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Abstract

We present a two-layer dynamic generative model of the statistical
structure of natural image sequences. The second layer of the model
is a linear mapping from simple-cell outputs to pixel values, as in
most work on natural image statistics. The first layer models the
dependencies of the activity levels (amplitudes or variances) of the
simple cells, using a multivariate autoregressive model. The second
layer shows emergence of basis vectors that are localized, oriented and
have different scales, just like previous work. But in our new model,
the first layer learns connections between the simple cells that are
similar to complex cell pooling: connections are strong among cells
with similar preferred location, frequency and orientation. In contrast
to previous work in which one of the layers needed to be fixed in
advance, the dynamic model enables us to estimate both of the layers
simultaneously from natural data.

1 Introduction

A central question in the study of sensory neural networks is how stimuli are
represented or coded by neurons. One approach to studying the neural code
is to examine how its properties are related to the statistics of natural stimuli
(Simoncelli and Olshausen, 2001). In this approach it is assumed that the
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statistics of the natural input have affected the structure of the networks via
natural selection or during development.

In the visual system, the primary visual cortex is an area which is rel-
atively well known from the point of view of neurophysiology. There is a
large amount of data on what different types of cells exist in this area, the
responses of these cells to different visual stimuli, and the connections and
physical layout of these cells (see, e.g., (Palmer, 1999)). Within the past
ten years, researchers have proposed computational principles that relate
the properties of cells in this area to the statistics of natural stimuli. The
most influential of these theories have been sparse coding (Olshausen and
Field, 1996; Hyvärinen and Hoyer, 2001), independent component analysis
(ICA) (Bell and Sejnowski, 1997; van Hateren and van der Schaaf, 1998;
van Hateren and Ruderman, 1998; Hyvärinen et al., 2001b), and temporal
coherence (Földiák, 1991; Kayser et al., 2001; Wiskott and Sejnowski, 2002;
Hurri and Hyvärinen, 2003). In sparse coding, the fundamental property of
the neural code is that only a small proportion of the cells is activated by a
given stimulus. In independent component analysis, the outputs of different
cells are as independent of each other as possible. In the case of image data,
these two principles are closely related (Hyvärinen et al., 2001b).

The principle of temporal coherence (Földiák, 1991; Mitchison, 1991;
Stone, 1996) is based on the idea that when processing temporal input,
the representation changes as little as possible over time. This principle
has been traditionally associated with complex cells (Földiák, 1991; Kayser
et al., 2001; Wiskott and Sejnowski, 2002; Einhäuser et al., 2002; Berkes and
Wiskott, 2002), which are considered to be invariant detectors. However, in
a recent paper (Hurri and Hyvärinen, 2003) we showed that a nonlinear form
of temporal coherence is also related to the structure of simple-cell receptive
fields. According to the results presented in (Hurri and Hyvärinen, 2003),
simple-cell receptive fields are optimally temporally coherent in the sense
that the activity levels of simple cells are stable over short time intervals. By
activity level we mean the amplitude or energy of the output of a linear filter
that models a simple cell. (The principle seems to be somewhat applicable
even in the case of non-negative, half-wave rectified cell outputs – see (Hurri
and Hyvärinen, 2003) for a discussion.)

The measure of temporal activity coherence introduced in (Hurri and
Hyvärinen, 2003) took the sum of the temporal activity coherences of single
cells. Therefore, there was no possibility of interaction between the activity
levels of different cells. In this paper, we introduce a model which includes
inter-cell activity dependencies. This is accomplished by a generative model
in which the activity levels depend on each other in an autoregressive manner.

The idea of describing natural stimuli by a generative model, and inter-
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preting the hidden variables of this model as a neural representation, may
at first seem counterintuitive, because the stimuli are not generated by the
neural network. However, if vision is considered as inverse graphics (Hinton
and Ghahramani, 1997; Olshausen, 2003), the approach makes a lot of sense.
A generative model can express explicitly information about the regularities
in the stimuli as properties of hidden variables. If these regularities can be
used to make inferences about the underlying real world, the visual system
will benefit from such an internal representation of its stimuli.

The organization of this paper is as follows. In Section 2 we first give an
intuitive interpretation of activity level dependencies in simple cell responses
in the case of natural stimuli. A dynamic two-layer generative model of nat-
ural image sequences which captures these dependencies is then introduced
in Section 3. In Section 4 we describe an algorithm for estimating the model.
The validity of the algorithm is assessed using artificial (generated) data in
Section 5. In Section 6, estimation of the model from natural image se-
quence data is shown to yield, in one of the layers, receptive fields that have
the principal properties of simple-cell receptive fields. The other layer gives
connections between simple-cell outputs that seem to be related to both the
topographic properties of the primary visual cortex, and to the way in which
complex cells pool the outputs of simple cells. We conclude the paper in
Section 7 by comparing our model against independent component analysis,
addressing some biological considerations of the model, and discussing the
merits of this work.

2 Activity-level dependencies of simple-cell-like

filters

In independent component analysis, simple cells are modeled as linear filters
whose outputs are statistically independent of each other. However, previ-
ous research has already shown that the independence assumption does not
hold, not even for static image input (Zetzsche and Krieger, 1999; Hyväri-
nen and Hoyer, 2000; Wainwright and Simoncelli, 2000; Hyvärinen et al.,
2001a; Schwartz and Simoncelli, 2001). In the case of dynamic input (im-
age sequences), modeling dependencies in the resulting neural code yields an
intriguing interpretation of both the structure of simple-cell receptive fields
and the connectivity (pooling and topographic properties) of the primary
visual cortex. In this section, we motivate such models intuitively, before the
formal treatment of Section 3.

In particular, it seems that the key to modeling these dependencies is to
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model dependencies between the activity levels – that is, amplitudes, ener-
gies or variances – of the filters. We have shown in an earlier paper that
maximization of time-correlation of output energy is an alternative to sparse
coding and independent component analysis as a computational principle
underlying simple-cell receptive field structure (Hurri and Hyvärinen, 2003).
A simplified intuitive illustration of why simple-cell outputs have such strong
energy correlation over time is shown in Figure 1. Most transformations of
objects in the 3D world result in something similar to local translations of
lines and edges in image sequences. This is obvious in the case of 3D transla-
tions, and is illustrated in Figure 1A for two other types of transformations:
rotation and bending. In the case of a local translation, a suitably oriented
simple-cell-like filter responds strongly at consecutive time points, but the
sign of the response may change (see (Hurri and Hyvärinen, 2003) for ad-
ditional analysis of why the optimal filters are localized and oriented). We
call these kinds of dependencies – dependencies over time in the outputs of
individual filters – temporal activity level dependencies. Note that when the
output of a filter is considered as a continuous signal, the change of sign
implies that the signal reaches zero at some intermediate time point, which
can lead to a weak measured correlation. Thus, a better model of the depen-
dencies would be to consider dependencies of variances (Pham and Cardoso,
2000; Valpola et al., 2003). However, for simplicity, we consider here the
magnitude that is a crude approximation of the underlying variance.

[Figure 1 about here.]

