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Abstract— This paper presents an approach for analyz-
ing hand held device usage situation (context) phenomena.
The situation information under examination is multidi-
mensional fuzzy feature information derived from multisen-
sor measurements. The analysis is conducted using princi-
pal component analysis (PCA) and independent component
analysis (ICA). PCA is used to fuse multidimensional fea-
ture information into a more compact representation while
the ICA is applied to extract patterns containing indepen-
dent low level information about the situation. The results
show that a few principal components compress the situ-
ation data representation efficiently. In addition, principal
component representation provides a method for visualizing
high level situation information. Most independent com-
ponents extracted from the usage situation data correlate
strongly with some of the original signals. This suggests
that the original context data already consist of relatively
independent signals if the temporal relations in the data are
omitted.

Keywords— context awareness, data mining, information
visualization, principal component analysis, independent
component analysis, mobile computing, ubiquitous comput-
ing

I. INTRODUCTION

Sensor based situation awareness of a personal mobile
device requires multisensor fusion. Several studies about
sensor based situation recognition systems for mobile de-
vices have been carried out. Brown et. al. propose that a
situation can be recognized from processed sensor signals
fused with location information [1]. Sensor based situation
awareness of wearable computers has been studied by Pent-
land and Clarkson [2], [3], [19]. Their work discusses high
level situation recognition from camera and environmen-
tal audio signals by using hidden Markov models. Also,
neural networks have been applied for inferring situational
information of a mobile device [10], [16]. A variety of ap-
plications utilizing situation awareness have been reported
in the literature [13], [14], [16], [17]

In situation aware computing of a personal mobile de-
vice, the user carries an appliance containing multiple sen-
sors. Information about the situation concerning for ex-
ample activity of the user and state of the environmentat
a certain moment is mixed in the measured signals. This
problem can be viewed as analogous to the blind source
separation problem, and independent component analysis
(ICA) is potentially feasible [9]. Furthermore, the measure-
ments in situation aware computing tend to contain a lot
of redundant information, and statistical methods such as
principal component analysis (PCA) become relevant due
to the capability of compacting the representation for the
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purposes of storage, usage for machine learning tasks, etc.
In the literature for example, PCA has been proposed for
use in data compression, and ICA for inferring the state of
the environment [15].

In this paper, principal component analysis (PCA) and
independent component analysis (ICA) are examined for
the purposes of rising the abstraction level of the usage sit-
uation information, and compacting the representation of
the data. PCA is a classical method for finding a linear
transformation for dimension reduction. The recently in-
troduced ICA [4], [9] is based on a model of linearly mixed
statistically independent sources. To our knowledge, PCA
and ICA have not previously been applied to the analysis
of personal mobile device situation awareness, which forms
the main contribution of the paper. However, it must be
noted that the results achieved so far are yet qualitative of
nature.

II. METHODS
A. Feature extraction and selection

In order to achieve sensor-based situation awareness of
a mobile device, the abstraction level of the raw sensory
measurements must be raised. This is carried out by quan-
tisizing the time dimension and information content of the
data by using a variety of signal processing methods. In
this work, the features to be extracted are chosen accord-
ing to how well they describe aspects of the real world con-
text. Fuzzy sets [20], [21] are used as the format for these
low level features (context atoms), representing meaning
directly for a human and thus enhancing the understand-
ability of the information content at the feature level, and
facilitating interpretation at higher levels. Fuzzy quantiza-
tion can be viewed as a granulation of information, which
makes it possible to exploit the tolerance for imprecision by
focusing on the information which is decision relevant [21].
The aim is to advance to manipulating perceptions instead
of measurements. For example in the recognition of walk-
ing, the meaning of shifting from the action of walking in
normal speed to walking fast is fuzzy, and both labels can
be partially true at the same time.

