
Simple-Cell-Like Receptive Fields Maximize

Temporal Coherence in Natural Video

Jarmo Hurri and Aapo Hyvärinen

Neural Networks Research Centre

Helsinki University of Technology

P.O.Box 9800, 02015 HUT, Finland

{jarmo.hurri,aapo.hyvarinen}@hut.fi

August 26, 2002

Abstract

Recently, statistical models of natural images have shown emergence of

several properties of the visual cortex. Most models have considered the

non-Gaussian properties of static image patches, leading to sparse cod-

ing or independent component analysis. Here we consider the basic time

dependencies of image sequences instead of their non-Gaussianity. We

show that simple cell type receptive fields emerge when temporal response

strength correlation is maximized for natural image sequences. Thus, tem-

poral response strength correlation, which is a nonlinear measure of tem-

poral coherence, provides an alternative to sparseness in modeling simple

cell receptive field properties. Our results also suggest an interpretation of

simple cells in terms of invariant coding principles, which have previously

been used to explain complex cell receptive fields.

1 Introduction

The functional role of simple cells has puzzled scientists since the structure of
their receptive fields was first mapped by Hubel and Wiesel in the 1950s (see,
e.g., (Palmer, 1999)). The first hypothesis concerning their role was based on
their visual appearance, that is, their similarity with edges and bars. The second
major theory was the local spatial frequency analysis theory, which is based on
generally applicable signal processing principles. The current view of the func-
tionality of sensory neural networks emphasizes learning and the relationship
between the structure of the cells and the statistical properties of the infor-
mation they process (see, e.g., (Field, 1994; Simoncelli and Olshausen, 2001)).
In 1996 a major advance was achieved when Olshausen and Field showed that
simple-cell-like receptive fields emerge when sparse coding is applied to natural
image data (Olshausen and Field, 1996). Similar results were obtained with
independent component analysis (ICA) shortly thereafter (Bell and Sejnowski,
1997; van Hateren and van der Schaaf, 1998). In the case of image data, in-
dependent component analysis is closely related to sparse coding (Hyvärinen
et al., 2001, pages 396–401) (Olshausen and Field, 1997).
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In this paper we show that an alternative principle called temporal coherence

(Becker, 1993; Földiák, 1991; Kayser et al., 2001; Mitchison, 1991; Stone, 1996;
Wiskott and Sejnowski, 2002) leads to the emergence of simple cell receptive
fields from natural image sequences. This finding is significant because it means
that temporal coherence provides a complementary theory to sparse coding as
a computational principle behind the formation of simple cell receptive fields.
The results also link the theory of achieving invariance by temporal coherence
(Földiák, 1991) to real-world visual data, and measured properties of the visual
system. Whereas previous research has focused on establishing this link for
complex cells, we show that such a connection exists even on the simple cell
level.

Temporal coherence is based on the idea that when processing temporal in-
put, the representation changes as little as possible over time. Földiák was one
of the first authors to suggest the usefulness of temporal coherence in compu-
tational neuroscience (Földiák, 1991). He developed a two-layer network which
was able to learn to identify a fixed feature, such as a line with a fixed ori-
entation, even if the way the feature was expressed in the data changed, for
example, if the line was translated. Földiák used temporal coherence as a tool
to learn translation invariances: artificially generated input data was temporally
coherent (consecutive input frames contained translated versions of a line with
the same orientation), and by using competition and short-term memory, the
output was also taught to be temporally coherent. This associated translated
versions of a feature with each other.

Since Földiák several researchers have studied temporal coherence, and also
other forms of coherence, such as coherence with respect to different views of
the same scene. For example, in (Becker and Hinton, 1992; Stone, 1996), surface
depth was discovered from stereograms by a multiple layer nonlinear network.
In (Becker and Hinton, 1992), this was done by using stereograms representing
different views of the same randomly generated scene, and maximizing mutual
information between outputs. In (Stone, 1996), learning was achieved by using
a temporal sequence of slightly different stereograms, and maximizing temporal
smoothness of output while preserving variability in output. In these studies,
the input data sets were generated so that there was an underlying, coherent
parameter in the data, and the objective was to find that parameter by using
coherence. Therefore the main result was the demonstration of the usefulness
of coherence using simulated data.

The contribution of this paper is to show that when the input consists of nat-

ural image sequences, the linear filters that maximize temporal response strength

correlation are similar to simple cell receptive fields. In what follows we first de-
scribe temporal response strength correlation, which is a measure of temporal
coherence, and an algorithm which is capable of optimizing the measure. In
Section 3 we apply this algorithm to natural image sequences. In addition to
the main results we describe several control experiments, which were made to
ensure the validity and novelty of our results. Finally, in Section 4 we give an in-
tuitive explanation of why optimization of the objective function produces such
results, discuss the spatiotemporal and nonlinear (non-negative) extensions of
the model, and conclude the paper by discussing the implications of this work.
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2 Temporal response strength correlation

In the basic model we restrict ourselves to consider linear spatial models of sim-
ple cells. Linear simple cell models are commonly used in studies concerning
the connections between visual input statistics and simple cell receptive fields
(Bell and Sejnowski, 1997; Olshausen and Field, 1996; van Hateren and van der
Schaaf, 1998), because linearity seems to approximately characterize most sim-
ple cells (DeAngelis et al., 1993b). Extensions of this basic framework will be
discussed in Sections 4.4 and 4.5.

The model uses a set of spatial filters (vectors) w1, ...,wK to relate input
to output. Let signal vector x(t) denote the input of the system at time t.

A vectorization of image patches can be done by scanning images column-wise
into vectors – for windows of size N ×N this yields vectors with dimension N 2.

The output of the kth filter at time t, denoted by signal yk(t), is given by the
dot-product

yk(t) = wT
k x(t). (1)

Let matrix W = [w1 · · ·wK ]
T

denote a matrix with all the filters as rows. Then
the input-output relationship can be expressed in vector form by

y(t) = Wx(t), (2)

where signal vector y(t) = [y1(t) · · · yK(t)]
T

.