Temporal activity level dependencies, described above, are not the only
type of activity level dependencies in a set of simple-cell-like filters. Figure 2
illustrates how two different cells with similar receptive field profiles – having
the same orientation but slightly different positions – respond at consecutive
time instances when the input is a translating line. The receptive fields are
otherwise identical, except that one is a slightly translated version of the
other. It can be seen that both cells are highly active at both time instances,
but again, the signs of the outputs vary. This means that in addition to
temporal activity dependencies (the activity of a cell is large at time t − ∆t
and time t), there are two other kinds of activity level dependencies.

spatial (static) dependencies Both cells are highly active at a single time
instance. This kind of dependency is an example of the energy depen-
dencies modeled in previous research on static images (Zetzsche and
Krieger, 1999; Hyvärinen and Hoyer, 2000; Wainwright and Simoncelli,
2000; Hyvärinen et al., 2001a; Schwartz and Simoncelli, 2001).
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spatiotemporal dependencies The activity levels of different cells are also
related over time. For example, the activity of cell 1 at time t − ∆t is
related to the activity of cell 2 at time t.

[Figure 2 about here.]

What makes these dependencies important is that they seem to be re-
flected in the structure of the primary visual cortex. As was already men-
tioned above, our earlier results showed that simple-cell-like receptive fields
emerge when temporal activity level dependencies are maximized for natural
image sequence data (Hurri and Hyvärinen, 2003). To be more precise, in the
class of linear filters, the outputs of simple-cell-like receptive fields have max-
imal correlation of energies over short time for natural image sequence input.
In this paper we show that combining temporal activity level dependencies
with spatiotemporal dependencies yields both simple-cell-like receptive fields
and a set of connections between these receptive fields. These connections
can be related to both the way in which complex cells seem to pool simple-
cell outputs, and to the topographic organization observed in the primary
visual cortex. Therefore, according to the results presented in this paper, the
principle of activity level dependencies seems to underlie both receptive field
structure and their organization.

3 Definition of the model

The generative model of natural image sequences introduced in this paper
has two layers, as illustrated in Figure 3. The first layer, which captures
the activity level dependencies discussed above in Section 2, is a multivariate
autoregressive model between the activity levels (amplitudes) of simple cell
responses at time t and time t−∆t. The signs of cell responses are generated
by a latent signal between the first and second layer. The second layer is
linear, and maps cell responses to the image space.

[Figure 3 about here.]

We start the formal description of the model with the second, linear
layer. We restrict ourselves to linear spatial models of simple cells. Let
vector x(t) denote the pixel grayscale values in a natural image sequence
at time t. (Vectorization of a frame of an image sequence can be done by
scanning the two-dimensional frame column-wise into a vector.) Let the
vector y(t) = [y1(t) · · · yK(t)]T represent the outputs of K simple cells. The
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linear generative model for x(t) is similar to the one in (Olshausen and Field,
1996; Hyvärinen and Hoyer, 2001):

x(t) = Ay(t). (1)

Here A = [a1 · · · aK ] denotes a matrix which relates the image sequence
grayscale values x(t) to the outputs of simple cells y(t), so that each column
ak, k = 1, ..., K, gives the feature that is coded by the corresponding simple
cell. When the parameters of the model are estimated, what we obtain first
is the mapping from x(t) to y(t), denoted by

y(t) = Wx(t). (2)

The dimension of x(t) is typically larger than the dimension of y(t), so
that equation (2) is generally not invertible but an underdetermined set of
linear equations. A one-to-one correspondence between W and A can be
established by computing the pseudoinverse solution1 A = WT (WWT )−1.

As was discussed above in Section 2, in contrast to sparse coding (Ol-
shausen and Field, 1996) or independent component analysis (Hyvärinen
et al., 2001b) we do not assume that the components of y(t) are independent.
Instead, we assume that the activity levels (amplitudes) of the components
of y(t) are correlated. We model these dependencies with a multivariate au-
toregressive model in the first layer of our model. Let us define the activity
levels by abs (y(t)) = [|y1(t)| · · · |yK(t)|]T , and let v(t) denote a driving noise
signal (the distribution of v(t) will be discussed in more detail below). Let
M denote a K ×K matrix, and let ∆t denote a time lag. Our model for the
activities is a constrained multidimensional first-order autoregressive process,
defined by

abs (y(t)) = Mabs (y(t − ∆t)) + v(t), (3)

and unit energy constraints

Et

{
y2

k(t)
}

= 1 (4)

for k = 1, ..., K. Actually, the constraint of unit energy is not a constraint
but rather a convention. The scale of the latent variables is not well defined
because we can arbitrarily multiply a latent variable by a constant and di-
vide the corresponding column of A by the same constant without affecting

1When the solution is computed with the pseudoinverse, the solved x(t)
is orthogonal to the nullspace of W, N (W) = {b ||Wb = 0} . In other
words, that part of x(t) which would be ignored by the linear mapping in
equation (2) is set to 0.
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the model (a similar situation is found in independent component analysis).
Thus, we can define the scale of the yk(t)’s as we like.

There are dependencies between the driving noise v(t) and cell activity
levels abs (y(t)) because of the non-negativity of abs (y(t)) . To define a
generative model for the driving noise v(t) so that the non-negativity of the
absolute values holds, we proceed as follows. Let u(t) denote a zero-mean
random vector whose components are statistically independent of each other.
We define

v(t) = max (−Mabs (y(t − ∆t)) ,u(t)) , (5)

where, for vectors a and b, max (a,b) = [max(a1, b1) · · · max(an, bn)]T . We
assume that u(t) and abs (y(t)) are uncorrelated.

To make the generative model complete, a mechanism for generating the
signs of cell responses y(t) must be included. We specify that the probability
that a latent signal yk(t) retains its sign is Pret, that is,

P (yk(t) > 0 || yk(t − ∆t) > 0) = P (yk(t) < 0 || yk(t − ∆t) < 0) = Pret. (6)

For simplicity, we assume that the sign of a latent signal at time t is indepen-
dent of the magnitude of the signal at time t−∆t, and the signs of different
latent signals are independent of each other. Note that one consequence of
this random generation of signs is that filter outputs are uncorrelated, which
can be shown as follows. Let k1 6= k2, and let sk1

(t) and sk2
(t) denote the

generated signs. Then we have

Et {yk1
(t)yk2

(t)} = Et {sk1
(t) |yk1

(t)| sk2
(t) |yk2

(t)|}

= Et {sk1
(t)}︸ ︷︷ ︸

=0

Et {sk2
(t)}︸ ︷︷ ︸

=0

Et {|yk1
(t)| |yk2

(t)|}

= 0. (7)

Similarly, the means of the yk(t)’s are all zero.
Note that the unit energy constraints and the uncorrelatedness of the

outputs can be represented by a single matrix equation

WCx(t)W
T = I, (8)

where Cx(t) = Et

{
x(t)x(t)T

}
.

In equation (3), a large positive matrix element M(i, j), or M(j, i), indi-
cates that there is a strong dependency between the activities of cells i and
j. Thinking in terms of grouping cells with large activity level dependencies
together, matrix M can be thought of as containing similarities (reciprocals
of distances) between different cells. We will use this property in the exper-
imental section to derive a spatial organization of the simple cells from the
estimated M.
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One interpretation of the driving noise v(t) is closely related to this idea
of grouping cells with strong interdependencies together: v(t) can be consid-
ered as coding for higher-order features in the dynamic data. Consider the
case in which a component of v(t), say vk(t), takes a high positive value at
time t. Then the corresponding component of y(t) – that is, yk(t) – would
also become highly active at time t. Because of the dynamic properties of
the autoregressive model, during consecutive time instances the activity of
yk(t) would spread to those components of y(t) for which the corresponding
elements of M are large. Therefore, a large value in vk(t) codes for the ac-
tivation of such a group of units with strong dependencies. In other words,
vk(t) signals the occurrence of a higher-order feature that is common for this
group. We will see below in Section 6.2 how this interpretation relates v(t)
to complex cells.