We have implemented a context atom recognition sys-
tem that processes a multidimensional input vector z(t)
from sensor measurements into a context atom vector
c(t) = [a1,as,...,a5]7 for each quantization time step.
Vectors ¢(t), t = 1,2,..., N, form a dataset to be used as
input for ICA and PCA. Methods used for recognition of
context atoms ay include, e.g., gesture recognition methods
of mobile device user [12], frequency domain analysis and
statistical methods for movement and illumination recog-



nition.

B. Principal Component Analysis and Independent Com-
ponent Analysis

The principal component analysis (PCA) and the in-
dependent component analysis (ICA) are well established
statistical tools, for example, in the signal processing and
data-analysis communities. In this paper they are used
as a means for explorative data-analysis and information
visualization. The possibility to use neural network based
approaches with PCA and ICA in sensor fusion is presented
in [15]. The basics of PCA and ICA as well as their applica-
tions in data analysis are discussed for example in [5], [11].
In this chapter, a brief introduction into these methods is
given.

PCA is a classical statistical method for finding a lin-
ear transformation for dimension reduction. Let x be an
n-dimensional random vector. The task is to find an or-
thonormal matrix V of size kX n, k < n so that the reduced
k-dimensional projection x’ = Vx retains as much of the
variance of x as possible. The rows of the matrix V de-
fine the principal directions of the projection. In practise,
the principal directions and components can be calculated,
e.g., using the eigendecomposition of the sample covariance
matrix. The eigenvalues corresponding to the principal
components determine the relative amount of variance that
each component captures. PCA is often used for dimension
and noise reduction, or for explorative visualizations. For
the purpose of visualization, the data is projected into a
low dimension (1D-3D) by selecting some principal com-
ponent(s) (PC) and plotting the projected data points. If
two dominant PCs are selected — that is the PCs corre-
sponding to the two largest eigenvalues — the result is a
projection that presents the data in 2D capturing as much
of the original data variance as possible.

The model in PCA is implicitly based on an assumption
of gaussian data. In the basic version of ICA the assump-
tion is that there are n observed signals which are different
linear mixtures of n statistically independent, non-gaussian
source signals. The sources are elemets of an n-dimensional
random vector s. The elements of the observed random vec-
tor x are different mixtures of the sources x = As, where
A is an n X n mixing matrix. The problem is to solve the
mixing matrix when the observed signals, that is, a sample
of the random variable x, are known. There exists a variety
of methods for estimating the mixing matrix and the inde-
pendent components (IC) under different assumptions on
the data [7], [11]. In this paper, we use the FastICA algo-
rithm [6], [8] that has very fast convergence and is available
as a well documented implementation!. ICA has recently
gained lots of interest, and there are interesting and succes-
ful applications that include, e.g., blind source separation
for biomedical signals [18].

It must be remembered that PCA and ICA are statistical
methods that work in a similar way for any permutation of
the sample data vectors. Thus, the temporal relations in
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TABLE I
DESCRIPTION OF THE SCENARIO

I | Activity |

User is sitting, the device is on a table.
The device is hanging from the user’s neck.
User stands up and starts to walk,
walks in a corridor,

goes up in an elevator (1 floor),

walks in a corridor,

goes out to a balcony,

walks in the corridor,

goes down in the elevator (1 floor),

10 | walks in the corridor,

11 | sits down,

12 | and puts the device on the table.
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the data must be inferred by some other means.

III. EXPERIMENTS AND RESULTS
A. Ezperiment setup

A small mobile device was equipped with a set of sensors
including 3 accelerometers - one for each direction, sensors
for illumination, temperature, humidity, skin conductivity
and audio. The device was hanging from the user’s neck
in front of the chest, and the user performed the activities
depicted in Tab. I. Data were logged by using a laptop that
the user was carrying. The scenario was repeated 25 times
for two test persons. One test was rejected due to a mea-
surement failure, so the data consist of 49 repetitions of the
same scenario. Each test lasted about 3—4 minutes depend-
ing on the testee and on the environment. In result, there
were approximately 10000 data vectors, since the sampling
interval of the context atom data was 1 second. The 27
context atoms derived from the multisensor measurements
represent movements of device and user, device orientation,
humidity, illumination conditions, and level of sound pres-
sure. An example of the data recorded from ’Test 10’ is
presented in Fig. 1 where the fuzzy membership of each
context atom is presented as a gray level bar as a function
of time.