Temporal response strength correlation, the objective function, is defined by

f(W) =

K
∑

k=1

Et {g(yk(t))g(yk(t − ∆t))} , (3)

where the nonlinearity g is strictly convex, even (rectifying), and differentiable.
The symbol ∆t denotes a delay in time. The nonlinearity g measures the
strength (amplitude) of the response of the filter, and emphasizes large responses
over small ones (see Section 4). Examples of choices for this nonlinearity are
g1(x) = x2, which measures the energy of the response, and g2(x) = ln cosh x,

which is a robustified version of g1. A set of filters which has a large temporal
response strength correlation is such that the same filters often respond strongly

at consecutive time points, outputting large (either positive or negative) values.
This means that the same filters will respond strongly over short periods of
time, thereby expressing temporal coherence of a population code.

To keep the outputs of the filters bounded we enforce the unit variance
constraint on each of the output signals yk(t), that is, we enforce the constraint
Et

{

y2
k(t)

}

= wT
k Cxwk = 1 for all k, where matrix Cx = Et

{

x(t)xT (t)
}

.

Additional constraints are needed to keep the filters from converging to the same
solution. Standard methods (Hyvärinen et al., 2001) are either to force the set of
filters to be orthogonal, or to force their outputs to be uncorrelated, from which
we choose the latter. This introduces additional constraints wT

i Cxwj = 0,
i = 1, ...,K, j = 1, ...,K, j 6= i. These uncorrelatedness constraints limit the
number of filters K we can find so that K ≤ N 2. The unit variance constraints
and the uncorrelatedness constraints can be expressed by the single matrix
equation

WCxW
T = I. (4)
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Note that if we use a nonlinearity g(x) = x2, and ∆t = 0, the objective

function becomes f(W) =
∑K

k=1 Et

{

y4
k(t)

}

. In this case the optimization of the
objective function under the unit variance constraint is equivalent to optimizing
the sum of kurtoses of the outputs. Kurtosis is a commonly used measure
in sparse coding. Similarly, in the case of nonlinearity g(x) = ln coshx and
∆t = 0, the objective function can be interpreted as a non-quadratic measure of
the non-Gaussianity of filter outputs. We will return to this issue in Section 3.

Thus, the receptive fields are learned in our model by maximizing the ob-
jective function (3) under the constraint (4). The optimization algorithm used
for this constrained optimization problem is a variant of the gradient projection
method of Rosen (for the original algorithm see e.g. (Luenberger, 1969, pages
297–299)). The optimization approach employs whitening, that is, a temporary
change of coordinates, to transform the constraint (4) into an orthonormality
constraint. Then a gradient projection algorithm employing optimal symmetric
orthogonalization can be used. See Appendix A for details.

3 Experiments on natural image sequences

3.1 Data collection

The natural image sequences used as data were a subset of those used in
(van Hateren and Ruderman, 1998). The original data set consisted of 216
monochrome, non-calibrated video clips of 192 seconds each, taken from tele-
vision broadcasts. More than half of the videos feature wildlife, the rest show
various topics such as sports and movies. Sampling frequency was 25 frames
per second, and each frame was block-averaged to a resolution of 128 × 128
pixels. For our experiments this data set was pruned to remove the effect of
human-made objects and artifacts. First, many of the videos feature human-
made objects, such as houses, furniture etc. Such videos were removed from the
data set, leaving us with 129 videos. Some of these 129 videos had been grabbed
from television broadcasts so that there was a wide black bar with height 15
pixels at the top of each image, probably because the original broadcast had
been in wide screen format. Our sampling procedure never took samples from
this topmost part of the videos. If these artifacts were not removed from the
data set, the static ICA results computed for comparison showed longer horizon-
tal and vertical receptive fields than results obtained from scenes without the
artifacts. The final, preprocessed (see below) data set consisted of 200,000 pairs
of consecutive 11 × 11 image windows (patches) at the same spatial position,
but ∆t milliseconds apart from each other. Depending on the experiment, ∆t

varied between 40ms and 960ms. However, because of the temporal filtering
used in preprocessing, initially 200,000 longer image sequences with a duration
of ∆t + 400ms, and the same spatial size 11 × 11, were sampled with the same
sampling rate.

A second data set was needed for computing the corresponding (static) ICA
solution for comparison. This data set consisted of 200,000 11 × 11 images
sampled from the same video data.
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3.2 Preprocessing

The preprocessing in the main experiment consisted of three steps: temporal
decorrelation, subtraction of local mean, and normalization. (The same prepro-
cessing steps were applied in the control experiments. Whenever preprocessing
was varied in control experiments it is explained separately below.) Temporal
decorrelation can be motivated in two different ways. First, it can be motivated
biologically as a model of temporal processing at the lateral geniculate nucleus
(Dong and Atick, 1995). Second, as discussed above, for ∆t = 0 the objective
function can be interpreted as a measure of sparseness. Therefore it is important
to rule out the possibility that there is hardly any change in short intervals in
video data, since this would imply that our results could be explained in terms
of sparse coding or ICA. To make the distinction between temporal response
strength correlation and measures of sparseness clear, temporal decorrelation
was applied because it enhances temporal changes. Note, however, that this
still does not remove all of the static part in the video – this issue is addressed
in the control experiments below.

To investigate the effect of temporal decorrelation, we first examined the
histogram of the distances between subsequent image windows separated by
∆t = 40ms, shown in Figure 1A. (This histogram also shows that there are
indeed large changes between subsequent time points even without temporal
decorrelation.) The local mean has been removed from these windows, and
they have been normalized (see below); note that 2 is maximal distance because
of normalization. Temporal decorrelation was performed with a temporal fil-
ter, shown in Figure 1B. The Fourier magnitude of the filter was computed by
inverting the amplitude spectrum of input data. A Wiener filter approach was
used in order to not amplify high frequency noise. (We determined the filter
directly from data, see (Dong and Atick, 1995) for an analytic solution.) Noise
power was estimated by assuming that it is equal to signal power at 5.5Hz, a
value also used in (Dong and Atick, 1995). Phases were determined by adding
a minimum energy delay constraint on the filter (see (Oppenheim and Schafer,
1975, pages 504–511)). Filter length was originally 2500ms, but was truncated
to 400ms because this part contains over 99% of filter energy. When short
image sequences of length ∆t + 400ms are filtered with this temporal filter,
the resulting sequences are of length ∆t. From each of these temporally filtered
short sequences, two windows separated by ∆t were taken. Figure 1C shows
the distribution of the distances between such temporally decorrelated windows,
after removal of local mean and normalization (see below), when ∆t = 40ms.
This histogram shows that temporal decorrelation enhances temporal changes
in the data. Figure 1D shows the distribution of the distances between tem-
porally decorrelated windows, after removal of local mean and normalization,
when ∆t = 120ms. In this case, consecutive windows are, on the average, quite
far from each other when measured with the Euclidean norm. In fact, the peak
of the histogram is approximately at 1.4, which for normalized vectors means
that a large part of the consecutive windows are approximately orthogonal to
each other.

