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Abstract

The self-organizing map is used to visualize financial
statement data. The effect of increasing the map di-
mension from two to three is first demonstrated in
a three-dimensional toy data example; then maps of
both dimensionalities are used to visually explore fi-
nancial data. It turns out that there are cases where
two-dimensional map suggests that the data has sep-
arate clusters sharing some common property, but
three-dimensional map only finds a single cluster. This
is most likely a result of the two-dimensional map fold-
ing itself into the input space that has an intrinsic
dimension higher than two, which produces artifacts
appearing as separate clusters.

1 Introduction

The Self-Organizing Map (SOM) [8] has been used in a
large number of diverse applications. In many of these,
the focus has been on visualizing high-dimensional
data. This is a task that suits the SOM well. The
basic SOM algorithm finds a mapping from a high-
dimensional input space onto a low-dimensional map,
and because the mapping is constrained so that it
tends to preserve the topological relations between the
data vectors, it can be used as a basis for a number of
different visualization techniques.

Usually, the SOM units have been arranged into a
two-dimensional lattice. This is despite the fact that in
some cases a higher-dimensional lattice has better the-
oretical justification, as shortly discussed in the next
section. One obvious practical reason for the popular-
ity of the two-dimensional SOM is that it is straight-
forward to print out and view; another, related issue is
that most existing software implementations of SOM
support only one- and two-dimensional lattices. Yet
another, slightly more involved reason might be that
the border effect [8] of the SOM becomes more pro-
nounced when the lattice dimension increases.
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2 SOM and data dimensionality

Let us assume that our data lives in some M-dimen-
sional data manifold D that is embedded in an N-
dimensional input space: D C RY and N > M (for a
rigorous definition of the data manifold, see [3]). Our
data then has an intrinsic dimensionality M.

In practice there is always some noise present in the
observations, which blurs the data manifold so that it
starts looking N-dimensional at a length scale compa-
rable to the standard deviation of the noise. However,
it can still be approximated well by a M-dimensional
manifold. In fact, the models used to describe or an-
alyze the data need not — and usually should not —
have higher dimensionality than M: there is no point
in trying to model the noise or in building a model that
is more complicated than is necessary. On the other
hand, it is sometimes advantageous to use models of
lower dimensionality than M to capture only the few
most important aspects of the data manifold.

As an example, a data manifold that is an M-
dimensional Gaussian could be easily modeled using
the classical Principal Component Analysis (PCA).
The M first eigenvalues of the data covariance ma-
trix that correspond to the signal subspace are larger
than the remaining N — M eigenvalues that correspond
to the noise subspace, which can be used to estimate
M. The data can then be modeled using the coordi-
nate system spanned by the M first eigenvectors, even
though in some applications, such as data compres-
sion, fewer than M first eigenvectors would be used.

Linear techniques such as PCA do not work properly
when the data manifold is nonlinear or non-Gaussian,
however; in such cases, one usually needs to resort to
iterative techniques such as the SOM. It seems intu-
itively reasonable to suggest that the SOM could be
used to model any data manifold that is constructed
by a smooth diffeomorphism from an M-dimensional
unit cube into RY, given that the SOM has an M-
dimensional lattice. The SOM unit coordinates on the
map lattice would then give a discrete approximation



of the natural coordinates (as defined in [3]) of the
data manifold, although the SOM magnification fac-
tor [8] which is always less than one would introduce
some distortion in this approximation.

When the dimensionality of the SOM lattice is lower
than that of the data manifold, the situation becomes
more problematic. The map tries to fill the data
manifold by folding itself in a manner that is analo-
gous to a one-dimensional Peano curve filling the two-
dimensional unit square. This phenomenon has been
dubbed “automatic selection of feature dimensions” by
Kohonen [8], and has been rigorously analyzed by Rit-
ter and Schulten [9]. As a result of folding, the resolu-
tion of the mapping from the data manifold onto the
SOM lattice improves, but only at the cost of intro-
ducing discontinuities in the mapping [5].

In certain applications it would be useful to find only
the few most important aspects of the data manifold,
which can be regarded as the non-linear counterpart to
finding the first few principal components. One possi-
ble way to achieve this is to control the stiffness of the
map by choosing wide enough neighborhood function,
so that the map will not fold significantly [4, 2, 5].
This way the discontinuities are avoided (or reduced)
but some of the resolution is sacrificed, so again there
is a tradeoff.

In principle, the preferred solution would thus be
using a SOM that has the same dimensionality as the
data manifold. On the other hand, increasing the di-
mensionality introduces certain drawbacks, as will be
discussed later — at least visualization of maps with
dimensionality higher than three is problematic. How-
ever, sometimes already increasing the dimensionality
from two to three may improve the results significantly.
This is demonstrated in the next section, both with toy
data and real financial data.

3 Simulations with 2D and
3D SOMs

In the first example, toy data set is used to demon-
strate how the folding of the SOM shows with two
common visualization methods: the component plane
display and the U-matrix. The data set consists of
5 000 points that are uniformly distributed inside a
box that has side lengths 16, 9 and 4. Both two- and
three-dimensional map ,lattices with equal number of
units were trained using the SOM Toolbox [1] in batch
mode and with a Gaussian neighborhood function.
The U-matrices and component planes of the maps
are shown in figures 1 and 2. The four layers of the
third dimension of the 3D-SOM are here displayed side
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Figure 1: The U-matrix and component planes of the
2D SOM trained with toy data.

by side, and, for ease of interpretation, the U-matrix
has been calculated for each layer separately instead
of also across the layers. In the middle of the map, the
U-matrix of the 2D SOM is more uneven than that
of the 3D SOM, and with the “bubble” neighborhood
function, the difference would become still more dis-
tinctive. On the other hand, the stronger border effect
of the 3D SOM is clearly visible.

