θ is
drawn from Dirichlet(α). The dimension of θ is
N ×K, where N is the count of data samples and K
is the number of clusters in the model. The vector
θ contains the cluster probabilities for each data
sample.

When θ is drawn we may draw the co-occurrence
cluster z from Multinomial(θ). As the cluster is
fixed, x and y may be drawn from correspond-
ing Multinomial distributions Multinomial(βx) and
Multinomial(βy), where βx and βy are drawn from
corresponding Dirichlet distributions Dirichlet(αx)
and Dirichlet(αy).

α θ

β

β

z

x

y

n

n

n

α

αx

y

N

x

y

Figure 2: Co-occurrence data model

Figure of the co-occurrence data model is avail-
able in Figure 2.

5 MCMC-integration

In every kernel function that was introduced in pre-
vious sections we assumed that the distributions
p and q are known. In practise, the distributions
are not known explicitly and they must be approx-
imated e.g. with MCMC-integration [14, 1, 12].

Markov Chain Monte Carlo (MCMC) integration
is a method to estimate expected values from a dis-
tribution by drawing samples from it. The expected
value of a function a(θ) with respect to Q(θ) is ac-
quired trough integral over the probability space

E[a] =

∫
a(θ)Q(θ)dθ . (5.1)

The integral may be calculated analytically or by
using a quadrature [12], but unfortunately often it
is impossible in practise. Other methods are also
very expensive when the distribution is multidi-
mensional. Therefore Markov Chain Monte Carlo
integration is often unavoidable.

The integral can be approximated with the
MCMC method by

E[a] ≈ 1

N

N∑

t=1

a(θ(t)) . (5.2)

Here θ(1), . . . , θ(N) are the samples from Q. The
standard error of the integration formula [12], the
expected value is the same as the standard error of
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an average estimator, i.e.

ε =
σ√
N

. (5.3)

Note that the error does not depend on the dimen-
sionality of the distribution.

The main problem with MCMC-integration is
generating samples from the distributions. The
samples should be independent, but it is often im-
possible in practise. The sum (5.2) will nevertheless
converge to the expected value if the dependence is
thin. A Markov Chain [2, 1], having Q as its sta-
tionary distribution would be a good way to gener-
ate such samples [14].

The distributions in this assignment are cluster
probabilities, i.e. pi is the probability that certain
observable belongs to cluster i. By sampling the
cluster distributions and discriminating them with
the kernel functions we get distances between dif-
ferent observables.

5.1 Unidentifiability

With almost all the kernel functions used in this
assignment, we assign each data point to a cluster
by sampling. After considering each data point,
the occurrences are then normalised to get discrete
probability distributions for each of the data points.
The distribution shows the probabilities that the
data point belongs to a certain class.

Unfortunately, in spite of the fact that the dis-
tribution may remain almost unchanged after each
iteration, the model may sample data points to a
different cluster. I.e, if data point collection da used
to be in cluster A and db in cluster B, on the next
iteration the clusters could be changed. This is a
known difficulty in the analysis of MCMC results.

This means that the distances must be evaluated
separately on each iteration because the samples
may not be collected from more than one iteration.
The distances may then be averaged after N itera-
tions.

5.2 Sampling distributions

In Section 3.2 and in Section 4 we introduced kernel
functions and data models respectively. In the ker-
nels section the distances were evaluated between
some unknown distributions p and q. In this sub-
section the actual distributions are introduced.

5.2.1 Binary relevance model sampling for-

mula

In the binary relevance model we wish to evalu-
ate the distances between distributions p(d̃, θ|d, D)
and p(d̃, θ|d′, D), where d:s are documents, D is
the collection of all observations and θ is the model
parameters, to acquire distance between d and d′.
The Kullback-Leibler between the distributions is

KL(p(d̃, θ|d, D) ‖ p(d̃, θ|d′, D))

=
∑

d̃

∑

θ

p(d̃, θ|d, D) log
p(d̃, θ|d, D)

p(d̃, θ|d′, D)
. (5.4)

The first sum is over all clusters and the sec-
ond over all samples. By the formula of conditional
probability we can write

p(d̃, θ|d, D) = p(d̃|θ, d, D)p(θ|d, D) ,

because the parameters θ hardly depends on a sin-
gle data point d, it can reduced away

= p(d̃|θ, d, D)p(θ|D) .