B. Ezperiments using PCA

The data from all the 49 tests were pooled together, and
the PCs were computed by eigendecomposition of the co-
variance matrix. Figure 1 shows the flow of data in one
specific test, "Test 10°. The context atoms are presented as
a function of time using gray level bars. Black means that
the fuzzy membership of the context atom is one, white
means zero membership. The figure depicts also the two
most dominant PCs, PC1 and PC2, which were calculated
using the pooled data set, not only the data of *Test 10°.
The arrows in the figure point out how some phenomena,
in the original signals are related to the first PC (PC1).
Figure 2 and Tab. II show the share of the total variance
for the original variables and for the PCs. Many of the con-
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Fig. 1. One specific test (*Test 10°) of the context atom data and its
two most dominant principal components.

text atoms contain no information in this scenario, and the
contribution of the last 10 context atoms to the total vari-
ance is negligible. Twelve context atoms out of 27 explain
96% of the data variance. By using PCA, the information
content of the data can be represented more compactly.
In this experiment, seven most dominant principal compo-
nents explain 96% of the data variance.
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Fig. 2. Left subfigure shows the share of the total data variance

for each original context atom. First 12 context atoms explain
96% of the variance. Right subfigure shows the situation for the
principal components. Now, seven signals suffice for explaining
96% of the variance.

Seven most dominant PCs can be viewed more closely
for example by visualizing them using the projection ma-
trix, which is illustrated in Fig. 4. It can be used to give
an overview about how strongly each PC is related to the
original signals. Each column represents elements of one
principal direction, and each row shows how strongly an
original variable and a PC are connected. In order to facil-
itate comparison between PCs, the elements of a principal
direction vector have been scaled by dividing the vector
by the largest absolute value of its elements. Black means

TABLE II
TOTAL VARIANCE

Context atoms % of | cum%
total var.
Walking (slow) 13.7 13.7
Normal light 13.5 27.2
Stable 13.5 27.2
Unstable 9.1 36.4
Dim light 9.1 45.5
Walking (fast) 9.1 54.5
Natural light 8.9 63.4
Modest sound 7.4 70.8
Silent 6.2 83.3
Bright light 6.2 83.3
Antenna, up 5.2 88.5
At hand 3.9 92.5
Display down 3.7 96.1
PCs % of | cum%
total var.
PC1 25.7 25.7
PC2 21.0 46.7
PC3 14.9 61.5
PC4 11.0 72.5
PC5 10.7 83.2
PC6 7.2 90.4
PC7 5.2 95.6
PC8 2.4 98.0
PC9 1.1 99.2
PC10 0.3 99.5
PCi11 0.2 99.7
PC12 0.1 99.8

a strong positive and white a strong negative connection
between the original variable and the PC. It can be seen,
for example, that especially activity in context atoms 'Dim
light’, Unstable’, "Walking’ and "Walking Fast’ tend to rise
the value of PC1. When context atom ’Stable’ gets high
value PC1 decreases. This can be verified in Fig. 1. To
compare PCs of several tests simultaneously, a presenta-
tion shown in Fig. 3, is used, depicting the PC1s for tests
1-20. The PC1 has captured the most important phases
of the scenario. The phases can be seen as a fluctuation of
gray levels giving an impression of vertical stripes, which
correspond to the situations in the scenario.