4 Estimation of the model

To estimate the model defined above we need to estimate both M and W

(the pseudoinverse of A). In this section we first show how to estimate
M, given W. Then we describe an objective function which can be used to
estimate W, given M. Each iteration of the estimation algorithm consists
of two steps. During the first step M is updated, and W is kept constant;
during the second step these roles are reversed.

First, regarding the estimation of M, consider a situation in which W

has been fixed. It is shown in Appendix A that M can be estimated by using
an approximative method of moments. The estimate is given by

M̂ ≈ βEt

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

× Et

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t)) − Et {abs (y(t))})T

}−1

,

(9)

where β > 1. We will return to the role of the scalar multiplier β below.
The estimation of W is more complicated. A rigorous derivation of an

objective function based on well-known estimation principles is very difficult,
because the statistics involved are non-Gaussian, and the processes have dif-
ficult interdependencies. Therefore, instead of deriving an objective function
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from first principles, we derived an objective function heuristically starting
from the least squares estimate (see Appendix B), and verified through sim-
ulations that the objective function is capable of estimating the two-layer
model. The objective function is a weighted sum of the covariances of filter
output amplitudes at times t − ∆t and t, defined by

f(W,M) =
K∑

i=1

K∑

j=1

M(i, j) cov {|yi(t)| , |yj(t − ∆t)|} , (10)

which can also be expressed as

f(W,M) = Et

{
(abs (y(t)) − Et {abs (y(t))})T

M

× (abs (y(t − ∆t)) − Et {abs (y(t))})

}
.

(11)

(The function f depends on W through the relationship (2).) The estimation
of W is thus accomplished by maximizing this objective function

Ŵ = arg max
W

f(W, M̂). (12)

Optimization of the objective function f over W under constraint (8) uses a
gradient projection approach (Hurri and Hyvärinen, 2003). The initial value
of W is selected randomly.

When the model is estimated from natural image sequence data, the value
of the scalar multiplier β in (9) can not be estimated. However, first note
that this multiplier has a constant linear effect in objective function (10).
This means that the value of β does not affect the optima of (10), so the
correct value of β is not needed to estimate W. Second, multiplier β only
scales the elements of M with a constant value. This rescaling does not affect
the ratios of the elements, or their ordering. In addition, as was discussed
above, matrix M can be thought of as containing similarity measurements
between different cells. The multiplication of M with a positive scalar does
not modify the information contained in the measurements when an interval
measurement scale (Borg and Groenen, 1997) is used. We will see below in
Section 6.2 that in our case the interval scale is a natural measurement scale
for the measurement distances in M. Therefore, in the estimation we just set
β = 1.

Note, however, that in the validation of the estimation method this pos-
sible rescaling of M must be taken into account, because we want to measure
the convergence of the algorithm quantitatively. This will be considered in
detail below.

9



5 Experiments with artificial data

Before applying the estimation method to natural data, we verified its validity
using artificial data. We first generated 100 different matrices M and A, and
used these to generate data which followed our model. The dimension of the
data was K = 10, so both M and A were 10 × 10 matrices. Input noise
u(t) was Gaussian white noise. In generating the data, care must be taken
so that the the constraints are fulfilled, and that the resulting autoregressive
model is stable. Details on how this can be done are given in Appendix C.1.

After data generation we ran our estimation algorithm 100 times, once
for each of the data sets, to obtain estimates M̂ and Ŵ (estimate of the
pseudoinverse of A) of all the original matrices. Because of the insensitivity
of the objective function (10) to a different ordering of the components of y(t),
which is similar to the case of independent component analysis (Hyvärinen
et al., 2001b), care had to be taken to compensate for a possible permutation;
details on how this was done are described in Appendix C.2.

After compensating for the possible permutation, the effect of the un-
known scalar multiplier β in equation (9) had to be accounted for. In the
estimation process above we just set β = 1, because in the case of natural
image sequence data this coefficient can be discarded as was discussed in
Section 4 above. Here, however, the convergence of the algorithm is exam-
ined quantitatively, so this multiplier has to be accounted for to get an exact
performance measure. This was done by using equation (9) to estimate β by

β̂ =
‖M‖F∥∥∥M̂

∥∥∥
F

(13)

(remember that estimate M̂ is obtained by setting β = 1 in equation (9)).
Here ‖·‖F denotes the Frobenius norm, that is, ‖M‖2

F =
∑

i

∑
j(M(i, j))2.

To analyze the convergence of the algorithm, we examined how the rela-
tive estimation errors

(∥∥M−M̂
∥∥

F

)
/ ‖M‖F and

(∥∥W−Ŵ
∥∥

F

)
/ ‖W‖F change

as a function of number of iterations. Figure 4 shows the resulting plots of
the relative errors. The plots show the median and the maximum of the
errors of the estimates of M and W, computed over the whole set of 100
runs. The median and maximum are plotted as a function of iteration num-
ber. Two different values of Pret (see Figure 3 and equation (6)) were used in
two different sets of experiments. The results for Pret = 0.5, corresponding
to perfectly temporally decorrelated data, are shown in Figures 4A and C.
We also estimated the value of Pret from results obtained from natural im-
age sequences, where a softer form of temporal decorrelation was used (see
Section 6). Figures 4B and D show the results obtained when the data is
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generated using the estimated value Pret = 0.7. These results show that the
estimation method is not sensitive to small variations in Pret.

[Figure 4 about here.]

As we can see, the estimate of W converges fairly reliably to the true
value. As for the estimation of M, the scalar multiplier β estimated as in
equation (13) was consistently greater than 1, as predicted in Appendix A.
The relative error of the estimate of M decreases considerably in the esti-
mation, but the final estimate is not as good as in the case of W. This is
probably due to the approximation made in its estimation (see Appendix A).
However, a large part of the error is caused by a simple bias in the estimate,
and this bias does not seem to be critical in our analysis of the results. The
nature of the bias can be seen in Figure 5, which shows a scatter plot of the
true elements of the 100 matrices M vs. their estimates. We can see that
the bias is largely a nonlinear element-wise relationship between the true
value of an element of M and its estimate. This nonlinear relationship is a
monotonic convex function, characterized by larger positive deviations from
the true value when the absolute value of the element of M is large. Remem-
bering that the Frobenius norm – which is used to measure the relative error
– emphasizes large errors, we can see that a large part of the relative error
results from this bias.

[Figure 5 about here.]

In the analysis of results with real data we are mostly interested in the
magnitudes of the elements of M with respect to other elements of the same
matrix. These relationships are preserved by a smooth monotonic mapping
of the elements of M, like the simple bias described above. In Figure 6 we
have plotted four first matrices M from the set of 100 matrices, along with
their estimates M̂. Although there are some differences in some individual
elements of the matrices, especially in elements with large absolute values,
the structures of the true matrices and their estimates look very much alike.
This is because the relative values of the elements with respect to the values
of the other elements are similar.

