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ABSTRACT

We apply independent component analysis (ICA) to financial
time series data. The data is parallel in the sense that it rep-
resents the simultaneous cash flow at several stores belonging
to the same retail chain. The ICA detects a few factors that
affect the cash flow of all the stores, although each store re-
sponds to these factors in a slightly different manner. When
the effect of these “fundamental factors” is removed, the im-
pact of the actions of the management becomes more visible.
Additionally, it is possible to examine the differences between
the stores on the basis of their responses to the fundamental
factors obtained with ICA.
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1. INTRODUCTION

The problem we address in this paper can be formulated in the
following way: Given financial data that reflects the cashflow
of several stores belonging to the same retail chain, try to find

e the fundamental factors common to all stores that affect
the cashflow data;

o the cashflow effect of the factors specific to any particular
store, i.e. the effect of the actions taken at the individual
stores and in its local environment;

e based on these factors, also find groups of stores that
behave similarly, or have similar cashflow time series.

The problem stated above is often encountered in practice
when trying to quantify the effect of managerial actions — is
the observed change in the cash flow the result of the action,
is it the result of some other actions such as those of the
competitors, or is it just statistical fluctuation?

As the solution to the problem of finding the underlying fac-
tors, we propose the technique of Independent Component
Analysis (ICA). It has been widely used for the problem of
Blind Signal Separation in problems like speech separation
and array sensor signal processing [2]. In financial context,
the method has been proposed by Moody and Wu [4] to sepa-
rate the observational noise from the “true price” in a foreign
exchange rate time series. It is an intriguing question, whether
this methodology would also apply to parallel financial time
series.

Assume that there are some fundamental factors which affect
the cashflow of all the stores, but the relative impact of these
factors differs from store to store. Denote these time-varying
underlying factors by si(t), ¢ = 1,...,m and the measured
cashflow time series by z;(t), j = 1,...,n with ¢ denoting the
(discrete) time. If we now consider the effect of each factor on
the measured time series to be approximately linear, we may
write

z;(t) = Zaijsi(t) 1)

where the a;j, describing the effect of factor s;(t) on time
series x;(t), are called the mixing coefficients.

It is often more convenient to use vector - matrix notation.
Denoting by x(t) the time series vector with elements z;(t),
by s(t) the vector of underlying factors s;(¢), and by A the
matrix (as;), we can write

x(t) = As(t). 2)

If we knew matrix A, then we could obtain s(¢) from the
available measurements x(t) simply by (pseudo)inverting A.
However, the basic idea of ICA is that we do not have to
know matrix A at all, but instead can estimate the model and
obtain both matrix A and the underlying factors s;(t) if we
make the simple assumption that the factors are statistically
independent.

Such an assumption in this specific application may not be
unrealistic. For example, factors like seasonal variations due
to holidays and annual variations, and factors having a sud-
den effect on the purchasing power of the customers like prize
changes of various commodities, can be expected to have an
effect on all the retail stores, and such factors can be assumed
to be roughly independent of each other. Yet, depending on
the policy and skills of the individual manager like e.g. adver-
tising efforts, the effect of the factors on the cash flow of spe-
cific retail outlets are slightly different. By ICA, it is possible
to isolate both the underlying factors and the effect weights,
thus also making it possible to group the stores on the basis of
their managerial policies using only the cash flow time series
data.

In Section 2, we outline the generic solution to the ICA prob-
lem and introduce the FastICA algorithm, which is particu-
larly suitable for this kind of application in which the number



m of the underlying factors is not known in advance. It stems
from certain neural learning rules introduced by the second
author. We then show in Section 3 experiments on parallel
weekly cash flow measurements of 40 stores of the same retail
chain over a time period of 2 1/2 years. Some conclusions are
offered in Section 4.

2. THE FastICA ALGORITHM

The problem of estimating the matrix A in eq. (2) can be
somewhat simplified by performing a preliminary prewhiten-
ing of the observed signal vectors x(t). They are linearly
transformed to new signal vectors x'(t) such that their ele-
ments are mutually uncorrelated and all have unit variance.
In this transformation, their dimensionality is reduced so that
elements of x'(t) with small variances are removed. The trans-
formation is always possible and can be accomplished by clas-
sical Principal Component Analysis. After the transformation
we have

x'(t) = Bs(t) 3)

where B, due to the prewhitening, turns out to be an orthogo-
nal square matrix (for details, see [1]). Thus we have reduced
the problem of finding an arbitrary rectangular mixing matrix
A to the simpler problem of finding an orthogonal matrix B,
which then gives s(t) = BTx'(t). If the i-th column of B is
denoted b;, then the i-th independent factor can be computed
from the prewhitened x’(t) process as s;(t) = b7 x'(t).

Some suggested solutions to the source separation or blind
deconvolution problems use the fourth order cumulant or kur-
tosis of the signals, defined for a random variable y as

K(y) = Ey* - 3(By®)? (4)

For a Gaussian random variable, the kurtosis is zero; for
sharper densities, it is positive, and for flatter densities, neg-
ative.

