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ABSTRACT

We propose a new method to predict time series us-
ing the technique of Independent Component Analysis
(ICA) as a preprocessing tool. If certain assumptions
hold, we show that ICA can be used to transform a set
of time series into another set that is easier to predict.
These assumptions are not unrealistic for many real-
world time series, including financial time series. After
prediction, the original time series can be constructed
by the inverse ICA transform. We have tested this
approach on two sets of data: artificial toy data and
financial time series. The results suggest that these
can be predicted more accurately using the ICA pre-
processing.

1. INTRODUCTION

In this paper we build a prediction model using In-
dependent Component Analysis (ICA). In the intro-
duction part we briefly explain the concept of ICA, we
present the prediction algorithm and the general model
we use. In Section 2, the generic solution to the ICA
problem is outlined and the FastICA algorithm is intro-
duced. Further on, in section 3 and 4, the simulations
and the results are shown and some conclusions are
drawn.

We start by considering a set of parallel signals or
time series z;(t), with ¢ indexing the individual time
series, ¢ = 1,...,n and ¢ denoting discrete time. In
our case these signals are the toy data (see Fig. 3 or
the financial time series. In the basic ICA, a generative
model is assumed, by which the original signals z;(t)
are instantaneous linear mixtures of independent source

signals or underlying factors s;(t), j = 1,... ,m with
some unknown mixing coefficients a; ;:
zi(t) = Y ai;si(t), (1)
J

for each signal z;(t). We assume the effect of each time-
varying underlying factor s;(¢) on the measured time

series to be approximately linear.

Utilizing information of either higher-order moments
or time structure of the observed time series xz;(t), the
ICA algorithms are able to find good estimates for the
underlying independent signals s;(¢) and the unknown
mixture coeflicients a; ;.

If we go to vector-matrix formulation, defining a
vector-valued time series x(t) = [z1(t), ... ,2,(t)] with
elements z;(t), a vector-valued source signal s(t) with
elements s;(t), and a matrix A = (a;;), then we can
write (1) as:

x(t) = As(t). 2)

Matrix A is called the mixing matrix. The basic idea
of ICA is that we do not have to know either the matrix
A or the vector s(t) at all, but instead can estimate the
model and obtain both matrix A and the underlying
factors s(t), given sequential observations on x(t) if we
make the assumption that the factors are statistically
independent.

The ICA model (1) is realistic in certain sensor ar-
ray applications in which a number of independent sig-
nals s; arrive at a number of sensors but are weighted
and superimposed due to the different locations of the
sensors. Also, in the case of financial time series, there
may be some underlying factors like seasonal variations
or economic events that affect a number of simultane-
ous time series but can be assumed to be quite inde-
pendent [2]. In [9], evidence of such factors was found
also in retail store sales data. It is notable that ICA
has a close relationship to minimizing algorithmic com-
plexity [11]; the obtained signals s;(¢) have lower com-
plexity and clearer structure than their mixtures, and
therefore it may be expected that predicting them is
easier than predicting their mixtures such as the origi-
nal time series.

We propose the following algorithm to predict a set
of time series:

1. After subtracting the mean of each time series



and removing as much as possible of the sec-
ond order statistic effects by normalization (after
which each time series has zero mean and unit
variance), estimate the independent components
s;(t) of the given set of time series, and simulta-
neously find the mixing coefficients a; ; in (1).

2. For each component, apply suitable filtering to
reduce the effects of noise — smoothing for com-
ponents that contain very low frequencies (trend,
slow cyclical variations), and high-pass filtering
for components containing high frequencies and/or
sudden shocks. Different filtering methods may
be used for different components.

3. Predict each smoothed independent component
separately, for instance using some method of AR-
modeling.

4. Combine the predictions for each independent com-
ponent by weighing them with the coefficients
a; j, thus obtaining the predictions for the origi-
nal observed time series x;(t).

The prediction model is represented in Fig. 1. It
consists of an unmixing stage where the sources are
obtained by applying a separating linear transforma-
tion W to the input time series x(t) (see Section 2 for
details for computing W),

s(t) = Wx(t) (3)

The elements of s(t) are the underlying factors found
by applying ICA.

The next stages consist of a non-linear smoothing
function f and an AR prediction function g. The smooth-
ing is formally done by applying f on the source vectors

s(t),
s*(t) = f[s(-)] (4)

Taking into consideration the temporal structure in
a g-order AR model, the prediction equation is:

sP(t+1) =g[s*(t),s°(t —1),...,s°(t—q)] (5)
The forecasted values x?(t) result from the mixing
stage by applying a linear transform A to the predicted

sources sP(t).

x”(t) = As®(t) (6)
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Figure 1: An illustration of the prediction model. The
unmixing stage consists of a linear unmixing matrix
W yielding the sources s;(t), j = 1,... ,m. Apply-
ing the nonlinear transfer functions f;, j = 1,...,m
the smoothed components are obtained: sj(t), j =
1,...,m. The forecasted time series result from a lin-
ear mixing of the predicted smoothed sources s%(t),

ji=1...,m.