Now the equation 5.4 can be written as

=
∑

d̃

∑

θ

p(θ|D)p(d̃|θ, d, D) log
p(d̃|θ, d, D)

p(d̃|θ, d′, D)

= Ep(θ|D)

[
p(d̃|θ, d, D) log

p(d̃|θ, d, D)

p(d̃|θ, d′, D)

]
. (5.5)

Now we have a sampling formula for Kullback-
Leibler divergence. The same derivation applies for
the kernel functions.

By substituting d by u we get sampling formula
for users.

5.2.2 Co-occurrence model sampling for-

mula

For Count, Hellinger and Triangular kernel the
derivation of the sampling formula is equal to the
previous one.

KL(p(z, θ|x, D) ‖ p(z, θ|x′, D))
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=
∑

z

∑

θ

p(z, θ|x, D) log
p(z, θ|x, D)

p(z, θ|x′, D)
. (5.6)

Again we apply conditional probability

p(z, θ|x, D) = p(z|θ, x, D)p(θ|x, D) ,

because the parameters θ have only a little depen-
dence on a single data point x, it can reduced away

= p(z|x, D)p(θ|D) .

Now the equation 5.6 can be written as

=
∑

z

∑

θ

p(θ|D)p(z|θ, x, D) log
p(z|θ, x, D)

p(z|θ, x′, D)

= Ep(θ|D)

[
p(z|θ, x, D) log

p(z|θ, x, D)

p(z|θ, x′, D)

]
.

(5.7)

By substituting x by y we get sampling formula
for instances y.

6 Experiments

6.1 Co-occurrence model and in-

creasing noise

In this section we study the effect of random data
in artificial data. A three-cluster artificial data of
100 instances of both data collections was created
by making ten thousand doublets of both collec-
tions. One third of the data contained doublets of
first third of the collections and second and the last
third respectively.

Initially the data contains no noise at all. The
amount of noise was added in intervals. We pro-
vide results with noiseless data and data contain-
ing 33 %, 75 %, 91 % and 95 % noise. The noise
was added to the original data, and the data dimen-
sion is respectively 10000, 15000, 40000, 110000 and
200000 doublets.

This data was then measured by four different
kernel methods, Count kernel, Hellinger kernel, Tri-
angular kernel and Beta kernel. Visualisations of
the kernels are available in Figure 3. Python mod-
ule PyGist3 was used for the visualisation.

3http://bonsai.ims.u-tokyo.ac.jp/
∼mdehoon/software/python/pygist.html

6.1.1 Kernel visualisations

As we see from the figure, all the kernels perform
pretty well as far as the amount of noise is below
75 %. It is characteristic for Hellinger distance that
the distance between same instances is one. The
count kernel does not have the same feature. Beta
kernel behaves like Hellinger kernel and Triangu-
lar kernel is normalised to [0, 1]. Regardless of the
greatest and smallest value Gist colours the great-
est values with white and the smallest with black.
Green is in the middle, blue are smaller and brown
greater values.

The Count kernel stands out from the other ker-
nels. It does not stand noise over 75 % and it be-
haves differently from the other kernels. It is also
noticeable that behaviour of the three other kernels
is pretty similar. This might be because the Count
kernel is not a Kullback-Leibler approximation and
therefore it does not reflect the true information
divergences of the generative model of the data in
contrast to Hellinger and Triangular distance.

The images include only kernel images of one
data collection, because the dimension and the
structure of the other collection is similar, the im-
ages would be alike.

6.1.2 Average distances

We also studied the average distances between in-
stances in the kernel matrices. We calculated the
average distance between instances in the same
cluster and the average distance between instances
in different clusters. This is easy as far the cluster
structure is known. The results are in Table 1.

From the table we can easily see that the count
kernel distances between instances in same cluster
diminish when the noise grows. Hellinger distance
preserves the distance between instances belonging
to same clusters, but different clusters merge as the
level of noise is increased. This is natural, because
the random data contains doublets that belong to
different clusters in the sense of the original data.