A more detailed view of the PC1 is given in Fig. 5 where
the PC1 of *Test 10’ (in Fig. 1) is plotted as a conventional
scatterplot as a function of time, and the histogram of the
PC1 for all data is presented beside the plot. The scat-
terplot shows clear discrete levels that describe different
phases of the scenario, which correspond to the peaks in
the histogram of PC1 for the whole data. Peaks indicate
scenario situations such as walking in the corridor (num-
bers 4,6,8,10 in the scenario description in Tab. I), balcony
(7), and in elevator (5,9).

The similarities between events can be observed by rep-
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Fig. 3. The first principal component (PC1) for tests 1-20 as gray
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resenting a 2D projection of the data by using two PCs, see
Fig. 6. The projection reveals clustering behaviour of the
data. For example, samples measured outdoors are pro-
jected into a very dense area (labeled ”Outdoors” in the
figure). If two clusters are close to each other, they are
similar in terms of the first two PCs which capture 47%
of the data variance, see Tab. II. It must be noted that
there may be clusters that seem to be near each other, al-
though they are separated in the original data space, since
two dominant PCs leave 53% of the variance unexplained.
However, if two dominant original signals were plotted in
2D, the representation would capture in maximum only
27% of the data variance (Tab. II).

C. Ezperiments using ICA

We were interested in finding ICs that would imply that a
combination of the original context atom signals (observed
signals) would be explained by some hidden source signal
(IC). This would tell that there exists an independently
appearing context that produces the combination.

The context atom data from each test was pooled to-
gether, and the FastICA algorithm? was used to extract
estimates of the independent components. The data di-
mension was reduced to 19 to cancel out the strong linear

2The algorithm was applied using the default parameter selection
proposed by the authors of the program package. Additionally, two
different so called contrast functions (kurtosis and skewness) were
used. Both of them produced somewhat similar results.
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Fig. 5. The PC1 of one test (*Test 10°) presented as a scatterplot
and a histogram of PCls for the whole data set.

dependencies of the original signals. In result, 19 ICs were
found. It turned out that most of the estimated ICs were
almost identical to some original signals. This impression
was verified by calculating the correlation between the es-
timated independent components and the original signals.

The remaining ICs, that were not identical to origi-
nal signals, originated from rare combinations of events
that were mostly uninteresting. This suggests that in our
dataset most of the context atoms (signals) are relatively
independent when the temporal relations are omitted. On
the other hand, it is not guaranteed that the linear ICA
model is directly applicable to our data set which is nearly
binary valued data. There was, however, one illustra-
tive example of an interesting combination. One IC was
strongly related to bright light alone and one to bright and
natural light. When the ICs were compared to the orig-
inal data it turned out that, though the only source for
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bright light was natural, there existed also rare samples of
”non-natural” bright light. In this case, this was due to a
failure to recognize the daylight as natural. The goal of us-
ing ICA would, however, be to automatically find this kind
of independent latent sources (daylight — artificial bright
light).

IV. SUMMARY

The aim of this work was to examine how PCA and ICA
could be used to discover contexts that are not explicitly
available in context atom data, finding higher abstraction
level descriptions, and further compacting the representa-
tion of the data.

We experimented using a usage scenario data set col-
lected with a mobile device containing multiple sensors.
The use of PCA indicated that the context atom data
representation for the scenario was somewhat redundant.
Only seven principal components (or 12 original signals)
out of 27 were enough to present 96% of the total data
variance. Examples were shown on how the dominating
principal components can be used to visualize the data
of a usage scenario by means of one- or two-dimensional
data projections. A few principal components compress
the representation of the data, revealing the most impor-
tant phases of the scenario compactly.

In experiments using FastICA algorithm, most of the es-
timated ICs were almost identical to some original signals.
This suggested that most of the observed signals were quite
independent, as far as the temporal relations are omitted.
Some rare phenomena were spotted as separate indepen-

dent components. These phenomena were in this case un-
interesting, but the fact that they were found indicates that
ICA is potentially useful in analysing context data.
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