[Figure 6 about here.]
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6 Experiments with natural image sequences

6.1 Data collection and preprocessing

The data and preprocessing used in the experiments were very similar to
those in (Hurri and Hyvärinen, 2003), so we will describe them only shortly
here, and refer the reader to (Hurri and Hyvärinen, 2003) for details.

The natural image sequences used in data collection consisted of 129
image sequences, which were a subset of natural image sequences used in
(van Hateren and Ruderman, 1998). The sampling rate in these sequences
was 25 Hz. Initially 200,000 image sequences with a duration of 440 ms, and
spatial size 16 × 16 pixels, were sampled from these sequences. The fairly
long duration of these initial samples was necessary because of the temporal
filtering used in preprocessing,

The preprocessing consisted of four steps: temporal decorrelation, sub-
traction of local mean, normalization, and dimensionality reduction (see
Section 7.1 for an experiment in which neither temporal decorrelation nor
normalization was performed). Temporal decorrelation enhances temporal
changes in the data, and differentiates our results from those obtained with
static images (Hurri and Hyvärinen, 2003). It can also be motivated as a
model of temporal processing at the lateral geniculate nucleus (Dong and
Atick, 1995). Temporal decorrelation was performed with a temporal fil-
ter of length 400 ms. The length of the resulting sequences, which was also
the time delay ∆t in our experiment, was 40 ms. That is, each preprocessed
sequence consisted of two 16 × 16 frames separated by ∆t = 40 ms. After
temporal decorrelation, the spatial local mean (spatial DC component) was
subtracted from each of the 400,000 frames, and the frames were normalized
to unit norm. This normalization can be considered as a form of contrast
gain control (Carandini et al., 1997; Heeger, 1992). Finally, to reduce the
effect of noise and aliasing artifacts (van Hateren and van der Schaaf, 1998),
the dimensionality of the data was reduced to 160 using principal component
analysis (Hyvärinen et al., 2001b).

6.2 Results

The estimation algorithm described in Section 4 was applied to the prepro-
cessed natural image sequence data to obtain estimates for M and A. Figure 7
shows the resulting basis vectors – that is, columns of A. As can be seen,
the resulting basis vectors are localized, oriented, and have multiple scales.
These are the most important defining criteria of simple-cell receptive fields
(Palmer, 1999). These qualitative features are also characteristic of results
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obtained with independent component analysis or sparse coding (Olshausen
and Field, 1996; van Hateren and van der Schaaf, 1998) and purely temporal
activity coherence (Hurri and Hyvärinen, 2003). This suggests that, as far
as receptive field structure is concerned, these methods are rather similar to
each other in that receptive fields with similar qualitative properties emerge
when the methods are applied to natural visual stimuli.

[Figure 7 about here.]

The estimated matrix M captures the temporal and spatiotemporal ac-
tivity level dependencies between the basis vectors shown in Figure 7. The
diagonal elements of the estimated M were relatively large, ranging from 0.31
to 0.74 with a mean of 0.44, indicating that for all the basis vectors, activity
levels at time t − ∆t and time t have considerable correlation. This is in
concordance with the results in (Hurri and Hyvärinen, 2003). A histogram
of the non-diagonal elements of M, which contain the information about spa-
tiotemporal dependencies between the basis vectors, is shown in Figure 8. In
order to examine these dependencies more closely, we first plotted the basis
vectors with the highest and lowest activity level dependency values for a set
of representative reference vectors. The results, shown in Figure 9, suggest
that basis vectors with high positive activity level dependencies code for sim-
ilar features at nearby positions, whereas basis vectors with low (negative)
dependencies code for features with different scale and/or orientation and/or
location.

[Figure 8 about here.]

[Figure 9 about here.]

To visualize the spatiotemporal dependencies of all of the basis vectors,
we used the interpretation of M as a similarity matrix (see Section 3). Matrix
M was first converted to a non-negative similarity matrix Ms by subtracting
mini,j M(i, j) from the elements of M, and by setting the diagonal elements
to value 1. Multidimensional scaling was then applied to Ms by interpreting
the values 1 − Ms(i, j) and 1 − Ms(j, i) as distances (reciprocals of simi-
larities) between cells i and j. The objective of multidimensional scaling is
to map the points in a (high-dimensional) space to a two-dimensional space
(a plane) so that the distances between the points in the original space are
preserved as well as possible on the plane. A central concept in the applica-
tion of multidimensional scaling to a particular problem is the measurement
scale (Borg and Groenen, 1997; SAS/STAT, 2000), which is a mathemat-
ical description of the type of information contained in the measurements
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of proximity. We applied multidimensional scaling to our data so that the
interval measurement scale (Borg and Groenen, 1997; SAS/STAT, 2000) was
assumed. Informally, use of the interval measurement scale means that rel-
ative sizes of differences between measurements are meaningful, but there is
no absolute zero. This makes sense in our case, because firstly, the differences
between the elements of Ms should tell us something about the differences
of strengths of spatiotemporal dependencies, and secondly, we do not know
the maximum possible spatiotemporal dependency in natural image sequence
data (the absolute zero).

The resulting spatial layout produced by the multidimensional scaling
procedure is shown in Figure 10. Because some of the points in the pla-
nar representation were very close to each other, some small distances were
stretched (some of the tightest clusters were magnified) in order to be able
to show the basis vectors in a reasonable scale without overlap between the
basis patches. As in Figure 9, we can see that those basis vectors which
are very close to each other seem to be mostly coding for similarly oriented
features with the same frequencies at nearby spatial positions. This kind of
grouping is characteristic of pooling of simple cell outputs at complex cell
level, as well as of the topographic organization of the visual cortex (Palmer,
1999). Note that this grouping effect is not a result of the magnification
of the tightest clusters described above; in fact, the magnification reduces
the effect. In addition to the local topography described above, some global
topography also emerges in the results: those basis vectors which code for
horizontal features are on the left in Figure 10, while those that code for
vertical features are on the right.

[Figure 10 about here.]

When examining the preferred orientations of the basis vectors in Fig-
ure 10, we can see that there are more vectors that prefer horizontal or verti-
cal orientations than those that prefer oblique orientations. A similar imbal-
ance has been observed in the visual cortex, in the number of cells preferring
oblique orientations vs. the number of cells preferring horizontal/vertical ori-
entations (see, e.g., (Li et al., in press)). This imbalance is thought to underlie
the oblique effect, the fact that in psychophysical tests vertical and horizontal
orientations are discriminated better than oblique ones. Our results suggest
that there may be a connection between the oblique effect and the statistics
of natural stimuli. We suspect that these results emerge from natural image
sequences because horizontal and vertical lines and edges are prevalent when
natural scenes are examined in an upright position, but further research is
needed to verify this.
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It should also be noted that in Figure 10, in some cases oblique basis vec-
tors whose preferred directions are orthogonal to each other are located close
to each other in the spatial layout. Note that this is not the case in Figure 9,
where we can see that also in case of an oblique preferred direction, the filters
with highest dependencies have a similar orientation. Therefore, this effect
does not seem to be a property of the extracted dependencies (matrix M);
it is more likely due to distortions caused by the multidimensional scaling
procedure that forces the points to lie in a plane.

