Topology Preservation in Self-Organizing Maps

Kimmo Kiviluoto
Helsinki University of Technology
Neural Networks Research Centre

Rakentajanaukio 2 C, FIN-02150 Espoo, FINLAND
email: kimmo.kiviluoto@hut.fi

ABSTRACT

This paper concentrates on the following issues: 1. Discussion on what kind of mapping is
produced by the SOM algorithm, 2. Introduction of a quantitative measure of continuity for
the mapping produced by SOM, 3. Introduction of a variant of SOM, called the AASOM, with
locally adapting neighborhood radii.

1. Introduction

The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that has been succesfully used
in a wide variety of applications. The algorithm forms a mapping from the input space onto a lattice of neural
units. The dimension of the input space is often very high, whereas that of the neuron lattice is usually only
two, so the mapping performs a dimensionality reduction. One of the most fascinating characteristics of the
mapping is that it tries to do this preserving topology, to the degree possible.

The current discussion has been motivated by Speckmann et al.’s paper [1], where it was argued that
one should have the dimension of the neuron lattice the same as the natural dimension' of the input space
in order to get good learning results. This seems plausible, but the approach is not without its drawbacks;
for instance, displaying the results on a two-dimensional plane would no longer be possible.

As a matter of fact, confining the dimensions of the lattice to two is extremely important in many
applications as well as it would be in prospective hardware implementations of the SOM — and it also seems
that much of the information processing in biological neural networks is indeed based on two-dimensional
maps. Therefore, one should consider, what happens if the dimension of the lattice is lower than the natural
dimension of the input space. Is it still possible to get good results — and what exactly do we mean by
(ﬁgood”?

2. Quantifying the Goodness of the Mapping Formed by the SOM

Generally, the goodness for a mapping formed by the SOM may be evaluated using the following criteria:

1. To what degree the mapping is continuous?
2. What is the resolution of the mapping?
3. How does the mapping reflect the probability distribution of the input space?

In the following, we concentrate on the first two items of the above list. These are usually the most
important questions in the applications, as the basic SOM usually reflects the probability distribution “well
enough”. Briefly characterizing, in a continuous mapping, input vectors that are close in input space are
mapped close in output space; in a mapping of good resolution, no vectors that are distant in input space
are mapped close in output space.

When the neural lattice of the SOM is lower-dimensional than the input manifold, the topology can
not be perfectly preserved in the mapping, and there is a tradeoff between the continuity and resolution of
the mapping. The SOM tries to approximate the higher dimension of the input manifold by folding itself

1We use term natural dimension to emphasize that we are talking about the dimension ¢ of the input space M C R™, which
is an intrinsic property of the set M and is independent of the dimension n of the embedding space. Speckmann et al. used
actually terms information dimension and fractal dimension, meaning roughly the same thing.

like a Peano-curve, but this results in discontinuities? in the mapping. This behaviour has been termed by
Kohonen as “automatic selection of feature dimensions” [2], and it is a very valuable property of SOM, when
high resolution is desired.

However, in some applications the continuity of the mapping is more important than good resolution.
Then, one should use a map that is flexible enough to find the possibly non-linear “principal components”
of the input space, but so stiff that it does not fold itself, trying to represent also the “minor components”.
The stiffness of the map can be controlled by adjusting the width of the neighborhood function, as proposed
by Speckmann et al. [3]; this behaviour has been more thoroughly analyzed by Ritter and Schulten [4].

To find the optimal balance between continuity and resolution, one should have a way to quantify these
properties. Quantifying resolution is easily accomplished by using as a measure the quantization error
&4, which is defined as the average distance from sample vectors x to their nearest weight vectors w (see
e.g. [9]). Quantifying continuity, on the other hand, is a more involved task; in the following, we consider
some measures proposed earlier and introduce a new measure, the topographic error &;.

2.1. Topographic Product

The first attempt to quantify the continuity of the SOM mapping — often referred to as quantifying the
topology preservation or the neighborhood preservation — was the topographic product introduced by Bauer
and Pawelzik [6]. It compares the weight vectors of the neurons on the map, and if it finds folds on the map,
it takes this as an indicator that the map is trying to approximate a higher-dimensional input space, thus
producing topographic error.