After temporal decorrelation, the local mean (DC component) was sub-
tracted from each window. This reduces the number of dimensions of the data
by one, so with image window size N = 11, the number of filters K ≤ 120.
Finally, the sample vectors (vectorized windows) were normalized to have unit
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Figure 1: Temporal decorrelation enhances temporal changes. (A) Distribution
of Euclidean distances between consecutive samples at the same spatial posi-
tion, but 40ms apart from each other, without temporal decorrelation. Note
that two is the maximum value because of normalization. (B) The temporally
decorrelating filter. (C) Distribution of Euclidean distances between consec-
utive samples at the same spatial position, but 40ms apart from each other,
after temporal decorrelation. (D) Distribution of Euclidean distances between
consecutive samples at the same spatial position, but 120ms apart from each
other, after temporal decorrelation. Note that removal of DC component and
normalization were also performed in all of these cases.
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Euclidean norm, which can be considered as a form of contrast gain control
(Carandini et al., 1997; Heeger, 1992). Note that no spatial low-pass filtering
or dimensionality reduction was performed during preprocessing.

In the case of the second data set, which was used to compute the corre-
sponding static ICA solution, preprocessing consisted of removal of the local
mean, followed by normalization. Temporal decorrelation was not performed
here, since it has no meaning in the case of static image data.

3.3 Results: temporally coherent filters of natural image
sequences

The main experiment consisted of running the symmetric gradient projection
algorithm 50 times, using different random initial values, followed by a quanti-
tative analysis of these results, as well as results obtained with a corresponding
ICA algorithm. In this experiment ∆t was 40ms. The number of extracted fil-
ters was set at the maximum value K = 120. Nonlinearity g in objective function
(3) was chosen to be g(x) = ln coshx because of its robustness against outliers
(Hyvärinen et al., 2001).

Figure 2 shows the resulting filters (i.e., rows of matrix W) of the first
run. The filters have been ordered according to Et {g(yk(t))g(yk(t − ∆t))} , that
is, according to their “contribution” into the final objective value (filters with
largest values top left). The filters resemble Gabor filters. They are localized,
oriented, and have different scales. These are the main features of simple-cell
receptive fields (Palmer, 1999).

When compared qualitatively with earlier reported results, obtained with
sparse coding and independent component analysis (Bell and Sejnowski, 1997;
Olshausen and Field, 1996; van Hateren and van der Schaaf, 1998), our results
show a larger variety of different spatial scales. To compare the results quanti-
tatively, we extracted a corresponding set of 50 ICA separation matrices using
the symmetric fixed-point ICA (FastICA) algorithm, with robust nonlinearity
tanh (Hyvärinen et al., 2001, pages 183–185 and 196). This algorithm is a sym-
metric version of that used in (van Hateren and van der Schaaf, 1998) – the
symmetric nature of the algorithm facilitates extracting a balanced set of filters
(Hyvärinen et al., 2001, pages 194–195). Filters maximizing temporal response
strength correlation were compared against the rows of the separating matrix
(the ICA filters), since these filters are the natural counterparts in ICA (van
Hateren and van der Schaaf, 1998). Figure 3 shows the ICA filters obtained
from the first run.

In the quantitative comparison of the results, we measured the most im-
portant properties of the receptive fields. The results are shown in Figure 4.
The measured properties were peak spatial frequency (Figures 4A and 4B, note
logarithmic scale, units cycles/pixel), peak orientation (Figures 4C and 4D),
spatial frequency bandwidth (Figures 4E and 4F), and orientation bandwidth
(Figures 4G and 4H). See (van Hateren and van der Schaaf, 1998) for definitions
of these measures. Although there are some differences, the most important ob-
servation here is the similarity of the histograms. This supports the idea that
ICA / sparse coding and temporal coherence are complementary theories, in
that they both result in the emergence of simple-cell-like receptive fields. As
for the differences, the results obtained using temporal response strength cor-
relation have a slightly smaller number of high-frequency receptive fields. Also,
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Figure 2: Temporally coherent filters of natural image sequences, given by the
first run of the main experiment. The filters were estimated from natural image
sequences by optimizing temporal response strength correlation with the sym-
metric gradient projection algorithm (here nonlinearity g(x) = ln coshx). The
filters have been ordered according to Et {g(yk(t))g(yk(t − ∆t))} , that is, ac-
cording to their “contribution” into the final objective value (filters with largest
values top left).
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Figure 3: For comparison, ICA filters estimated from natural image sequences by
using the symmetric fixed-point algorithm. Note that these filters have a much
less smooth appearance than in most published ICA results; this is because
for the sake of comparison, we show here the filters and not the basis vectors,
and further, no low-pass filtering or dimension reduction was applied in the
preprocessing.
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temporal response strength correlation seems to produce receptive fields that are
somewhat more localized with respect to both spatial frequency and orientation.

When the results are compared against the results in (van Hateren and
van der Schaaf, 1998), the most important difference is the peak at zero band-
width in Figures 4E and 4F. This difference is probably a result of the fact that
no dimensionality reduction, antialiasing or noise reduction was performed here,
which results in the appearance of very small, checkerboard-like receptive fields.
This effect is more pronounced in ICA, which also explains the stronger peak
at the 45◦ angle in Figure 4D.

3.4 Control experiments

To ensure the novelty and validity of our results, we made eight control experi-
ments. All other aspects, except those specifically mentioned here, were similar
in these experiments as in the main experiment.