2. INDEPENDENT COMPONENT
ANALYSIS AND ICA ALGORITHMS

In the basic approach to solve the ICA problem [1, 3,
7, 8, 10], the temporal structure of the time series is in
fact omitted and s(¢) and x(¢) in Eq. (3) are regarded
as realizations of random vectors s and x. We thus seek
the solution in the form:

§=y=Wx (7)

The goal is now to find a matrix W that makes the
elements of y statistically independent. We call such
a matrix a separating matrix. A recent review of vari-
ous information theoretic contrast functions for solving
W, like mutual information, negentropy, maximum en-
tropy, and infomax, as well as the maximum likelihood
approach, is given by Cardoso [3], who also discusses
the numerical problems in minimizing / maximizing
such contrast functions.

The problem of solving the separating matrix W
is somewhat simplified if we consider only one of the
source signals at a time. From eq. (7) it follows

SiZyi=w,x (8)
with w] the i-th row of W. The last author has earlier
suggested and analyzed neural type one-unit learning
rules [6] that give as solutions one row w! of the sep-
arating matrix. A condition of local convergence to a
correct solution was given. The condition is very robust
and shows that a wide range of nonlinear functions in
these learning rules are possible.

The problem is further simplified by performing a
preliminary sphering or prewhitening of the data x:



the observed vector x is first linearly transformed to
another vector whose elements are mutually uncorre-
lated and all have unit variances. This transformation
is always possible and can be accomplished by classical
Principal Component Analysis. At the same time, the
dimensionality of the data should be reduced so that
the dimension of the transformed data vector equals m,
the number of independent components. This also has
the effect of reducing noise. It can be shown that after
this preprocessing, W will be an orthogonal matrix.
As an example of contrast functions, consider the
simple case of maximizing the kurtosis E{y}}—3[E{y?}]?
of the estimated signals y;. Because we assumed that
the estimated signals have unit variance, this reduces
to maximizing the fourth moment E{y}}. Its gradient
with respect to w; [see Eq. (8)] is 4E{(w!x)*x}. Us-
ing this gradient and a normalizing term, an efficient
fixed point iteration algorithm can be obtained [5]:

1. Take a random initial vector w(0) of norm 1. Let
k=1

2. Let w(k) = E{x(w(k — 1)Tx)?} — 3w(k — 1).
The expectation can be estimated using a large
sample of x vectors (say, 1,000 points).

3. Divide w(k) by its norm.

4. If | w(k)Tw(k — 1) | is not close enough to 1,
let £ = k + 1 and go back to step 2. Otherwise,
output the vector w(k).

The final vector w(k) given by the algorithm equals
the transpose of one of the rows of the (orthogonal)
separating matrix W.

To estimate m independent components, we run
this algorithm m times. To ensure that we estimate
each time a different independent component, we use
the deflation algorithm that adds a simple orthogonal-
izing projection inside the loop. Recall that the rows
of the separating matrix W are orthonormal because
of the sphering. Thus we can estimate the independent
components one by one by projecting the current solu-
tion w(k) on the space orthogonal to the rows of the
separating matrix W previously found. Also a sym-
metrical orthogonalization is possible.

This algorithm, with the preliminary whitening and
several extensions, is implemented in Matlab in the Fas-
tICA package available through the WWW [4]. A re-
markable property of the FastICA algorithm is that a
very small number of iterations, usually 5-10, seems to
be enough to obtain the maximal accuracy allowed by
the sample data. This is due to the cubic convergence
of the algorithm shown in [5].

(a) The mixtures

The independent components

(b) The four independent components

Figure 2: The mixtures and the four independent com-
ponents

3. SIMULATIONS AND RESULTS

In our simulations we used the FastICA package [4]
implementation of the above algorithm. The number
of IC’s is variable, we considered 4 independent com-
ponents in the toy data experiment and 5 independent
components for the experiment with financial time se-
ries.

In figures 2, 3 the algorithm is applied on a toy data
set that consists of a mixture of four different signals: a
trend like signal, a spiky signal and two seasonal type
signals. Fig. 2a shows the original time series (mix-
tures) and Fig. 2b the independent components found
by the FastICA algorithm. The IC’s are very close to
the true source signals.



smoothed component

(a) Original (above) and smoothed (below) indepen-
dent component

Py

(b) Prediction of the mixture (dotted line)

Figure 3: Smoothing and prediction

The smoothing method we used was the approxi-
mation of the independent components with 3rd order
polynomials (spline interpolation) using various smooth-
ing tolerances. The smoothing has been designed to
allow visual determination of optimal smoothing toler-
ance by viewing smoothed curves on the graphic dis-
play. The procedure is the following: smooth with an
initial tolerance, visualize both the smoothed and orig-
inal time series and smooth again with the tolerance
most visually appropriate so that the characteristics of
the time series are preserved.

