Softmax-network and S-Map — models for
density-generating topographic mappings

Kimmo Kiviluoto, Erkki Oja

Abstract— We propose a neural network model for density-
generating topographic mappings. The model consists of
two parts: the Softmax-network, and the S-Map. The
Softmax-network implements the softmax function, so that
each neuron’s output is a softmax of the weighted sum of
the input to that neuron and to its neighbors. The S-Map,
based on the Softmax-network, utilizes a Hebbian-like learn-
ing scheme for the input-to-neuron weights to minimize the
negative log likelihood error function; simulations show that
a simplified version of the S-Map with fully Hebbian learn-
ing yields qualitatively similar results. The model is related
both to the Generative Topographic Mapping (GTM) and
the Self-Organizing Map (SOM).

Keywords— Softmax, S-Map, generative topographic map-
pings, self-organizing map

I. INTRODUCTION

E present a model that forms a mapping from the

original data space onto a neural lattice so that the
topographic relations between the data vectors are pre-
served as well as possible. The model consists of two parts,
the Softmax-network and the S-Map.

The Softmax-network determines the outputs of the net-
work for a given input vector in a recurrent manner, based
on the lateral feedback connections in the network. The
output of a neuron in the Softmax-network becomes equal
to the softmax function of the weighted sum of the afferent
inputs to that neuron and to its neighbors. The S-Map, in
turn, is a learning algorithm that, based on the Softmax-
network, updates the afferent weights of the neurons to
minimize the negative log likelihood error for a given data
set, while topological ordering emerges.

We are not suggesting that our model would describe the
information processing in real biological neurons. Neurobi-
ology has been a notable source of inspiration, however —
some of the central elements of the model have their roots
in it. Therefore, we argue that both Softmax-network and
S-Map can be characterized as “neural” in their philosophy,
while being easily interpreted in probabilistical terms.

II. THE SOFTMAX-NETWORK

The activities of neurons in a network are often assumed
to compete with each other: regardless of the initial state
of the network, the neurons that receive the largest net
input quickly become the most active ones, while the ac-
tivities of other neurons in the network are suppressed.
This kind of behavior has been suggested to occur in bi-
ological neural networks, and also many popular artificial
neural network models are based on the idea that activities

Both authors are with the Laboratory of Computer and Information

Science, Helsinki University of Technology, Espoo, Finland. E-mail:
Kimmo.Kiviluoto@hut.fi, Erkki.Oja@hut.fi

are determined by competition between the neurons — as a
prominent example of such a model, we mention Kohonen’s
Self-Organizing Map [1].

The limiting case of the competition is Winner-Take-All
(WTA) behavior: only the neuron receiving the largest in-
put remains active after a transient period, and activities of
all the other neurons become zero. The WTA network can
suppress noise in the inputs; mathematically, it is equiva-
lent to vector coding.

However, it may be argued that, based on a competitive
network, a more effective coding scheme would be obtained
if more than only one neuron were allowed to be active for
each input, and if the outputs could also take on values
between one and zero. This kind of “Winners-Get-Most”
(WGM) behavior! could still suppress noise and thus im-
prove contrast, but less information would be lost than
with the WTA function, which is capable of distinguishing
between only as many different types of input vectors as
there are neurons in the network.

The WGM function could also help to find a probabilisti-
cal interpretation for the network outputs. From this point
of view, an especially useful model for the WGM is the soft-
maz output function (see e.g. [3])

exp(Ba;)
YL, exp(Bat)

where o is the effective input the to j*" neuron in an
ensemble of K neurons, and 5; is its output; 3 is a pa-
rameter that controls the steepness, or degree of contrast-
enhancement, of the softmax. The softmax function makes
it possible to interpret the outputs as probabilities.