3.4.1 Control experiment I: no temporal decorrelation

In the main experiment, we used temporally decorrelated data. However, as was
seen in Figure 1, there is considerable temporal change in natural video data
even without temporal decorrelation. Therefore it is reasonable to ask whether
temporal decorrelation is necessary for achieving results like those shown in
Figure 2. To answer this question, the algorithm was run for data which was
not temporally decorrelated. The results are shown in Figure 5A. Although the
filters with highest frequency components seem to be somewhat less localized,
the results remain qualitatively very similar to those in Figure 2, in that they also
resemble Gabor filters. This suggests that the simple-cell-like properties of the
results of the main experiment are not a consequence of temporal decorrelation.

3.4.2 Control experiments II–IV: longer ∆t

In the main experiment, consecutive samples were separated by 40ms. Does
the phenomenon found in the main experiment hold only for very small ∆t?
To answer this question, we examined the case ∆t = 120ms in control experi-
ment II. As can be seen in Figure 1D, with this time separation preprocessed
consecutive sample windows are typically much further from each other than
when ∆t = 40ms. Figure 5B shows the results of applying the symmetric gra-
dient projection algorithm to this data. Although the receptive fields are now
larger than in the main experiment, the results are still qualitatively similar.
This implies that the discovered relationship applies to short-time natural image
sequences in general, not only for some specific value of ∆t.

It seems natural that there would be an upper limit for which the results
are no longer qualitatively similar to those in Figure 2. This is indeed the
case. The degree of spatial localization decreases when ∆t increases. This can
already be seen to some degree in Figure 5B, and is more pronounced in the
results of control experiment III, in which ∆t = 480ms (Figure 5C). In the
480ms case most of the filters are poorly localized, resembling Fourier basis
vectors corresponding to different frequencies. As ∆t becomes large enough,
spatial localization disappears, and filters also start to lose their orientation
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Figure 4: Comparison of properties of receptive fields obtained by optimizing
temporal response strength correlation (left column, histograms A, C, E and G)
and estimating ICA filters (right column, histograms B, D, F and H). See text
for details.
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A B

C D

Figure 5: Results of control experiments I–IV. (A) Results of control experiment
I in which no temporal decorrelation was performed. (B) Results of control
experiment II in which ∆t = 120ms. (C) Results of control experiment III in
which ∆t = 480ms. (D) Results of control experiment IV in which ∆t = 960ms.
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selectivity. This is illustrated in Figure 5D for ∆t = 960ms (control experiment
IV).

3.4.3 Control experiment V: randomly selected consecutive windows

Control experiment V was made to ensure that the results reflect the dynamics
of natural image sequences, and not just the relationship between any arbitrary
image patches. Instead of using samples separated by ∆t, random image samples
were chosen as consecutive window pairs. No temporal decorrelation was done
here, since random window pairs do not have a temporal relationship. Figure 6A
shows the resulting spatial filters, which correspond to noise patterns, indicating
that the original results in Figure 2 do reflect natural image sequence dynamics.

3.4.4 Control experiment VI: complete removal of the static part of

video

As was noted above, in most experiments the data was temporally decorrelated,
leading to enhanced temporal change. For example, note from Figure 1D that in
the case ∆t = 120ms, after preprocessing (including the normalization step), the
peak of the histogram of distances between preprocessed consecutive windows
is approximately at 1.4. Remembering that the samples have been normalized,
this indicates that a large part of the preprocessed sample consists of consecutive
windows which are approximately orthogonal to each other. This supports the
idea that our results are not a consequence of the static part of natural image
sequences.

However, since preprocessing does not remove the static part of the video
completely, we made another control experiment (control experiment VI), with
∆t = 120ms, in which the static part was removed altogether. This was done by
modifying the preprocessing step so that no temporal decorrelation was done;
instead, after removal of the local mean, consecutive windows were orthonor-

malized using the Gram-Schmidt procedure. This removes the static part, the
part present already at time t − ∆t, from the window at time t completely. No
other form of temporal filtering was performed in this experiment.

Figure 6B shows the results of this control experiment. The resulting filters
are still localized, oriented, and have different scales. This shows that the qual-
itative nature of our results is not a consequence of the static part of natural
image sequences. The filters are more localized than in the corresponding ex-
periment with temporal decorrelation, probably because removal of the static
part is more likely to remove large features from the data (see Section 4). If the
same orthogonalization procedure is applied in the case ∆t = 40ms, the results
(not shown) are even more localized. This suggests that here too, as in the case
of temporally decorrelated data, the degree of spatial localization is a function
of ∆t.

3.4.5 Control experiment VII: compensation of observer movement

Control experiment VII was made to study the role of observer (camera)
movement. To compensate for this movement, a simple correlation-based
tracking mechanism was implemented into the sampling procedure. Tracking
was applied before temporal filtering (temporal decorrelation), so each 440ms
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Figure 6: Results of control experiments V–VIII. (A) Results of control experi-
ment V in which consecutive window pairs were chosen randomly. (B) Results
of control experiment VI in which the static part of natural image sequences was
removed altogether by employing Gram-Schmidt orthogonalization to consecu-
tive windows. (C) Results of control experiment VII in which observer (camera)
movement was compensated by using a tracking mechanism. (D) Results of con-
trol experiment VIII in which ordinary linear correlation between output values
was maximized.
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(= ∆t + 400ms) sequence was tracked. Let x1 be the first vectorized sam-
ple window in a 440ms sequence, and Xn be the set of candidate windows
in the nth video frame of the sequence, differing at most 10 pixels from the
spatial position of the first window x1. The nth window xn was chosen by

xn = arg maxx∈Xn

x
T

n−1
x

‖xn−1‖‖x‖
. The results are shown in Figure 6C. The results

are qualitatively similar to the original results, showing that the main results
are not a consequence of observer movement. The number of low-frequency re-
ceptive fields seems to be smaller in the control results. This change is probably
caused by decreased large-scale movement (see Section 4).