To summarize the results presented in this section, the estimation of our
two-layer model from natural image sequences yields, firstly, simple-cell-like
receptive fields (Figure 7), and secondly, grouping similar to the pooling
of simple cell outputs and local topographic organization in the primary
visual cortex (Figures 9 and 10). The receptive fields emerge in the second
layer (matrix A), and cell output grouping emerges in the first layer (matrix
M). Both of these layers emerge simultaneously during the estimation of the
model. This is a significant improvement on earlier statistical models of early
vision (Hyvärinen and Hoyer, 2000; Hyvärinen and Hoyer, 2001; Wainwright
and Simoncelli, 2000), because no a priori fixing of either of these layers is
needed.

We mentioned in Section 3 that the driving noise process v(t) can code
for the occurrence of higher-order features by signalling the activation of a
group of units with strong dependencies. Statistically, a large positive value
of an element of v(t) tends to indicate the activation of such a group for
a certain period of time. From Figures 9 and 10 we can now see what the
higher-order features coded by v(t) would be: short contours with a certain
orientation and scale, differing in their phase and spatial position. This kind
of learning of invariant features – invariant to the phase and position of an
edge or line in this case – was originally associated with temporal coherence
by Földiák in his theoretical work and simulations (Földiák, 1991). In the
mammalian visual system, complex cells are traditionally considered to be
invariant to phase. The driving noise signal v(t) thus gives the values of
higher-order features that could be related to complex cells.

7 Discussion

7.1 Multivariate AR model estimation vs. independent

component analysis

What happens if we try to estimate the second (linear) layer of the model
with standard independent component analysis? Under what conditions are
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the results different, and how? Intuitively it would seem that independent
component analysis would not be applicable if the activity level dependencies
between different components of y(t) are sufficiently strong. The strength
of these dependencies is governed by matrix M. To examine this closer we
made two experiments, one with simulated data and the other with natural
image sequence data.

In the first experiment, we used the matrix M estimated from natural im-
age sequence data (see Section 6.2) to define the strength of the dependencies.
Using the whole matrix M for a repeated experiment was not computation-
ally feasible, so a 15×15 submatrix Msub was used instead. Taking a subma-
trix meant that we examined the dependencies between some components of
y(t), instead of all of them. Technically this was done by selecting a set of
indices I ⊂ {1, ..., 160} whose size was 15 (|I| = 15). For example, a block
of those elements of M whose column and row index is smaller than or equal
to 15 forms one such submatrix. However, with this experiment we wanted
to examine whether there are dependencies in M which are strong enough so
that our estimation method works better than independent component anal-
ysis, so we wanted to select a set of components of y(t) with relatively strong
interdependencies. By default the ordering of the components of y(t) is arbi-
trary (see Appendix C.2), so components of y(t) were first ordered according
to strengths of their dependencies as follows. The first component was the
one that corresponded to the largest diagonal element of M. Once the kth
component had been selected to be the one with original index j, the index
of the (k + 1)th component was chosen to be arg maxi (M(j, i) + M(i, j)) .
The ordering of the components of y(t) was accompanied by a corresponding
rearrangement of the rows and columns of M (see Appendix C.2). After
this rearrangement, the upper left block of M should correspond to compo-
nents with relatively large dependencies, so it was selected to be Msub. The
selected dependency matrix Msub was used to generate 100 different data
sets, each having their own random initial starting point, random A, and
random signs of the components of y(t) (see Appendix C.1). Our algorithm
and the FastICA algorithm were then used to estimate matrix W from the
data, and the relative error was used as performance criterion. The resulting
scatter plot of the relative errors is shown in Figure 11. It is clear that our
estimation method succeeds better in this estimation task. This shows that
in natural image sequence data, the activity level dependencies are so strong
that standard independent component analysis is not able to estimate the
corresponding basis.

[Figure 11 about here.]

The purpose of the second experiment was to examine how the results ob-
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tained from natural image sequence data differ for the two methods. To make
the comparison possible, we modified the preprocessing used above (see Sec-
tion 6.1) so that no temporal preprocessing or normalization was performed
– that is, only the local mean was subtracted. No temporal decorrelation was
done because it is not meaningful in the case of static independent component
analysis, and in order for the results of the two methods to be comparable
the same data has to be used. It seems that normalization is only neces-
sary as a preprocessing step when temporal decorrelation is done (probably
because of the very large temporal changes that temporal decorrelation in-
troduces into the data), so it was also left out. This experiment also served
as a control experiment to show that the qualitative properties of our original
results (see Figure 7) were not a consequence of temporal preprocessing or
normalization. The results of both methods – our algorithm and independent
component analysis – are shown in Figure 12. The results are qualitatively
similar in that in both cases the resulting filters are oriented, localized and
bandpass. However, some differences can also be seen. First, the number of
subregions (dark or light regions in the receptive fields) seems to be smaller
in the ICA results. Second, most of the ICA basis vectors include a small
global step-like grayscale change. Thus, the difference between ICA and our
present algorithm can also be seen in the case of experiments on real data.

[Figure 12 about here.]

7.2 Biological considerations: underlying mechanisms,

and nonnegative simple-cell models

The theory and simulations presented in this paper model the relationship
between the properties of the primary visual cortex and statistics of natural
image sequences. The underlying assumption is that the visual system has
specialized to account for the properties of typical stimuli. In terms of bio-
logical mechanisms, such specialization could be genetic, or could take place
during development. Our model is not intended to specify at all how or when
such specialization would take place. It only models the resulting relation-
ships between an organism and its environment, not the dynamic interaction
of these two, nor the role of development vs. genetic instructions.

In computational neuroscience, linear filters are typically applied as mod-
els of rate coding in simple cells (Olshausen and Field, 1996; Bell and Se-
jnowski, 1997; van Hateren and van der Schaaf, 1998). In reality, however,
the firing rate of a cell can only be positive. This can be modeled, for exam-
ple, with half-wave rectification (Heeger, 1992), in which the negative output
values of a linear filter are squashed to zero in the actual cell output, and
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each output unit consists of two cells with otherwise identical receptive fields
except for reversed polarities (see, e.g., (Hurri and Hyvärinen, 2003)). The
interpretation of our model in this case is that two cell pairs, each pair con-
sisting of two cells with reversed polarities, have activity level dependencies.
Concerning the results obtained from natural image sequences, consider re-
placing each receptive field in Figure 10 with a corresponding two-cell unit.
The most important qualitative observations made from the results in Fig-
ure 10 were that the receptive fields are oriented, localized and multiscale,
and that connections implied by elements of matrix M are strongest between
cells with similar orientation and scale and nearby location. Replacing each
receptive field by the corresponding two-cell unit does not change these ob-
servations. The previous discussion suggests that use of a basic nonnegative
simple-cell model (half-wave rectification) should not change the qualitative
nature of our results obtained from natural image sequences. However, it
must be noted that in the case of purely temporal activity level dependen-
cies (horizontal direction in Figure 2), our earlier results suggest that such
dependencies are present even for individual half-wave rectified simple-cell
models, not only for cell pairs (Hurri and Hyvärinen, 2003). Therefore, addi-
tional model development and experimentation is needed before the results
of this paper can be generalized to nonnegative cell models.