The first two component planes of the two maps look
quite similar, but the third shows the difference: the
2D SOM folds into the data manifold forming periodic
stripes or speckles, whereas the 3D SOM is able to
capture the shape of the data manifold correctly. Tak-
ing a closer look, one may note smaller but otherwise
similar patterns also on the second component plane.
The folding may thus make simple data look rather
complicated when visualized using a SOM of too low
dimensionality!

In this toy example the input space is only three-
dimensional, so it is possible to display the SOM unit
weight vectors in the input space. This is done in
figures 3 and 4. The folding of the lower-dimensional
SOM is here easily visualized.

In the second example, financial statement data
from small and medium-sized Finnish enterprises is vi-
sualized using again both 2D and 3D SOMs. The data
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Figure 2: The U-matrix and component planes of the
3D SOM trained with toy data.

set consists of 30 595 financial statements from 7 028
enterprises of which 1 244 eventually failed. Here we
are mostly interested in the characterization of the dif-
ferences between the financial statements of failing and
non-failing companies, so we are trying to find those
areas of the SOM where most bankruptcies occur. We
use both single-year data that consists of seven differ-
ent financial indicators and two-year data that consists
of the coordinates of the enterprise on the single-year
map during two consecutive years; the methodology
used is described in more detail in [7].

The single-year maps are displayed in figures 5
and 6, and two-year maps in figures 7 and 8; the dark
color corresponds to a high risk of bankruptcy. In
both single- and two-year cases, the three-dimensional
SOM shows much more clearly the boundary of the
“bankruptcy area”. In the single-year case, the 2D
SOM shows a rather hazy boundary, whereas 3D SOM
shows a single bankruptcy cluster with rather sharp
boundaries. In the two-year case, the 2D SOM shows
two separate bankruptcy clusters, which is most likely
an artifact caused by the folding of the map: the 3D
SOM still shows only a single cluster.

4 Discussion

The simulations suggest that in such cases when the
intrinsic dimension of the data may be higher than
the dimensionality of the SOM lattice, the results of
visualizing the data must be interpreted with great
caution. The folding of the map can make the “minor
components” of the data look much more complicated

Figure 3: The weight vectors of the 2D SOM trained
with toy data, shown in the input space.

than they actually are; for instance, it may be possible
that one particular part of the input space is repre-
sented in several non-neighboring areas of the map.

These problems can sometimes be alleviated by us-
ing a higher-dimensional map. There is a price to pay,
however. Adding extra dimensions quickly increases
the map size, and although the SOM is rather insen-
sitive to the number of map units (in a classification
application, this is demonstrated in [6]), at least the
computational cost increases linearly with the number
of map units. Also the border effect becomes stronger
with increasing the map dimensionality and should
be countered either “explicitly” as proposed by Ko-
honen [8] or “implicitly” by increasing the map size.
Finally, visualizing the SOM becomes tricky when the
dimensionality of the map is more than three.

Figure 4: The weight vectors of the 3D SOM trained
with toy data, shown in the input space.



Figure 5: The 2D bankruptcy map, trained with the
single-year financial statement data.

Figure 6: The 3D bankruptcy map, trained with the
single-year financial statement data.

Figure 7: The 2D bankruptcy map, trained with the
two-year trajectory data.

Figure 8 The 3D bankruptcy map, trained with the
two-year trajectory data.

References

[1]

2]

[5]

[6]

[7]

E. Alhoniemi, J. Himberg, K. Kiviluoto, and
J. Vesanto. SOM Toolbox. Published via WWW,
Sept. 1997. Available at http://www.cis.hut.fi
/projects/somtoolbox/.

R. Der, G. Balzuweit, and M. Herrmann. Con-
structing principal manifolds in sparse data sets
by self-organizing maps with self-regulating neigh-
borhood widths. In Proceedings of the Interna-
tional Conference on Neural Networks (ICNN’96),
volume 1, pages 480483, Piscataway, New Jersey,
USA, June 1996. IEEE Neural Networks Council.

R. Hecht-Nielsen. Replicator neural networks
for universal optimal source coding. Science,
269(5232):1860-1863, Sept. 1995.

M. Herrmann. Self-organizing feature maps with
self-organizing neighborhood widths. In Proceed-
ings of the International Conference on Neural
Networks (ICNN’95), volume 6, pages 2998-3003,
Piscataway, New Jersey, USA, Nov. 1995. IEEE
Neural Networks Council.

K. Kiviluoto. = Topology preservation in self-
organizing maps. In Proceedings of the Interna-
tional Conference on Neural Networks (ICNN’96),
volume 1, pages 294—-299, Piscataway, New Jersey,
USA, June 1996. IEEE Neural Networks Council.

K. Kiviluoto. Predicting bankruptcies with the
self-organizing map. Neurocomputing, 1998. To
appear.

K. Kiviluoto and P. Bergius. Two-level self-
organizing maps for analysis of financial state-
ments. In Proceedings of the 1998 IEEE Interna-
tional Joint Conference on Neural Networks (IJC-
NN’98), volume 1, pages 189-192, Piscataway,
New Jersey, USA, May 1998. IEEE Neural Net-
works Council.

T. Kohonen. Self-Organizing Maps. Springer Se-
ries in Information Sciences 30. Springer, Berlin
Heidelberg New York, 1995.

H. Ritter and K. Schulten. Convergence properties
of Kohonen’s topology conserving maps: Fluctua-
tions, stability, and dimension selection. Biological
Cybernetics, 60(1):59-71, Nov. 1988.