3.4.6 Control experiment VIII: ordinary linear correlation

Finally, the purpose of control experiment VIII was to show that higher-
order correlation is indeed needed for the emergence of simple-cell-like fil-
ters. To study this, we computed the optimal filter solutions for maxi-
mizing linear correlation f`(wk) = Et {yk(t)yk(t − ∆t)} (see also (Mitchison,
1991)).1 The unit variance constraint is used here again, so the problem is

equivalent to minimizing Et

{

(yk(t) − yk(t − ∆t))
2
}

with the same constraint.

A closed-form solution can be derived from necessary Karush-Kuhn-Tucker
(KKT) conditions and an additional zero DC constraint. Let Cx = EDET

from which the DC eigenvector corresponding to zero eigenvalue has been
dropped out. The necessary conditions are fulfilled by those eigenvectors of

ED−1ET Et

{

(x(t) − x(t − ∆t)) (x(t) − x(t − ∆t))
T
}

which correspond to non-

zero eigenvalues. Analysis of sufficient KKT conditions reveals that the filters
fulfilling the first-order conditions behave as in the case of principal compo-
nents; that is, after the minimizing filter is found and removed from the set of
eigenvectors, another eigenvector from the set will be the next minimum, as-
suming that the output of the next selected filter has to be uncorrelated with
the outputs of the previously selected ones. The eigenvector corresponding to
the smallest eigenvalue is the global minimum, and the next minimum is the
one with the next smallest eigenvalue. Figure 6D shows the resulting filters,
sorted according to the corresponding eigenvalue (smallest eigenvalue top left).
These filters resemble Fourier basis vectors, and not simple cell receptive fields.
Thus we see that emergence of localized receptive fields requires the use of a
nonlinear temporal correlation measure.

4 Discussion

4.1 Temporal coherence of large responses

Temporal response strength correlation, as defined by equation (3), does not
explicitly measure the rate of change of the output signal. Therefore, it is

1Note that this objective function is defined for single filters. A similar single-unit rule for
optimizing Et

{

g(y
k
(t))g(y

k
(t−∆t))

}

can be defined and optimized for temporal response
strength correlation. The optima for this objective function are similar to those in Figure 2,
but the receptive fields are more elongated. In addition, there are problems with obtaining
a complete basis because a deflationary algorithm (Hyvärinen et al., 2001), in which first
extracted solutions dominate, has to be used. In the case of linear correlation we do not have
this problem since a closed-form solution can be found.
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important to examine what type of temporal coherence the objective function
measures. In order to do this, consider three different temporally uncorrelated
signals, y1(t), y2(t), and y3(t), depicted in Figure 7. (Note that in the main
experiment the output signals yk(t) are temporally uncorrelated because they
are spatially linearly filtered from temporally decorrelated input data.) All of
these signals have unit energy, and a Gaussian marginal distribution. Signals
y2(t) and y3(t) have been created by reordering the samples of y1(t) so that they
contain two intervals of high amplitude (see figure caption for details). Signal
y3(t) has the largest temporal response strength correlation of these signals, as
measured by equation (3). This is because the objective function emphasizes

the temporal coherence of large amplitudes. This is not true for an arbitrary
measure of amplitude correlation. For example, for g(x) =

√

|x| (concave on
interval ]0,∞]), signal y2(t) has a larger measure than y3(t) (f(y2(t)) ≈ 0.73,
f(y3(t)) ≈ 0.71).

4.2 Temporal coherence vs. sparseness

We saw in the previous section that our objective function gives large values
when yk(t) and yk(t − ∆t) both have large amplitudes, thus emphasizing the
correlation of large activations. This property must not, however, be confused
with sparseness. Sparseness of yk(t) means that very large amplitudes, as well
as very small ones, are relatively common. It is thus a property of the marginal

distribution of yk(t). The temporal correlation of large amplitudes says nothing
about their frequency, nor on any other aspect of the marginal distribution
of yk(t). All the signals in Figure 7 (on the left) have a Gaussian marginal
distribution, yet the signals vary considerably in their temporal coherence, as
measured by our objective function.

Our measure of temporal coherence could indirectly measure the marginal
distribution (sparseness) only in the case where there is little change in the
data, that is, if the static part of the image sequence dominates. However, this
possibility was ruled out by the use of temporal decorrelation, which ensures
that there is quite a large amount of change in the data, as shown in Figure 1.
Ultimately, control experiment VI showed that the use of temporal coherence
produced similar results even if the static part was removed completely, thus
proving that the principle of temporal coherence is distinct from sparse coding.

4.3 An intuitive explanation of results

4.3.1 The importance of translation in natural image sequences

The most universal local visual properties of objects are edges and lines, so in
what follows we will limit the discussion to their dynamic properties. Objects
can undergo a number of transformations in image sequences: translation, ro-
tation, occlusion, and, for non-rigid objects, deformation. A transformation in
the 3-D space can induce a different transformation in an image sequence. For
example, a translation towards the camera induces a change of object size in
the image sequence. Our hypothesis is that for local edges and lines, and during
short time intervals, most 3-D object transformations result in local translations

of these elements in image sequences. This is of course true for 3-D translations
of objects. Figure 8 illustrates this phenomenon for two other transformations:
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Figure 7: Temporal response strength correlation emphasizes temporal coher-
ence of large amplitudes. Three temporally uncorrelated signals y(t) with unit
energy and Gaussian marginal distributions (A,C,E), and their rectified magni-
tudes ln cosh y(t) (B,D,F). The signals in C and E were obtained by rearranging
the time indices of the signal in A. This was done so that the two intervals of
high amplitude in these signals contain the samples with the largest amplitudes,
in random order. In C the total length of the intervals is half of the total signal
length, in E this ratio is 1

5 . The signal in E has the largest temporal response
strength correlation, as measured by eq. (3) (f(y1(t)) ≈ 0.13, f(y2(t)) ≈ 0.23,
f(y3(t)) ≈ 0.29). This illustrates the fact that the objective function emphasizes
the temporal correlation of large amplitudes. See text for discussion.
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A B

Figure 8: Examples of transformations inducing approximate local translations.
Local area is marked with a dashed square. (A) Planar rotation. (B) Bending.

a planar rotation and bending of an object. Note that the effect illustrated in
Figure 8A is even more pronounced if object rotation is not purely planar.