7.3 Conclusions and related work

There are two main contributions in this paper. First, to our knowledge,
the generative model presented here is the first attempt to model the visual
system using a two-layer generative model of natural image sequences. A
multi-layered description of the stimuli is important because it enables us to
capture dependencies within the different layers of sensory processing. In a
multi-layered model, the processing in higher layers has an influence on the
optimality of features on the lower level and vice versa; thus joint modeling of
lower and higher layer features is the only way to find out what the optimal
features and processing methods are. In our case, the results suggest that
simple-cell outputs have temporal and spatiotemporal activity level depen-
dencies, and that cells at the next level of processing (complex cells) pool
simple-cell outputs so that cells with high activity level dependencies are
pooled together. This can provide important cues as to how different layers
in the visual pathway are connected. (For on-going work on application of
another multi-layer model of image sequences for segmentation see (Felderhof
et al., 2002).)

The results obtained from natural image sequence data also suggest that
spatiotemporal activity level dependencies could also be reflected in the to-
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pography of the primary visual cortex – that is, cells with high spatiotemporal
activity level dependencies seem to be physically located close to each other
within the cortex. This complements earlier research on how simultaneous
activity dependency (see Figure 2) is reflected in the organization of the
cortex in a similar manner. The outputs of related wavelet filters with un-
correlated outputs exhibit a similar dependency in natural images (Zetzsche
and Krieger, 1999; Wainwright and Simoncelli, 2000; Schwartz and Simon-
celli, 2001): the conditional variance of the output of one filter is larger when
the output of the other filter has a large amplitude. In a more generative-
model setting, dependencies between simultaneous activity levels of simple
cells have been used in modeling complex cells and topography (Hyvärinen
and Hoyer, 2000; Hyvärinen and Hoyer, 2001). In these models, the second
(pooling) layer was fixed and only the first layer was estimated. When these
earlier results on simultaneous activity dependencies are combined with our
results on temporal dependencies, it seems possible that “activity bubbles”
(Hyvärinen et al., in press), activations of simple cells which are contiguous
both in space and time, appear on the cortical surface when a stimulus with
appropriate characteristics (orientation, scale) is present in the visual field.
This is an intriguing characterization of the neural code at the simple cell
level, the implications of which are a subject of future research.

Second, this paper also makes a rather different contribution, describ-
ing a general-purpose two-layer model that is a generalization of the basic
generative models used in blind source separation. The generative model de-
scribed in this paper employs nonlinearities and interdependencies, resulting
in a model which is difficult to solve using well-known estimation principles.
Therefore, when developing the estimation algorithm, we had to resort to ap-
proximation and heuristics. However, as we have shown above, the resulting
algorithm can estimate fairly well the unknown parameters from data which
follows our model. On the average, matrix A can be estimated with very
good accuracy. Matrix M can also be recovered up to a fairly small rela-
tive error, and a systematic bias which is irrelevant for most purposes. This
generative model could be applied to many of those applications in which
blind source separation algorithms have been successful, such as brain imag-
ing data analysis (Hyvärinen et al., 2001b). Further work on this problem
can be found in (Hyvärinen and Hurri, submitted).

Research related to the results presented here can also be found in pre-
vious research on unsupervised learning and econometrics. In blind source
separation, Bayesian methods have been used to extract sources with non-
linear dynamics and nonlinear mapping from state space to observations
(Valpola and Karhunen, 2002; Valpola et al., 2003). A related study can also
be found in (Charles et al., 2002), where it was shown that in the case of
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simulated data (vertically or horizontally moving lines), temporally related
features can be forced to be coded in the same areas in a noisy nonlinear prin-
cipal component analysis network. This was done by introducing spatially
separate noisy areas in a network having time-delayed lateral connections
between neighboring cells – both the separate noisy areas and the lateral
connections introduce the pooling property a priori into the network. In
econometrics, autoregressive conditional heteroskedasticity (ARCH) models
(e.g., (Bera and Higgins, 1993)) are used to model econometric time series in
which variance changes over time, and is highly correlated over time, thereby
exhibiting temporal coherence of high activity. Multivariate ARCH models
can be used to model cases where the variances of different time series have
dependencies.

To conclude, we have described a two-layer dynamic generative model of
image sequences, and an algorithm for estimating the model from sample
data. Application of the estimation algorithm to natural image sequences
yields a set of linear filters, or basis vectors, which are similar to simple cell
receptive fields, as well as a matrix of connections between the simple cells.
These connections seem to be related both to the topography of simple cells
in the primary visual cortex, and to the way in which simple cell outputs are
pooled at the complex cell level. The basis vectors are learned in one layer
of the model, and the pooling property in the other. Both layers are learned
simultaneously and in a completely unsupervised manner.
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A Estimation of M

We estimate M using the method of moments. From (3) we get

Et {v(t)} = Et {abs (y(t))} − MEt {abs (y(t))} . (14)

20



Therefore we have

Et

{
(abs (y(t)) − Et {abs (y(t))}) (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= Et

{
(Mabs (y(t − ∆t)) + v(t) − Et {abs (y(t))})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= Et

{(
Mabs (y(t − ∆t)) − MEt {abs (y(t))}

+ v(t) − Et {abs (y(t))} + MEt {abs (y(t))}
)

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= Et

{
(M(abs (y(t − ∆t)) − Et {abs (y(t))}) + v(t) − Et {v(t)})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

= MEt

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t)) − Et {abs (y(t))})T

}

+ Et

{
(v(t) − Et {v(t)}) (abs (y(t − ∆t)) − Et {abs (y(t))})T

}
.

(15)

The underlined term in equation (15) is non-zero because of the dependen-
cies between v(t) and abs (y(t)) that are introduced through equation (5).
We will approximate this term: we make the approximation that the non-
negativity constraint in equation (5) is active for a random proportion α ∈
(0, 1) of the whole sample (in reality the constraint is not active for a random
proportion, but tends to be activated more frequently when Mabs (y(t − ∆t))
has a small value, so this approximation introduces a systematic bias). Then
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we approximate

Et

{
(v(t) − Et {v(t)}) (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

≈ αEt

{
(−Mabs (y(t − ∆t)) + Et {Mabs (y(t − ∆t))})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

+ (1 − α)Et

{
(u(t) − Et {u(t)})

× (abs (y(t − ∆t)) − Et {abs (y(t − ∆t))})T

}

= −αMEt

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t)) − Et {abs (y(t))})T

}
, (16)

where, in the last step, we have used the fact that the underlined term is
equal to 0. Using the approximation (16) we get from equation (15)

M̂ ≈
1

1 − α
Et

{
(abs (y(t)) − Et {abs (y(t))})

× (abs (y(t − ∆t)) − Et {abs (y(t))})T

}

× Et

{
(abs (y(t)) − Et {abs (y(t))}) (abs (y(t)) − Et {abs (y(t))})T

}−1

.

(17)

Setting β = 1/(1 − α) in this equation yields (9).

B Heuristic derivation of the objective function

for estimating W

We start from equation (3):

abs (y(t)) = Mabs (y(t − ∆t)) + v(t). (18)
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Removing the mean from both sides of this equation yields

abs (y(t)) − Et {abs (y(t))} = M (abs (y(t − ∆t)) − Et {abs (y(t − ∆t))})

+ v(t) − Et {v(t)}︸ ︷︷ ︸
=v0(t)

.