Let us now search for a linear combination of the prewhitened
signals x(t), say, y = wlx'(t), such that it has maximal or
minimal kurtosis. Obviously, this is meaningful only if the
norm of w is somehow bounded, so we assume ||w|| = 1. This
can be accomplished by the recently introduced fixed point
learning rule [1], dubbed the FastICA algorithm®. For a given
sample of the prewhitened vectors x’, the FastICA algorithm
is defined as follows:

1. Take a random initial vector wo of norm 1. Let k£ = 1.

2. Let wy, = E{x'(wi_,x')3} — 3wg_1. The expectation
can be calculated using a sample of x’ vectors.

3. Divide wy by its norm.

4. If ||wgr — wg—1|| is not small enough, let K = £k + 1 and
go back to step 2. Otherwise, output the vector wy.

IThe algorithm is available at the Web
http://www.cis.hut.fi/projects/ica/fastica/.
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Figure 1: Five samples of the original cashflow time series
(mean removed, normalized to unit standard deviation).

The final vector wy, given by the algorithm separates one of
the underlying factors in the sense that wix'(t), t = 1,2, ...
equals one of the factors. To separate m factors, we run this
algorithm m times. To ensure that we separate each time a
different factor, we only need to add a simple projection inside
the loop. Recalling that the columns of the mixing matrix B
are orthonormal because of the prewhitening, we can separate
the factors one-by-one by projecting the current estimate on
the space orthogonal to the previously found columns of the
mixing matrix B.

3. EXPERIMENTS WITH 40 RETAIL
STORES

The data consists of (one component of) the weekly cash flow
in 40 stores that belong to the same retail chain; the cash flow
measurements cover 140 weeks. Some examples of the original
data are shown in figure 1.

As depicted in figures 2 and 3, the FastICA algorithm finds
several clearly different fundamental factors hidden in the
original data. In figure 2, the prewhitening was performed
so that the original signal vectors were projected to the sub-
space spanned by their first four principal components; in this
projection, 77% of the energy of the original signals was re-
tained. In figure 3, the signals were projected to the subspace
spanned by the five first principal components, retaining 80%
of the energy. The number of the fundamental factors (or
IC’s) found by FastICA is then equal to the dimension of the
projected signals.

Note the strong similarity between the fundamental factors in
figures 2 and 3 — the only more visible difference between them
is that the first factor in figure 2 is split into the two factors on
the two upmost rows of figure 3. A similar phenomenon was



found to occur when we experimented with a higher number of
ICA’s: one factor is split into two, and the remaining factors
change very little. The factors are thus rather stable.

The factors have clearly different interpretations. In figure 2,
the upmost factor follows the sudden changes that are caused
by holidays etc.; the most prominent example is the Christ-
mas time. The factor on the bottom row, on the other hand,
reflects the slower seasonal variation, with the effect of the
summer holidays clearly visible. The factor on the third row
could represent a still slower variation, something resembling
a trend. The last factor, on the second row, is different from
the others; it might be that this factor follows mostly the rel-
ative competitive position of the retail chain with respect to
its competitors, but other interpretations are also possible.

Figure 4 shows the residual time series for the five stores, the
original data of which is shown in figure 1. In these residual
time series, the fundamental factors that are, to a varying
degree, common to all the stores are removed by regression
from the original time series. If the model works, it is these
residual time series that best capture the effect of the actions
taken by the management of individual stores.

Finally, in figure 5 the stores are displayed on a Self-
Organizing Map (SOM) [3]: the map units are labeled with
the store numbers that are mapped to them. The nearer two
stores are located on the map, the more they resemble each
other in their responses to the fundamental factors. This fol-
lows because the map was trained using the rows of the mixing
matrix A, which reflect each store’s response to the funda-
mental factors, and because the SOM tends to preserve the
topological relations between the input vectors. As examples
of the cashflow time series in the different parts of the map, see
figure 6. Note how the time series of stores 26 and 35 on the
two bottom rows appear almost identical to each other and
are clearly different from the other two time series; contrast
this to the locations of these stores on the SOM in figure 5.

Figure 2: Four fundamental factors found with the ICA.

4. DISCUSSION

We presented a preliminary analysis of a set of parallel time se-
ries, trying to isolate the fundamental factors common to all of
them, as well as the effect that these factors have on each time
series. The Independent Component Analysis (ICA), together
with the Self-Organizing Map (SOM) used to find relative sim-
ilarities between the time series, are both exploratory data
analysis methods whose results must be carefully inspected
by a domain expert. The ICA method clearly reveals factors
that cannot be found by techniques relying on second-order
statistics only (say, principal component or factor analysis)
and thus may have novel significance. The factors are be-
lieved to capture some real effects, and their stability with
varying compression rate gives further support to this hypoth-
esis. However, both the factors and the mixing effects must
in future works be submitted to further analysis to show their
real usefulness.

A possible direction for future research would be to apply suit-
able filtering on the fundamental factors. Say, the factor that
seems to capture seasonal change could be smoothed using a
kernel that has a width of 6 weeks, whereas the trend factor
would be smoothed using much wider kernel. The seasonal
factor might also be averaged over several years. This way
our method would lead to the classical time series analysis
technique of decomposing the time series to trend, seasonal
etc. components, helping to find educated guesses for the
length scales of different components. Fitting these filtered
fundamental factors to the data, also the grouping obtained
with SOM might improve; here different basis functions should
probably be given different weights.

Figure 3: Five fundamental factors found with the ICA.
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Figure 4: The residual cashflow time series, obtained by sub-
tracting the effect of the five fundamental factors from the

original time series (same scale on vertical axis as in Fig. 1).
Figure 5: Location of the rows of the mixing matrix A on a

self-organizing map.
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Figure 6: Examples of the cashflow time series mapped to
different parts of the SOM; number on the left corresponds
to the label on the SOM. Note how the time series 26 and
35 that are close to each other on the map look much more
similar to each other than to the other two time series.