When dealing with noisy data it makes sense to use
a more slowly varying curve which does not interpolate
the data points but damps out the noise component.
By increasing the smoothness of the curve the vari-
ance of predicted values is reduced. However, in the
same time this can introduce bias in the predicted val-
ues where the true underlying relationship is changing
rapidly. The smoothing could be also done in a more
principled manner: a first step in this direction could
be the minimization of the final prediction error using
cross-validation. Fig. 3a shows the fourth IC and its
smoothed version.

After smoothing, an AR model is fit to the smoothed
data, increasing in time the length of the data with
as many points as the number of predicted moments.

The order of the model is chosen to minimize the mean
square error. The order is different from component to
component. In Fig. 3b the continuous line represents
the independent component and for the last 20 points
the prediction using ICA is plotted using the dotted
line.

All these transformations lead us to processed in-
dependent components for the future interval of time.
Fitting the mixing model (1) to these forecast inde-
pendent components sP(t), the predictions x?(t) for
the initial time series are obtained. On this data, the
ICA prediction clearly outperforms the direct predic-
tion, the error obtained with the ICA prediction being
significantly smaller than the error obtained with AR
prediction on mixtures. In Fig. 4 the lower curve rep-
resents the original toy data i.e. one of the mixtures,
the middle one shows the predicted values using our al-
gorithm and the upper curve shows the AR prediction
applied directly on the mixture.

We also considered the case where the original sig-
nals were AR-processes. In this case, the results ob-
tained using prediction with ICA were similar to the
ones obtained using AR prediction directly on the orig-
inal signals.

In our last experiment, we applied our algorithm on
a set of 10 relevant foreign exchange rate time series.
The results were promising, as the ICA prediction per-
formed better than direct prediction. Fig. 5 shows
an example of prediction using our method. The up-
per figure represents one of the original mixtures and
the lower one the forecast obtained using ICA predic-
tion for an interval of 50 values. In table 1 there is
a comparison of errors obtained applying classical AR
prediction and our method. The last column shows the
magnitude of the errors when no smoothing is applied
to the currencies.

4. DISCUSSION

We have presented a prediction model that adopts the
ideas from independent component analysis and applies
them in forecasting of time series.

Figure 4: Comparison between the prediction methods
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Figure 5: Prediction of real-world financial data: the
upper figure represents the original mixtures and the
lower one the forecast obtained using ICA prediction
for an interval of 50 values.

Table 1: The errors obtained with our method and the
classical AR method. Ten currencies were considered
and five independent components. With classical AR,
several different smoothing tolerances on the original
time series were tested. With ICA, each individual IC
was smoothed by the tolerance that visually seemed
most suitable.

AR smoothing | AR ICA
tolerance NMSE | NMSE
2.0 9.7

0.5 9.1

0.1 4.7

0.08 3.9 2.3
0.06 3.4

0.05 3.1

0.00 4.2

The main contribution of this paper is the predic-
tion algorithm itself. It performed well both on toy
data and financial time series. We start by supposing
that there are some independent factors that affect the
time evolution of economic time series. This is one as-
sumption that must hold so that our algorithm works
on financial time series. The economic indicators, in-
terest rates and psychological factors can be the under-
lying factors of exchange rates, as they are closely tied
to the evolution of the currencies. Given the time se-
ries, by forecasting the underlying factors, which in our
case are the independent components, a better predic-
tion of the time series can be obtained. The algorithm
predicts very well the turning points.

ICA and AR prediction are linear techniques, al-
though the first one has a non-linear learning rule;
however, the smoothing makes the proposed algorithm
non-linear. The smoothing enhances the signal-to-noise

ratio, allowing a more accurate prediction of the source
signals and thus also of the original time series.

For time series which are generated by a linear model
— AR-processes, for instance — our algorithm has sim-
ilar performances with the classical linear time series
analysis techniques. Even when such time series are
(linearly) mixed, they remain linear, and they can be
predicted using standard techniques.

It should be noted that some of the sources may also
be useful in analyzing the impact of different external
phenomena on the foreign exchange rates [2].

The model we have proposed is flexible and allows a
varying degree of smoothing and a different model or-
der for each source. An obvious way to further improve
the model would be to consider ICA contrast functions
that explicitly try to enhance the predictability of the
source signals.
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