4.3.2 Why Gabor-like filters maximize correlation of square-rectified

responses

In order to demonstrate the correlation of square-rectified responses at consec-
utive time points, we will consider the interaction of features and filters in one
dimension (orthogonal to the orientation of the filter). This allows us to consider
the effect of local translations in a simplified setting. Figure 9 illustrates, in a
simplified case, why the temporal response strengths of lines and edges correlate
positively as a result of Gabor-like filter structure. Prototypes of two different
types of image elements – the profiles of a line and an edge – which both have a
zero DC component, are shown in the topmost row of the figure. The leftmost
column shows the profiles of three different filters with unit norm and zero DC
component: a Gabor-like filter, a sinusoidal (Fourier basis -like) filter, and an
impulse filter. The rest of the figure shows the square rectified responses of the
filters to the inputs as functions of spatial displacement of the input.

Consider the rectified response of the Gabor-like filter to the line and the
edge. The squared response at time t−∆t (spatial displacement zero) is strongly
positively correlated with response at time t, even if the line or edge is displaced
slightly. This shows how small local translations of basic image elements still
yield large values of temporal response strength correlation for Gabor-like fil-
ters. If you compare the responses of the Gabor-like filter to the responses of
the sinusoidal filter, you can see that the responses to the sinusoidal filter are
typically much smaller. This leads to a lower value of our measure of temporal
response strength correlation that emphasizes large values. Also, while the re-
sponse of an impulse filter to an edge correlates quite strongly over small spatial
displacements, when the input consists of a line even a very small displacement
will take the correlation to almost zero.

Thus we can see that when considering three important classes of filters –
filters which are maximally localized in space, maximally localized in frequency,
or localized in both – the optimal filter is a Gabor-like filter, which is localized
both in space and in frequency. If the filter is maximally localized in space,
it fails to respond over small spatial displacements of very localized image ele-
ments. If the the filter is maximally localized in frequency, its responses to the
localized image features are not strong enough.

Figure 10 shows why we need nonlinear correlations instead of linear ones:
raw output values might correlate either positively or negatively, depending on
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input

−2−1 0 1 2−2−1 0 1 2 3 0 1−2−1 0 1 2 3

filter square-rectified output

−1 0 1−2−1 0 1 2 3 −1 0 1−1 0 1 −1 0 1−1 0 1

−2−1 0 1 2 3−2−1 0 1 2 3 −1 0 1−1 0 1 −1 0 1−1 0 1

−2−1 0 1 2−2−1 0 1 2 3 −1 0 1−1 0 1 −1 0 1−1 0 1

Figure 9: A simplified illustration of why a Gabor-like filter, localized in both
space and frequency, yields larger values of temporal response strength correla-
tion than a filter localized only in space or only in frequency. Top row: cross
sections of a line (left) and an edge (right) as functions of spatial position.
Leftmost column: cross sections of three filters with unit norm and zero DC
component – a Gabor-like filter (top), a sinusoidal filter (middle), and an im-
pulse filter (bottom). The other plots in the figure show the responses of the
filters to the inputs as a function of spatial displacement of the input. The
Gabor-like filter yields fairly large positively correlated values for both types
of input. The sinusoidal filter yields small response values. The impulse fil-
ter yields fairly large positively correlated values when the input consists of an
edge, but when the input consists of a line even a small displacement yields a
correlation of almost zero.
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input

−2−1 0 1 2−2−1 0 1 2 3 0 1−2−1 0 1 2 3

filter raw output

−1 0 1−2−1 0 1 2 3 −1 0 1−1 0 1 −1 0 1−1 0 1

Figure 10: A simplified illustration of why nonlinear correlation is needed for
the emergence of the phenomenon. Raw response values of the Gabor-like filter
to the line and edge may correlate positively or negatively, depending on the
displacement. (See Figure 9 for an explanation of the layout of the figure.)

the displacement. Thus we see why ordinary linear correlation is not maximized
for Gabor-like filters, whereas the rectified (nonlinear) correlation is.

4.3.3 Emergence of simple-cell-like filters

Future research is needed to provide a detailed analysis of which properties of
natural image sequence data are needed for the emergence of simple-cell-like
filters. However, at this point we can provide a set of hypotheses as to why
oriented, localized filters with multiple scales emerge from the data.

Orientation The filters are oriented because the contours (edges and lines)
in image sequences are oriented: since our objective function emphasizes
strong responses, the filters need to be matched to the dominant features
in the data (see Figure 9).

Localization As illustrated in Figure 9, the features are limited in width be-
cause lines and edges are mostly limited in width as well, and because
short-time translations are very local. This second point is supported by
the results of control experiments II–IV (Figures 5B–5D), which showed
that when ∆t is increased, localization decreases. The features are limited
in length for the same reason that they are limited in ICA or sparse cod-
ing: contours in real images have some curvature. Even a weak curvature
makes the match (dot-product) with an elongated Gabor quite weak, and
gives poor temporal coherence (Hoyer and Hyvärinen, 2002).

Multiple scales The filters respond to multiple scales for two reasons. The
first reason is the scale invariance of natural image sequences. This expla-
nation is supported by the results of control experiment VI (Figure 6B),
in which the static part of image sequences was removed completely. The
results exhibit a narrower range of different scales, because removal of the
static part of the sequences is more likely to remove large features. The
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second reason is that the features move with many different velocities in
the data. This is supported by the results of control experiment VII (Fig-
ure 6C), in which tracking was used to compensate for observer movement.
The results exhibit a narrower range of different scales, because tracking
is likely to reduce the velocity of moving features in the data.

4.4 The case of spatiotemporal receptive fields

Due to limited computational resources, we are currently unable to estimate the
most temporally coherent spatiotemporal receptive fields. However, argumenta-
tion similar to the intuitive explanation provided above can be given to illustrate
a similar phenomenon in the spatiotemporal case. Figure 11 illustrates a case
in which a vertical line is moving in the image sequence. The response of a
simple-cell-like motion-selective spatiotemporal filter (DeAngelis et al., 1993a),
whose spatiotemporal position and orientation match the initial position of the
line and its direction of movement, is large in magnitude at consecutive time-
points. This illustrates how large temporal response strength correlation could
arise in the case of spatiotemporal receptive fields.