However, as shown by Villmann et al. [7], the topographic product fails to differentiate between the
correct folds that are caused by the map following a folded input space, and the folds that are actually
erroneous. Therefore, it gives correct results only when the input space is nearly linear; if the input space
is e.g. U-shaped, topographic product yields a nonzero or error-indicating value also for maps that co form
a continuous mapping. Thus, results based on topographic product — such as those reported by Speckmann
et al. [1, 3] — may or may not be valid, depending on the linearity of the input space.

This illustrates well a more general point. As we do not want to restrict ourselves to linear subspaces,
we cannot always rely on Euclidean metrics. In a curvilinear input space, the distances must be measured
ultrametrically, “following the input space”. However, locally the Euclidean metrics usually gives us a good
enough approximation. The point is made more precise with the following assumption:

Assumption 1 Assume that the input space M C R" is reqular enough with respect to the number N of
sample vectors x; € M, i =1,2,... N available, so that the line segment connecting any two sample vectors
that are nearest neighbors in Euclidean metrics may be considered as being contained in M. Moreover,
assume that the SOM has been fitted to the data well enough, so that also the line segments connecting
sample vectors x; € M to the two nearest weight vectors w;, w; may be considered as being contained in M.

2.2. Topographic Function

Villmann et al. introduced another measure of continuity of the mapping: the topographic function [7].
Define first the receptive field of a neuron n; as R; = V; N M, with M denoting the input space and V; the
Voronoi polyhedron® of the neuron n;. The topographic function ®(s) is then defined as the number of
neurons that have adjacent receptive fields in the input space, but a city-block distance greater than s on
the map:

oM(s) = Z#{nj | j € L, ||[n; — nj|| > s,n; and n; adjacent}, (1)
i€L

where # denotes the cardinality of a set, and L is the index set for the neural units on the lattice.

2Here we use the concept of continuity somewhat loosely, neglecting the unavoidable discontinuities that are caused by the
discrete output space. A mapping is considered continuous, if the data vectors that are very close in the input manifold are
mapped either to the same or to adjacent neural units.

3 A Voronoi polyhedron of neuron n; having a weight vector w; € R™ is the set
Vi={z |z € R"; ||z — w;|| < ||z — wj|| Vj #i}.

Calculating the topographic function is straightforward. Assuming that there are enough sample vectors
and that assumption 1 holds, if two neurons n; and n; have adjacent receptive fields, some of the sample
vectors x € M must have w; as their nearest weight vector and w; as their second-nearest weight vector.
Then, by going through all the sample vectors x € M we find which neurons are adjacent, and are thus able
to plot the topographic function.

The above assumptions are usually fairly well filled, and the topographic function gives correct results
also for nonlinear input spaces. However, there are a few problems with the topographic function. For
instance, how to compare two different topographic functions? It would be easier to have simply one number
as a measure instead of a function plot, even when the latter would incorporate more information of the
characteristics of the mapping.

Another problem is that the topographic function may give misleading results — a single sample vector
is enough to render two receptive fields adjacent, but this may be too strict a criterion. As defined, the
topographic function does not differentiate between the adjacency of receptive fields in areas where the
sample vectors are dense, and in areas where they are sparse. Neither does it differentiate between the
adjacency for a long or a short distance. Still, in both these examples, the latter kind of adjacency would
imply better continuity.

2.3. Topographic Error

A measure of continuity of the mapping called topographic error E; is obtained, when the emphasis is
shifted from the adjacency of receptive fields towards the proportion of sample vectors that indicate a local
discontinuity of the mapping.

Given a sample vector x € M, let us denote its nearest weight vector with w; and second-nearest with
w;. Then, if assumption 1 holds, some of the points in M between x and w; are mapped to w;, while the rest
are mapped to w;. If the corresponding neurons n; and n; are adjacent, the mapping is locally continuous;
if they are non-adjacent, there is a local discontinuity, or a local topographic error. The topographic error
&, for the whole mapping is then obtained by summing up the number of local topographic errors for all
sample vectors and normalizing:

1
0, otherwise

, best- and second-best-matching units non-adjacent

N
& = %Zu(xk), where u(xy) = { (2)

k=1

Defined this way, &; only gives us an idea of what portion of the local neighborhoods are mapped correctly.
It does not describe the kind of incorrect mappings: given two points very close in input space, there is no
difference between mapping them one neuron apart, or to opposite corners of the lattice. This seems justified,
as otherwise it would be difficult to know whether a high &; value indicates that nearly all neighborhoods
contain short-range topographic errors, or that in certain few points there is a large discontinuity spanning
over the whole map.