Triangular kernel behaves like Hellinger kernel,
but partly because it is normalised, the mini-
mum distance grows more moderately that with
Hellinger. The image of the Beta kernel with high
noise (Fig. 3) seems quite definite, but actually
almost all distances are approximately one.
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Figure 3: Visualisation’s of kernel matrices with different noise levels and artificial data.
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Table 1: Average distances between instances in
same or different clusters

Same cluster
Noise % Count Hell. Tri. Beta

0 1.002 1.002 1.000 1.000
33 0.774 0.988 0.976 0.997
75 0.482 0.987 0.952 1.000
91 0.392 0.991 0.940 1.001
95 0.371 0.990 0.919 1.001

Different cluster
Noise % Count Hell. Tri. Beta

0 0.000 0.002 0.000 0.204
33 0.085 0.370 0.159 0.530
75 0.205 0.605 0.312 0.712
91 0.233 0.690 0.479 0.739
95 0.328 0.959 0.727 1.000

6.2 Co-occurrence model with

sparse data

In addition, tests with sparse data were carried out.
Figure 4 reflects the behaviour of the kernels when
the data is sparse. Again, the co-occurrence data
collection consists of one hundred instances each.
The data was created like in the previous section,
but this time four clusters were created for change.

Five different dimensions were tried. The spars-
est data included only three hundred doublets,
meaning that each instance co-occurred only three
times in the data. Data files of 400, 500, 600 and
800 doublets were also used with 500 iterations.

From the kernel images (Fig 4) we may see that
too few of occurrences of an instance in the data
is not satisfactory. In this setup, the data should
consist of six hundred doublets at least.

Amount of clusters affects the performance. If
there was only three clusters in the data, less data
would be needed.

6.3 Co-occurrence in forest cover

type data

Tests with co-occurrence model and kernels were
also carried out with natural data. We acquired
forest cover type data from a data archive [6]. The
data was contributed to the archive by Jock A.

Blackard, Colorado State University4.
The data includes 581012 instances of forest

cover and soil type data. The description of the
data is available in5. The data was parsed with
Python into co-occurrence data of forty different
forest soil types and seven different forest cover
types.

Like with artificial data, the distances were mea-
sured with four different kernels. The cluster num-
ber was assumed to be three. Again, the kernels
had to be ordered to reveal any structure in them,
but in contrary to the movie rating kernels in the
next section, the order of the instances is the same
in all images. See the images in Figure 5.

As we can see from the images, the clusteri-
sation is pretty good. From the cover types we
notice that cover types “Ponderosa Pine”, “Cot-
tonwood/Willow” (fin. jättipoppeli/paju) and
“Douglas-Fir” (fin. douglaskuusi) are similar. Also
“Spruce/Fir” (fin. kuusi) and “Krummholz” (fin.
vuorimänty) in addition to “Lodgepole Pine” and
“Aspen” (fin. haapa) form similar pairs.

6.4 Movie ratings data and binary

relevance -model

The second natural data test was conducted with
movie ratings data. We tried to divide the movies
per cluster with kernel functions. In this study we
measured the distances between the cluster proba-
bility distributions p(c|d), where c is the cluster and
d document, i.e. movie with three different kernel
functions, Count kernel, Hellinger kernel and Tri-
angular kernel.

The kernel methods provided the kernel matrix
also for the users, but results of user clustering were
totally inadequate. In the model specification we
must assume, how many clusters at most there are
in the data. We assumed that there would be three
clusters. If there were more, corresponding clusters
would merge.

The movie distance kernel images may be seen
in Figure 6. From the images we can see that the
model is capable to find only two clusters in the

4The use of the data is unlimited with retention of copy-
right notice for Jock A. Blackard and Colorado State Uni-
versity.

5http://kdd.ics.uci.edu/databases/covertype/
covertype.data.html
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Figure 4: Visualisation of kernel matrices with sparse data.
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Figure 5: Forest cover type data kernels

movie collection. This might be because of the rel-
evance is binary, instead of discriminating movies
to different classes in sense of type, they might be
divided into good and bad movies.