4.5 The case of a nonlinear (non-negative) cell model

Linear filters with negative coefficients and/or negative-valued data have signed
outputs. Their widespread use as simple cell models is often motivated by an
interpretation in which the term “simple cell” in fact refers to a unit of two cells.
These two positive-output cells, with reversed polarities, are modeled using a
single linear filter with signed output.2 This two-cell approach will be explained
in detail below. At this point notice, however, that this coupling is very different
from complex cell pooling of simple cells. In complex cell pooling the coupled
cells respond to similar features at different spatial positions, whereas two cells
with opposite polarities respond to similar features at the same spatial position.

For single simple cells, a more realistic basic model of the mapping from
input to output via a receptive field is a combination of linear filtering and a
nonlinearity called half-wave rectification (see, e.g., (Heeger, 1992)). Using the
same notation as above, the output of the cell, yk(t), is computed by

yk(t) = max
{

0,wT
k x(t)

}

, (5)

instead of the purely linear input-output relationship (1). In this model the
output of a cell is never negative.

The purely linear model (1) combines the outputs of two such positive-output
simple cells with reversed polarities. This is implemented so that the positive
output values correspond to the output of one cell, and the negative values
correspond the the output of another cell, with otherwise similar receptive field
except for a change of the sign of all the connection weights. The exact way
an input pattern is mapped into a response in such a model is as follows. Let
yk,1(t) and yk,2(t) denote the outputs of two cells with reversed polarities. Their

2Another possibility would be to consider the negative and positive values as changes from
maintained firing rate. However, simple cells have a low maintained firing rate, which makes
this approach undesirable (Heeger, 1992).
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Figure 11: An illustration of how temporal response strength correlation could
be exhibited by the outputs of simple-cell-like spatiotemporal receptive fields.
A phenomenon analog to translation in the spatial case can be observed in the
spatiotemporal case. Let x and y denote the horizontal and vertical spatial
coordinates, respectively, and let t denote the temporal coordinate. (A) The
spatiotemporal trace (solid line) of a moving vertical line is shown here in the
x–t coordinate system. The plot is similar for all y-coordinates because the
moving line is vertical. Two different overlapping spatiotemporal input windows,
separated by a small time difference, are also marked, one with dashed line,
and the other with dotted line. (B) A simple-cell-like spatiotemporal receptive
field, with position and orientation that match the initial position of the line
and its direction of movement, responds strongly to the moving line. Here the
spatiotemporal filter has been superimposed over the dashed temporal window –
white color indicates large positive values in the filter, dark color indicates large
negative values, and middle gray indicates zero values. (C) When the same
spatiotemporal receptive field, at the same spatial position, is applied to the
same input a moment later (dotted spatiotemporal input window), the response
is still strong, but the sign changes. Therefore the temporal response strength
correlation of the outputs of the simple-cell-like spatiotemporal receptive field
would be large for this kind of input.
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outputs are given according to equation (5) by yk,1(t) = max
{

0,wT
k x(t)

}

, and

yk,2(t) = max
{

0,−wT
k x(t)

}

. The overall output is defined as

yk(t) = yk,1(t) − yk,2(t). (6)

It is straightforward to show that this model is equivalent to a purely linear
model, that is, that yk,1(t) − yk,2(t) = wkx(t).

Therefore, one might interpret our model as measuring the temporal co-
herence of this two-cell unit, where the cells have similar receptive fields with
reversed polarities. A large value of the objective function indicates that either
of the two cells responds strongly to the input. As was mentioned above, using
the linear model is a common approach – the same model is used for exam-
ple in (Bell and Sejnowski, 1997; Olshausen and Field, 1996; van Hateren and
van der Schaaf, 1998), which makes the comparison of results obtained with
these different models feasible.

However, a natural question is whether the same principle applies to the
outputs of individual, half-rectified simple cells? To address this issue, we com-
puted the optimal solution for half-wave rectified cell outputs, that is, replaced
the original linear input-output relationship (1) with the half-wave rectified rela-
tionship (5), and computed the optimal solution for this model. The same con-
straint (4) was used in this case for simplicity. Instead of using the temporally
decorrelated data set, we used the orthonormalized data set with ∆t = 120ms,
also used in control experiment VI (Section 3.4.4). This is because by using the
orthonormalized data set we excluded the possibility of obtaining simple-cell-
like receptive fields because of the static part of the video. This is important
here since the static part might yield positive responses at consecutive time
instances.

The results of this experiment are shown in Figure 12A. Although the fea-
tures are not as well defined as before, the resulting filters still show orientation,
localization, and different spatial scales.

What is the reason for the emergence of such features even in this case when
the negative part of the linear filter response has been discarded, and the static
part of the video has been removed completely? First, as in the purely linear
case, the object function emphasizes the temporal correlation of large responses,
and oriented and localized filters respond strongly to lines and edges. But how
does temporal correlation arise? An illustration of a possible explanation is
shown in Figure 12B. When a Gabor-like filter is applied to a line, the half-
wave rectified output still correlates positively over time, but more weakly, and
over longer spatial displacements.

Finally, let us note that some form of temporal coherence of simple cell
outputs is implicitly assumed in many studies. The firing rate of a simple cell is
typically assumed to code for the output of a linear filter, possibly after some
simple nonlinear transformations, such as half-wave rectification. This requires
that the output of the linear filter has some temporal coherence. If the output
of the linear filter changes quite randomly, the firing rate cannot provide much
information on the output, because then the firing rate is very noisy when
computed over short time intervals. Thus, maximization of temporal coherence
could have a relation to maximization of the efficiency of a code based on firing
rates.
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Figure 12: Temporal response strength correlation for a half-wave rectified (non-
linear, non-negative) cell model. (A) The results of running the algorithm for
a nonlinear cell model with half-wave rectification of cell output. (B) When a
simple-cell-like filter is applied to an input containing a moving line, the half-
wave rectified output is still correlated positively over time, but the correlation is
weaker, and the spatial displacement needed for the correlation is larger. Cross
sections of a line (left) and a filter (middle), and the half-wave rectified output
(right). See also Figure 9.
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4.6 Implications of our results

In this paper we have shown that simple cell type receptive fields maximize
temporal response strength correlation at cell output, when the input consists
of natural image sequences. Temporal response strength correlation, or temporal
correlation of rectified cell outputs, can be considered as a measure of temporal
coherence. Our findings have several important implications. First, temporal
coherence provides an alternative or complementary theory to sparse coding as
a computational principle behind the formation of simple cell receptive fields.
The application of either one of these principles results in the emergence of
simple cell properties from natural data.