3. AASOM: SOM with locally adapting neighborhood radii

To summarize the previous discussion:

1. If the natural dimension of input space is larger than that of the SOM lattice, the map tries to
approximate the higher dimension by folding itself into the input space.

2. The degree of folding depends on the stiffness of the map, which is governed by the width of the
neighborhood function: the wider the neighborhood function, the more the map tolerates inputs from
directions not well represented on it. On the other hand, too wide neighborhood function results in
poor resolution and erroneous averaging of the map.

3. Excessive folding, that results in topographic error, manifests itself so that the best-matching and
second-best-matching weight vectors are no longer adjacent.

Then, a potential solution to make the map preserve topology while retaining as much flexibility as
possible would be to make the neighborhood radius dependent on the local degree of folding. When the
neighborhood radius in a certain area of the map shrinks, folds in that area start to grow, until they are big
enough to induce topographic error that can be observed. Then, the neighborhood function width in that

area is increased so that the topographic error disappears. This is the basic idea behind AdSOM, a variant
of the SOM with locally adapting neighborhood radii.

3.1. Implementing the AASOM

The AdSOM algorithm is otherwise just like the normal SOM, only the width of the neighborhood function
is specified for each neural unit separately. In this experiment, only one-dimensional neural lattice was used,
but the similar idea is easily extended to larger-dimensional maps.

The neighborhood function h;(r) is the convex middle part of the Gaussian function, normalized so that
its value on the center is unity when the width parameter o; = 1:

exp [—% (;)2] —exp (—3)

0 [1 —exp (—3)]
0 otherwise

hi(r) = ifr<o; (3)

Here r denotes the lattice distance from the best-matching unit, and subscript ¢ is used to emphasize that
the neighborhood function is specific to the ith neural unit.

There is a twofold motivation for cutting off the concave tails of the Gaussian. The first is the result of
Erwin et al. [8], that when the neighborhood function is convex, the ordering of the map takes place easier.
The second is that some thresholding seems to be necessary for effective implementation, be it biological or
hardware, to have the neighborhood function nonzero in a rather small area only.

The exact form of the neighborhood function is probably not very critical. However, having the neighbor-
hood function smooth seems to lead to better results than using the binary-valued “bubble neighborhood”
defined as

(4)

h(r) = {1/|_UJ, when T'S o
0 otherwise,
where |-| denotes rounding to the largest integer smaller than or equal to the argument. For comparisons
between the different neighborhood functions, see the simulation results below.

In the AASOM, each neuron ¢ has its own neighborhood width parameter o; associated with it. When
the training of the AdSOM is started, the parameter o; is set to half the diameter of the lattice for all 7.
During training, sample vectors are presented to the AdSOM just like to the basic SOM, and the weights
are adjusted according to the familiar update rule, with decreasing learning rate. However, the width of the
neighborhood is determined by the o; value of the best-matching unit.

The parameter o; are determined by the local topographic errors. If for a sample vector x € M the two
nearest weight vectors are w; and wy, and the corresponding best-matching units (BMUs) n; and ny are
not adjacent, there is local topographic error. Then, for units n; that are near the two BMUs, a new value
for the neighborhood radius o; is calculated:

g — el if max{|ln; — n;ll, [Ini —nell} < lInj — nell
o; = 4 |Inj — ngl| — s otherwise, when s := min{||n; — n;||, [|n; — nel|} < |In; — nell, (5)
1 otherwise

Thus, for units between the two BMUs, the new o; is equal to the distance on the map between the BMUs;
outside that area, the o; decreases linearly to one. Should there be another topographic error in the same
area, the o; values are calculated again, and the larger of the old and new o; is stored for each unit.

When N, sample vectors have been presented, the neighborhood radii o; are decreased according to the
rule

oi:=(0:)", 0gp<1 (6)

The decrease parameter 8 must be large enough relative to Npec — if the neighborhood radii shrink too fast,
the map has no time to unfold, which results in topographic error.