(19)

Now, defining v0(t) = v(t) − Et {v(t)} , the least squares criterion is given
by

Et

{
‖v0(t)‖

2}

= Et

{∥∥abs (y(t)) − Et {abs (y(t))}

− M (abs (y(t − ∆t)) − Et {abs (y(t − ∆t))})
∥∥2}

= Et

{
‖abs (y(t)) − Et {abs (y(t))}‖2}

+ Et

{
‖M (abs (y(t)) − Et {abs (y(t))})‖2}

− 2Et

{
(abs (y(t)) − Et {abs (y(t))})T

× M (abs (y(t − ∆t)) − Et {abs (y(t))})

}
. (20)

Consider the two underlined terms in (20). These measure the variance of
the overall activity level, and the variance of the autoregressive part of the
activity levels. However, because the variance of the overall signal is already
fixed in the model in equation (8) (since the means of the yk(t)’s are zero),
we discard the first term as redundant. The second term is also discarded as
redundant because of the same reason and the fact that M is fixed during
the update of W. This leaves us only with the third term, which equals
−2f (W,M) , so minimization of Et

{
‖v0(t)‖

2} leads to maximization of the
objective function (11).

C Mathematical details of the validation of the

estimation algorithm

C.1 Data generation

The generated data must follow equations (1) and (3)–(6). In addition, M

must be specified so that the autoregressive model (3) is stable.
The main steps of data generation were as follows (details are given be-

low). First, we chose a random M that was stable. In order to generate
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y(t) we first generated positive (magnitude) data according to the autore-
gressive model (3), and then assigned a random sign for each value. We then
modified the data so that the constraints specified in (4) were fulfilled. This
latter step also affects the temporal model in (3), so during the latter step
the parameters of (3) were updated. After this we chose a random A, and
used it to generate observed data x(t) linearly from y(t).

To generate data according to the temporal equation (3), a matrix M0 was
first generated by assigning a random number from a normal distribution with
mean zero and variance one to each of its elements, and then ensuring the
stability of the autoregressive model by normalizing M0 so that its spectral
norm2 was between 0.6 and 0.8 (the actual value of the norm was chosen
randomly from this interval during each run). Then, a sample of abs (y0(t))
of length 60000 points was generated using equations (3) and (5) with a
random (non-negative) starting point |y0(0)| , and Gaussian white u(t).

Signed data y0(t) was generated from abs (y0(t)) according to equa-
tion (6). As was shown in Section 3, this step guarantees that the components
of y(t) are uncorrelated.

The unit energy constraint on each of the components of abs (y0(t)) was
enforced by normalizing the components. This is equivalent to premultiplying
abs (y0(t)) with a diagonal matrix Λ, where Λ(k, k) = 1√

Et{y2

0,k
(t)}

, so that

abs (y(t)) = Λabs (y0(t)) . Substituting y(t) with y0(t) in equation (3), and
premultiplying with Λ yields

Λabs (y0(t)) = ΛM0 abs (y0(t − ∆t)) + Λv0(t)

abs (y(t)) = ΛM0Λ
−1

︸ ︷︷ ︸
=M

Λabs (y0(t − ∆t)) + Λv0(t)︸ ︷︷ ︸
=v(t)

abs (y(t)) = Mabs (y(t − ∆t)) + v(t),

where M = ΛM0Λ
−1 is the final parameter matrix of the generated data,

and v(t) = Λv0(t) is the driving noise of the model. This scaling also affects
the spectral norm of M – the values of these norms varied between 0.7 and
1.1. The variances of the components of v(t) varied between 0.4 and 1.2.

To generate the observed data x(t) from y(t), a random number from a
normal distribution with mean zero and variance one was first assigned to
each of the elements of matrix A, which was then applied to y(t) according
to equation (1).

2The spectral norm of a matrix B, denoted by ‖B‖2 , is defined to be
the square root of the largest eigenvalue of BTB. If ‖M‖2 < 1, then the
autoregressive model is stable because ‖Mabs (y(t))‖ ≤ ‖M‖2 ‖abs (y(t))‖
(Horn and Johnson, 1985).

24



C.2 Compensating for a possible permutation of com-

ponents of y(t)

The objective function (10) is insensitive to a reordering of the components
of y(t), and possible sign changes. Let y2(t) = Py(t), where P is a signed
permutation matrix. This permutation needs to be compensated in both
layers of the model (equations (1) and (3)).

First, concerning the linear layer, let A2 denote the linear basis corre-
sponding to y2(t) (see equation (1)). We have Ay(t) = x(t) = A2y2(t) =
A2Py(t), or

A = A2P. (21)

Second, concerning the temporal layer, let Pa denote an unsigned per-
mutation matrix Pa = abs (P) , where abs (·) takes an absolute value of
each of the elements of its argument, and let M2 denote the temporal ma-
trix corresponding to y2(t) (see equation (3)). For the magnitudes of y2(t)
we have abs (y2(t)) = Pa abs (y(t)) , so abs (y(t)) = P−1

a abs (y2(t)) =
PT

a abs (y2(t)) Substituting y(t) with y2(t) in equation (3), and premulti-
plying with PT

a yields

PT
a abs (y2(t)) = PT

a M2 abs (y2(t − ∆t)) + PT
a v2(t)

abs (y(t)) = PT
a M2PaP

T
a abs (y2(t − ∆t)) + PT

a v2(t)

abs (y(t)) = PT
a M2Pa︸ ︷︷ ︸

=M

abs (y(t − ∆t)) + PT
a v2(t)︸ ︷︷ ︸
=v(t)

,

so
M = PT

a M2Pa. (22)

To convert the previous equations into a procedure, let Ŵp, Âp (the in-

verse of Ŵp) and M̂p denote the estimates computed with the estimation
method (corresponding to possibly permutated outputs), and A and M de-
note the correct parameter matrices corresponding to the generated data.
We first use (21) to compute a “permutation matrix” B = Â−1

p A = ŴpA.
Matrix B is not an exact permutation matrix because during the first rounds
of the algorithm we may be far from the solution (even in the last rounds the

estimate is not perfect). Therefore, we compute an estimate P̂ of an exact
permutation matrix which is close to B by iteratively choosing the element
B(i, j) of B with largest absolute value, setting it to 1, and setting all other
elements in the same row and column of B(i, j) to zero. Using the obtained

P̂ an estimate for A can be computed using (21) again: Â = ÂpP̂. The

unsigned permutation matrix P̂a = abs
(
P̂

)
can be used to compute an

estimate of M with equation (22): M̂ = P̂T
a M̂pP̂a.
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Figure 1: A simplified illustration of temporal activity level dependencies of
simple-cell-like filters when the input consists of image sequences. (A) Trans-
formations of objects in the 3D world induce local translations of edges and
lines in local regions in image sequences: rotation (left) and bending (right).
The solid line shows the position/shape of a line in the image sequence at
time t − ∆t, and the dotted line shows its new position/shape at time t.
The dashed square indicates the sampling window. (B) Temporal activity
level dependencies: in the case of a local translation of an edge or a line, the
response of a simple-cell-like filter with a suitable position and orientation is
strong at consecutive time points, but the sign may change. The figure shows
a translating line superimposed on an oriented and localized receptive field
at two different time instances (time t − ∆t, solid line, left; time t, dotted
line, right).
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t − ∆t t