Second, Földiák and others (Földiák, 1991; Kayser et al., 2001; Kohonen
et al., 1997; Wiskott and Sejnowski, 2002) have proposed that invariant visual
representations, such as those found in complex cells, can be found by maxi-
mizing temporal coherence. (For an alternative complex-cell model using sparse
coding see (Hyvärinen and Hoyer, 2001).) Our results show that this principle
is applicable to the visual system even on the level of simple cells, which usually
are not considered as invariant detectors. Although in some complex cell models
(Kayser et al., 2001; Kohonen et al., 1997) simple cell receptive fields are ob-
tained as by-products, the learning is strongly modulated by the complex cells,
and therefore is very different from our model, which only considers the statis-
tics of simple cell outputs. Moreover, the simple cell receptive fields learned in
(Kayser et al., 2001; Kohonen et al., 1997) do not seem to have the important
properties of spatial localization and multiresolution (different scales).

Furthermore, whereas most earlier research results linking temporal coher-
ence and properties of visual system have been based on theoretical considera-
tions and simulated data, the results published in this paper have been computed
from natural image sequence data. To our knowledge this is the first time that
localized and oriented receptive fields, with different scales, have been shown to
emerge from natural data using the principle of temporal coherence. A step like
this is important for any theory which tries to explain the structure and func-
tionality of sensory neural networks using the statistical properties of natural
input data.
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A Details of the symmetric gradient projection
algorithm

In this section we give a detailed description of the optimization algorithm.
First, the maximization of objective function (3) under constraint (4) can be
made easier by employing whitening, a temporary change of coordinates, so that
constraint (4) is transformed into an orthonormality constraint. Let equation
Cx = EDET denote the eigenvalue decomposition of matrix Cx. If an eigenvalue
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of Cx is zero, then that eigenvalue can be dropped out of eigenvalue matrix
D, and the corresponding eigenvector can be removed from eigenvector matrix
E. This was the case in our experiments because preprocessing reduced the
dimensionality of input data x(t) by one when the DC component was removed
from data. This dimensionality reduction by one also means that the number
of filters that can be extracted is K ≤ N 2 − 1. Defining matrix

U = WED1/2, (7)

constraint (4) can be expressed as a an orthonormality constraint

UUT = I. (8)

This simpler constraint will be easier to handle in the optimization algorithm
below.

To express objective function (3) using the same transformed filter matrix
U, we have to solve equation (7) for matrix W. This is equivalent to solving
matrix equation ET D1/2WT = UT . In the case where the DC component has
been removed this is an underdetermined set of linear equations. By imposing
the additional zero DC constraint on the filters in rows of W, the solution is
given by

W = UD−1/2ET (9)

(see (Hurri, 1997, pages 16–17) for details). Substituting this into equation (2)
gives

y(t) = UD−1/2ET x(t) = Uz(t), (10)

where signal vector z(t) = D−1/2ET x(t). This transformation from input data
x(t) to z(t) is called PCA whitening (Hyvärinen et al., 2001, pages 140–141).

The above shows that after input data x(t) is whitened, we can optimize

f(U) =

K
∑

k=1

Et {g(yk(t))g(yk(t − ∆t))} , (11)

where output y(t) is given by equation (10), with respect to orthonormality
constraint (8). When the solution to this problem is found, the solution to the
original problem is given by equation (9).

The actual optimization algorithm used for this constrained optimization
problem is a variant of the gradient projection method of Rosen (for the original
algorithm see e.g. (Luenberger, 1969, pages 297–299)). Let α(m) be a non-
negative, decreasing sequence of real numbers, which converges to zero (initial
step length α(0) is changed adaptively to speed up convergence). Let U(0)
be a random orthonormal matrix, and let U(n) be the value of matrix U at
iteration n. The algorithm finds a new candidate point by projecting matrix

U(n)+α(m)df(U(n))
dU onto the constraint surface defined by (8). If the candidate

point is not an improvement, m is increased by one to find a new candidate point.
The critical step in the algorithm is the projection onto the constraint sur-

face. This is achieved by optimal symmetric orthogonalization. Let A be a

square matrix with full rank. Then B = A
(

AT A
)−1/2

is the nearest orthonor-
mal matrix to A with respect to Frobenius matrix norm (see (Fan and Hoffman,
1955, Theorem 1) for a generalized proof of this). This is exactly the property
required to achieve the projection step.
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The resulting algorithm for maximizing temporal response strength cor-
relation (TRSC) is shown below. The input arguments of the program are
whitened data vectors z(t), convergence tolerance ε, and initial step length α(0)

(in this version α(m) = α(0)
2m ). Adaptation of initial step length α(0) is not

included in this description. The algorithm assumes convergence when the ob-
jective function changes very little between successive steps. In our experiments
convergence tolerance ε varied between 10−3 and 10−6. Note that, denoting

U = [u1 · · ·uK ]
T

, the kth row of df(U)
dU is given by the transpose of

∂f(U)

∂uk
=

∂

∂uk
Et {g(yk(t))g(yk(t − ∆t))}

= Et {g
′(yk(t))g(yk(t − ∆t))z(t) + g(yk(t))g′(yk(t − ∆t))z(t − ∆t)} .

funct U = maxTRSC(z(t), ε, α(0))
U(0) := rand() comment: A random initial starting point.
U(0) := symmetricOrth(U(0))
fOld := 0
n := 0
while f(U(n)) − fOld > ε

fOld := f(U(n))
m := 0

while f
(

symmetricOrth
(

U(n) + α(0)
2m

df(U(n))
dU

))

≤ fOld

m := m + 1
end

U(n + 1) := symmetricOrth
(

U(n) + α(0)
2m

df(U(n))
dU

)

n := n + 1
end

U := U(n)
.

funct B = symmetricOrth(A)

B := A
(

AT A
)−1/2

.
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