Because the original data is not ordered, the
kernel matrix looks like a chessboard right after
the kernel evaluation. Therefore the kernel ma-
trix must be ordered with symmetric row and
column changes. The procedure is explained in
Appendix A. Note that the order of movies is not
the same in all pictures.

7 Conclusions and Discussion

7.1 Approximating Kullback-Leibler

information

Kullback-Leibler information was used in this work
as a distance measure because it is used in many
contexts as a divergence measure. As mentioned
before, Kullback-Leibler itself cannot be used as
kernel function as such. Nevertheless we assume
that kernel functions derived from Kullback-Leibler
information would perform well in our tests.

We chose symmetric kernel functions that fulfil

inequalities and equalities compared to Kullback-
Leibler. A kernel function fully equivalent to
Kullback-Leibler does not exist, because KL is not
limited in a way a kernel function should be.

Luckily, the results indicated that the approx-
imations used in this assignment are promising.
In addition, we noticed that the kernel function
without connection to the Kullback-Leibler, the
Count kernel, did not achieve the performance of
the Hellinger and Triangular kernels.

The test with sparse data proved that the data
model needs a reasonable amount of data to work
properly.

7.2 Matrix ordering dilemma

If the original data being clustered is not ordered in
means of clusterisation, the kernel matrix acquired
will not show the cluster structure. Naturally, this
is often the case with real world data. Therefore
we should have a good ordering algorithm for the
kernel matrix, so that we could reveal the cluster
structure in it.

If the data collection dimension is any greater,
the count of possible orderings is increased dramat-
ically. N by N matrix may be ordered in N ! differ-
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Figure 6: Visualisations of kernel matrices with movie ratings data

ent ways with symmetric row and column changes.
Therefore we must use a greedy algorithm intro-
duced in Appendix A that will not, in most cases,
find the global minima of the defined energy func-
tion.
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A Ordering kernel matrix

When a kernel matrix is acquired through some ker-
nel method, it might look all stirred because it is
not ordered properly. By ordering the kernel ma-
trix with symmetric row and column changes so

that larger kernel values move near the diagonal
and the lesser values vice versa, the kernel matrix
may get divided in clusters. One way to order (later
on diagonalise) the kernel matrix is to minimise
properly selected energy function, like

E =

n∑

i

n∑

j

(i − j)αK(xi, xj)
β (A.1)

where K(xi, xj) is the kernel distance between xi

and xj , α and β are real constants (α should be a
even number) and (i-j) is supposed to be a penalty
weight that will pitch the large kernel values to
move toward the diagonal where the penalty mul-
tiplier is smaller. Small values tend to go farther
from the diagonal, where they stabilise the penalty
multiplier.

The energy function will be minimised with sym-
metrical row and column-change operations. That
is, if we change rows i and j the corresponding
columns should also be changed. Because the en-
ergy function (A.1) is costly to evaluate, only en-
ergy changes will be evaluated.

Now consider K0 the kernel matrix before the
row and column operations and K1 after. The en-
ergy change is then

∆E =

n∑

i

n∑

j

(i − j)α
(
K1(xi, xj)

β − K0(xi, xj)
β
)

=

n∑

i

n∑

j

(i − j)α∆K(xi, xj)
β .

(A.2)

Now it should be noticed that matrix ∆Kβ is
nonzero only at those rows and columns that were
changed. Because i:th row and i:th column are
same even when multiplied with the penalty fac-
tor, we can take only the two changed rows into
consideration. Lets note the row vectors with ri

and rj . Moreover, we notice that r
j
i = ri

j = 0 and
rk
i = −rk

j when k 6= i, j. Therefore (A.2) becomes

1

2
∆E =

n∑

k 6=i,j

(i − k)αrk
i +

n∑

k 6=i,j

(j − k)αrk
j ,

1

2
∆E =

n∑

k 6=i,j

(i − k)αrk
i −

n∑

k 6=i,j

(j − k)αrk
i .

14



Now if we choose α = 2 and β = 1, we get

1

2
∆E =

n∑

k 6=i,j

[(i − k)2 − (j − k)2]rk
i ,

=

n∑

k 6=i,j

(i − j)(i + j − 2k)rk
i .