The computational cost of the AASOM is almost the same as that of the basic SOM. The second-best-
matching unit is found as a by-product of the search for the best-matching unit, so the “inner loop” of the
AdSOM requires only a few more comparisons than that of the SOM. The recalculation of the neighborhood
radii is also computationally light, and as learning proceeds, it is not performed very often.

3.2. Experimental results

The AdSOM was compared with the basic SOM using a data set that consisted of 3 000 sample vectors and
had nonuniform dimension. The neural lattice was one-dimensional, with 65 neural units. To see the effect of
the form of neighborhood function, both the bubble neighborhood and the modified Gaussian neighborhood
defined in equation (3) were used. The AdSOM parameter values were Ny, = 100 and 3 = 0.97.

Two experiments were conducted. In the first, the map was originally unordered. During the first 3 000
steps, the learning rate o decreased linearly from 0.99 to 0.05 in all three maps (SOM with bubble and
Gaussian neighborhoods, and AdSOM). Simultaneously, the neighborhood width o decreased linearly from
32 to 1 in the bubble-SOM and to 2 in the Gaussian SOM; the AdJSOM o; were calculated as described
above, with the initial value 32. After the initialization phase, the parameters were frozen in their final
values for the next 27 000 steps, except the o; of the AdSOM.

In the second experiment, the most severely folded map of the first experiment, produced by the Gaussian
SOM, was unfolded. This was accomplished by setting the ¢ of the bubble and Gaussian SOM to 9; the
AdSOM o; were again initialized to 32. The learning rate a was 0.05 throughout the experiment, which
consisted of 30 000 training steps.

The topographic error &; and quantization error £, were computed every 500 steps. These are plotted
in figure 1, with the pictures of the final weight vectors superpositioned on the sample vectors.

The two basic SOM maps are very close to each other, when the final neighborhood radius is small.
However, when the radius is large, there are differences: the bubble neighborhood lumps the weight vectors
into clusters, which results in larger quantization error. In these clusters, the weight vectors are close to
each other, but they do not lie on the same line segment, so the topographic error does not vanish, as it does
when the Gaussian neighborhood is used.

The AdSOM keeps the topographic error almost negligible, without sacrificing too much of the resolution.
A very practical feature is that this is accomplished without extensive experimenting with different final
values of the width parameter . While the learning proceeds, the AdSOM also gives hints of the natural
dimension of the input space: in areas where the map has lower dimension than the input space, topology
preserving requires wider neighborhoods, so the o; parameter values are large even after long training period.

References

[1] H. Speckmann, G. Raddatz, and W. Rosenstiel, “Considerations of geometrical and fractal dimension
of SOM to get better learning results”, in Proc. ICANN’94, Int. Conf. on Artificial Neural Networks,
Maria Marinaro and Pietro G. Morasso, Eds., London, UK, 1994, vol. I, pp. 342-345, Springer.

[2] Teuvo Kohonen, Self-organization and Associative Memory, Springer Series in Information Sciences 8.
Springer, Berlin Heidelberg New York, 1984.

[3] H. Speckmann, G. Raddatz, and W. Rosenstiel, “Relations between generalized fractal dimensions and
Kohonen'’s self-organizing map”, in Proc. of NEURONIMES94, 1994.

[4] H. Ritter and K. Schulten, “Convergence properties of Kohonen’s topology conserving maps: Fluctua-
tions, stability, and dimension selection”, Biological Cybernetics, vol. 60, no. 1, pp. 5971, Nov. 1988.

[5] Teuvo Kohonen, Self-Organizing Maps, Springer Series in Information Sciences 30. Springer, Berlin
Heidelberg New York, 1995.

[6] Hans-Ulrich Bauer and Klaus R. Pawelzik, “Quantifying the neighborhood preservation of self-organizing
feature maps”, IEEE Transactions on Neural Networks, vol. 3, no. 4, pp. 570-579, July 1992.

[7] Th. Villmann, R. Der, and Th. Martinetz, “A new quantitative measure of topology preservation in
Kohonen’s feature maps”, in Proc. ICNN’9, the IEEE Int. Conf. on Neural Networks, Orlando, Florida,
USA, June 1994, TEEE, pp. 645-648.

[8] E. Erwin, K. Obermayer, and K. Schulten, “Self-organizing maps: stationary states, metastability and
convergence rate”, Biological Cybernetics, vol. 67, no. 1, pp. 35-45, 1992.