Figure 2: A simplified illustration of static and short-time activity level de-
pendencies of simple-cell-like receptive fields. For a translating edge or line,
the responses of two similar receptive fields with slightly different positions
(cell 1, top row; cell 2, bottom row) are large at nearby time instances (time
t − ∆t, solid line, left column; time t, dotted line, right column). Each
subfigure shows the translating line superimposed on a receptive field. The
magnitudes of the responses of both cells are large at both time instances.
This introduces three types of activity level dependencies: temporal (in the
output of a single cell at nearby time instances), spatial (between two differ-
ent cells at a single time instance) and spatiotemporal (between two different
cells at nearby time instances). The model introduced in this paper includes
temporal and spatiotemporal activity level dependencies (marked with solid
lines). Spatial activity level dependency (dashed line) is an example of the
dependencies modeled in previous work on static images, and is not included
in our model.
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abs (y(t)) = Mabs (y(t − ∆t)) + v(t) x(t) = Ay(t) x(t)v(t) ×

sign generation

P (y
k
(t) > 0 || y

k
(t − ∆t) > 0) = Pret

y(t)abs (y(t))

Figure 3: The two layers of the generative model with temporal and spa-
tiotemporal activity level dependencies. Let abs (y(t)) = [|y1(t)| · · · |yK(t)|]T

denote the activity levels (amplitudes) of simple cell responses. In the first
layer, the driving noise signal v(t) generates the activities of simple cells via
a multivariate autoregressive model. Matrix M captures the spatiotempo-
ral activity level dependencies in the model. The signs of the responses are
generated between the first and second layer to yield signed responses y(t).
The probability that a latent signal yk(t) retains its sign is Pret. In the sec-
ond layer, natural image sequence x(t) is generated linearly from simple cell
responses. In addition to the relations shown here, the generation of v(t)
is affected by Mabs (y(t − ∆t)) to ensure non-negativity of abs (y(t)) . See
text for details.
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Figure 4: The median and the maximum of the relative errors made in the
estimation of W and M, computed over the estimates of 100 different in-
stances of our two-layer model. Each run of the algorithm used a different
data set corresponding to different values of M and A (the pseudoinverse
of W), as well as different driving noise u(t), and different random signs
of components of y(t). (A,C) The median and the maximum of the relative
error made in the estimation of W and M, plotted as a function of iteration
number, when the probability that yk(t) retains the sign of yk(t − ∆t) is 0.5
(Pret = 0.5). (B,D) The median and the maximum of the relative error made
in the estimation of W and M when Pret = 0.7.
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Figure 5: The approximation used in the estimation of M introduces a sys-
tematic bias in the estimate M̂. The figure shows a scatter plot of the 10000
elements of all 100 matrices M vs. the corresponding elements of estimates
M̂. Let M(i, j) denote an element of M. The scatter plot shows that in addi-
tion to the variance of the estimates growing as a function of |M(i, j)| , there

is also a positive bias in M̂(i, j) when |M(i, j)| is large. This bias is charac-

terized by a convex monotonic mapping from M(i, j) to M̂(i, j). Notice, how-
ever, that such a monotonic bias tends to preserve the ordering of the mag-
nitudes of the elements of M – that is, if an element M(i1, j1) > M(i2, j2),

then typically also M̂(i1, j1) > M̂(i2, j2). In the analysis of the results we are
mostly interested in this ordering, while the convergence analysis presented
above employs Frobenius norm which emphasizes large errors. The scatter
plot shows that a large part of the relative error is a consequence of this
systematic bias.
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true M estimate M̂

Figure 6: Estimates M̂ are very similar to the true M, except for positive
differences at elements with high absolute values. This is a consequence of
the fairly small relative error and the fact that the systematic bias made in
the estimation of M accounts for a large proportion of the remaining error.
The plots show the true matrices M (left column) and their estimates M̂

(right column) from the first four runs of the 100 runs of the validation
experiment. Bright pixels indicates high positive values, dark pixels low
negative ones (zero is medium gray). Each (M,M̂)-pair was plotted using

a common colormap, so similar pixel intensities in M and M̂ indicate that
the elements have similar values. The estimates look very similar to the true
matrices. A closer inspection reveals that in the estimates the brightest and
the darkest pixels are typically brighter than in the true matrices. This is in
accordance with the systematic bias illustrated in Figure 5.
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Figure 7: The estimation of the generative model from natural visual stimuli
results in the emergence of localized, oriented receptive fields with multiple
scales. These basis vectors (columns of A) were obtained by applying the
estimation procedure described in Section 4 to a large set of samples from
natural image sequences. The basis vectors are in no particular order in this
figure.
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Figure 8: Histogram of the non-diagonal elements of M estimated from nat-
ural image sequence data.
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0.053 0.048 -0.008 -0.009

0.050 0.045 -0.007 -0.008

0.043 0.042 -0.006 -0.008

Figure 9: Basis vectors (columns of A) with high activity dependency values
code for similar features at nearby positions, whereas basis vectors with low
dependency values code for features with different scale and/or orientation
and/or location. Each row shows the basis vectors with highest and lowest
dependency values with respect to the reference basis vector in the leftmost
column. The reference vectors were chosen from the set of vectors in Figure 7
as representatives of four different orientations. The measure of spatiotem-
poral dependency used was

(
M(i, j) + M(j, i)

)
/2, where i and j denote the

columns of the basis vectors in A. The dependency value of each of the basis
vectors with respect to the reference is shown under the vector. As can be
seen, basis vectors with high positive activity level dependency code for sim-
ilar features (orientation, frequency) as the reference vector, whereas those
with low (negative) dependency code for different scale and/or orientation
and/or location.
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Figure 10: Grouping similar to complex cell pooling of simple cell outputs
emerges from spatiotemporal activity level dependencies. Here we have plot-
ted the basis vectors (columns of A) at 2D positions obtained by applying
multidimensional scaling to the similarity values defined by M (see text for
details). As can be seen, nearby basis vectors seem to be mostly coding for
similarly oriented features with similar frequencies at nearby spatial posi-
tions. In addition, some global topographic organization also emerges: those
basis vectors which code for horizontal features are on the left in the fig-
ure, while those that code for vertical features are on the right. Some short
distances were magnified in order to be able to show the basis vectors in a
reasonable scale.
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Figure 11: Our estimation method outperforms standard independent com-
ponent analysis when spatiotemporal activity level dependencies are suffi-
ciently large, as they are in the case of image sequence data. The figure
shows a scatter plot of the relative errors made in 100 runs of our algorithm
(horizontal axis) against an independent component analysis algorithm (ver-
tical axis) for a matrix M, which was a submatrix of the matrix M estimated
from image sequence data. Each asterisk (∗) corresponds to one run of both
algorithms using the same simulated input data set. For each data set, a
different A and different initial starting points for the algorithms were used.
The solid diagonal line represents those points at which the two relative er-
rors are equal; in the area above this line the error made in independent
component analysis is larger.
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B

Figure 12: A comparison of results obtained from estimating a basis from nat-
ural image sequences with our method and independent component analysis.
(A) Basis obtained by our method. (B) Basis obtained using independent
component analysis. See text for details.
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