(A.3)

This is considerably less expensive to calculate than
(A.2).

Unfortunately, this algorithm proves to be in-
accurate if the matrix is difficult (if there exists
no clear clusterisation or relative differences of the
kernel matrix elements are small) partly because it
is a greedy algorithm. In some cases this may be
evaded by running the algorithm several times or by
preprocessing the matrix by considering the initial
matrix binary. In this binary approach kernel val-
ues above some selected value are considered one
and below the value zero. By selecting the value
properly a valid ordering of the kernel is acquired.

B Distributions

B.1 Multinomial distribution

Multinomial distribution is a discrete distribution
for a set of random variables Xi.

p(X1 = xi, . . . , Xn = xn) =
N !∏n

i=1 xi!

n∏

i=1

θxi

i ,

(B.1)
where xi are positive integers and

∑n

i xi =
N . The parameters θi are constants that satisfy∑n

i θi = 1. The θi:s indicate the probability of xi

to occur in the sequence

P (Xi) = θi .

The name of the Multinomial distribution comes
from the multinomial series, because the probabil-
ity of sequence x is given by corresponding coeffi-
cient of a multinomial series

(θ1 + θ2 + · · · + θn)N .

B.2 Dirichlet distribution

Dirichlet distribution [7] is the conjugate prior of
the parameters of the Multinomial distribution.

The probability density of the Dirichlet distribu-
tion for variables θ with parameters α is defined
by

p(θ) = Dirichlet(θ; α) =
1

Z(α)

n∏

i=1

θwi−1
i .

(B.2)
with conditions θi ≥ 0 ∀i,

∑
i θi = 1 and

αi > 0 ∀i. The alphas can be interpreted as “prior
observation counts” for events governed by θi. The
Z(α) is normalisation constant

Z(α) =

∏n

i=1 Γ(αi)

Γ(
∑n

i=1 αi)
. (B.3)

For more details about Dirichlet distribution,
please refer e.g. to [7].

B.3 Binomial distribution

Binomial distribution is a special case of Multino-
mial distribution. In this assignment the distribu-
tion is used to draw binary relevance values. The
general definition of Binomial distribution is

p(n|N) =

(
N

n

)
pnqN−n . (B.4)

In this case, N is one

p(0) = p ,

p(1) = q = 1 − p .

C Divergence limits

C.1 Hellinger integral inequality

By using (3.19) with monotonic convergence theo-
rem [16, 3] we obtain

lim
α→0+

1 − H(α; q, p)

α

= lim
α→0+

1 −
∫
Ω
qα(x) p1−α(x) dx

α

= lim
α→0+

∫
Ω
p(x)dx −

∫
Ω
qα(x) p1−α(x) dx)

α

= lim
α→0+

∫

Ω

q0(x) p1−0(x) − qα(x) p1−α(x) dx

α
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The theorem allows us to change the order of limit
and integral.

=

∫

Ω

lim
α→0+

q0(x) p1−0(x) − qα(x) p1−α(x) dx

α

=

∫

Ω

− d

dα
p(x)eα log q(x)

p(x)

∣∣∣
α=0

=

∫

Ω

p(x) log
p(x)

q(x)
= KL(p ‖ q) . (C.1)

Here we assumed that the Kullback-Leibler diver-
gence is finite, i.e.,

{x | q(x) = 0} ⊆ {x | p(x) = 0}.

If else, it would be

1 >

∫

Ω

q0(x) p1−0(x)dx ,

and it would follow that the limiting value in the
proof would be infinite as would be the Kullback-
Leibler divergence. Therefore the assumption is not
restrictive.
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C.2 Small Hellinger distances

In this section we shall prove with Taylor series that Hellinger distance limits to Fisher information with
small distances. The final term assures that the distribution density function is normalized. We also
need to assume that θ → f(x|θ) is smooth enough.

d2(f(x|θ), f(x|θ + δ)) =

∫ (√
f(x|θ) −

√
f(x|θ + δ)

)2

dx + λ(1 −
∫

f(x|θ + δ)dx)

Clearly d2(f(x|θ), f(x|θ + δ))|δ=0 = 0. The first order partial derivatives.

∂d2

∂δi

=
1

2

∫
2
(√

f(x|θ) −
√

f(x|θ + δ)
)(

− 1

2
√

f(x|θ + δ)

∂f(x|θ + δ)

∂δi

)
+ λ

∂f(x|θ + δ)

∂δi

dx

=
1

2

∫ (
1 −

√
f(x|θ)

f(x|θ + δ)
+ λ

)
∂f(x|θ + δ)

∂δi

dx →δ→0 0 .

We demand that λ is zero. Second order partial derivatives

∂2d2

∂δi∂δj

=
1

2

∫
∂2f(x|θ + δ)

∂δi∂δj

(
1 −

√
f(x|θ)

f(x|θ + δ)

)
+

1

2

(
f(x|θ)

f(x|θ + δ)

) 3
2 1

f(x|θ)
∂f(x|θ + δ)

∂δi

∂f(x|θ + δ)

∂δj

dx

→δ→0
1

4

∫
1

f(x|θ)
∂f(x|θ)

∂δi

∂f(x|θ)
∂δj

dx

=
1

4

∫
f(x|θ)∂ log f(x|θ)

∂δi

∂ log f(x|θ)
∂δj

dx

=
1

4
Ef(x|θ)

[
∂ log f(x|θ)

∂δi

∂ log f(x|θ)
∂δj

]
=

1

4
I(θ)ij .

The second order Taylor series is

d2(f(x|θ), f(x|θ + δ)) =
1

2
δiδj

1

4

∂2d2

∂δi∂δj

+ O(δ3) =
1

8
δiδjI(θ)ij + O(δ3) . (C.2)

C.3 Kullback-Leibler on short distances

The Kullback-Leibler divergence [11, 21, 20, 22] can be approximated by Fisher information [18, 8, 21]
when the difference between the distributions are small. Below is the proof with Taylor series. In order
to derive the series, the partial derivatives should be evaluated. Therefore it is again assumed that
θ → f(x|θ) is smooth enough.

First order partial derivatives of the Kullback-Leibler are given below. The final term assures that the
distribution density function is normalized.

KL(f(x|θ + δ) ‖ f(x|θ)) =

∫
f(x|θ + δ) log

f(x|θ + δ)

f(x|θ) dx + λ(1 −
∫

f(x|θ + δ)dx)dx

∂KL

∂δi

=

∫ [
∂f(x|θ + δ)

∂δi

log
f(x|θ + δ)

f(x|θ) + (1 − λ)
∂f(x|θ + δ)

∂δi

]
dx

→δ→0 (1 − λ)

∫
∂f(x|θ)

∂θi

dx = (1 − λ)Ef(x|θ)

[
∂ log f(x|θ)

∂θi

]
= (1 − λ)Ui = 0 .
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The first partial derivatives of Kullback-Leibler divergence must limit to zero when δ → 0, because
δ = 0 is a local minima of Kullback-Leibler divergence. Because the Fisher score Ui is usually not zero,
λ must be one.

Second order partial derivatives of the Kullback-Leibler reads

∂2KL

∂δi∂δj

=

∫ [
∂2f(x|θ)
∂δi∂δj

log
f(x|θ + δ)

f(x|θ) +
1

f(x|θ + δ)

∂f(x|θ + δ)

∂δi

∂f(x|θ + δ)

∂δj

+ (1 − λ)
∂2f(x|θ)
∂δi∂δj

]
dx

→λ=1,δ→0

∫
1

f(x|θ)
∂f(x|θ)

∂δi

∂f(x|θ)
∂δj

dx

=

∫
f(x|θ)∂ log f(x|θ)

∂δi

∂ log f(x|θ)
∂δj

dx

= Ef(x|θ)

[
∂ log f(x|θ)

∂δi

∂ log f(x|θ)
∂δj

]
= I(θ)ij .

Since the divergence is zero in δ = 0, and the first order partial derivatives vanishes, the second order
Taylor series of Kullback-Leibler is

KL(f(x|θ) ‖ f(x|θ + δ)) =
1

2
δiδj

∂2KL

∂δi∂δj

+ O(δ3) =
1

2
δiδjI(θ)ij + O(δ3) . (C.3)
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