Here, we propose a simple model that implements the
softmax function of the effective inputs to each neuron.
The net inputs are taken to be weighted sums of the affer-
ent inputs to each neuron and to its neighbors, the effective
weights being given by a decreasing function of the distance
between the neurons. The outputs of neurons located near
each other thus become correlated — as later becomes obvi-
ous, this is necessary for the S-Map to form a topographic
mapping in any useful sense.

i =

(1)

A. The Softmaz network model

In the Softmax network model, each neuron j is assumed
to receive three kinds of input (the list of symbols used is
presented in table I):

'Some authors, e.g. [2], have dubbed this kind of behavior as
“Winners-Share-All”. We feel that our proposal “Winners-Get-Most”
might be slightly more descriptive: Winners get most but not all of
the total activity of the network, and they do not share it in equal
proportions.

TABLE I
LIST OF SYMBOLS

nominal lateral weights of

neuron j (strengths of lateral

connections from all other

neurons to neuron j) vi=[v ... vk T
matrix of all nominal lateral

weights N=[v; ... VK]
effective lateral weights of | &; = [P ... vk ;)T =
neuron j [(N“1)1 .o (N)]
input vector at time ¢ gh=[et ...]
afferent weights of neuron

j,j:].,...,K ,u]:[,ulj...,upj]T
matrix of all afferent weights | M = [pg ... pg]
afferent input to neuron j o =py

vector of afferent inputs to

all neurons a=[a ... ag]?
effective afferent input to

neuron j o = ﬁ;‘ra

output (activity) of neuron j | n;

vector of outputs from all

neurons n=1[mn ... nx]T

o afferent input o = u}"E, where p; and £ are the affer-
ent weight and input vectors, respectively — here the dot-
product is used as the measure of similarity between the
weight and input vectors, but also other similarity mea-
sures such as Euclidean metric could be used;

o neuron-specific lateral input u;-rf (n), where v; is the lat-
eral connection strength vector of the j*® unit and f(n) is
some function of the outputs 7 of all the units; our choices
for v; and f are discussed shortly;

o lateral input common to all neurons 7y, which serves the
purpose of normalizing the total output of the network.

Networks that have this type of general structure have
been considered earlier by several different authors, espe-
cially Grossberg and his co-workers, who have focused on
such networks in neurophysiological context (see e.g. [4]).
Also one way to motivate the Self-Organizing Map algo-
rithm is the network architecture described above [5].

In principle, the only requirement for the lateral connec-
tion strength matrix N is that it must be positive definite
to ensure the stability of the network. In this paper, we
consider the case when the lateral connections are of the
following simple form: each neuron receives positive feed-
back of equal strength from all neurons within a certain
distance from it, and strong negative feedback from itself.
In one-dimensional case, the lateral connection strength
vector —v; of the ;' neuron would then be

1---1(=2k—1)1---10--- 0]
—— ——
k units (2)

where k determines the range of the explicit lateral inter-
action; for notational convenience, we prefer to write here

—-v; = [0---0
j—k—1 units k& units

—v; instead of v;.

The functional form of the lateral feedback f(n) is here
assumed be logarithmic. This choice gives rise to many de-
sirable properties of the resulting network. Here, our aim
is not modeling biological neurons; however, it might be
interesting to note that Tal and Schwartz [6] have recently
suggested that “quasi-logarithmic computations could oc-
cur in interneurons of the central nervous system”.

The model for the output of the j*" neuron can be ex-
pressed as the differential equation

K
= g =Y viglnn +(1—7)| 0 3)
i=1

Therefore, the differential equation for all outputs, written
in vector form, is

1 = diagla — Nlnn + (1 —v)1]n (4)

where logarithm of a vector is taken elementwise so that
Inn = [Inn ...lnnk]%, diag(a) denotes a matrix with
elements [... ax]? on the main diagonal and zeros else-
where, and diag(1) = I, the unit matrix.

The Softmax-network was greatly inspired by the model
proposed by Fukai and Tanaka [2]; the main difference be-
tween our model and their neuroecological equation is that
our model employs logarithmic feedback whereas in the
neuroecological equation the feedback is linear. Note that
both of these models can be interpreted as special cases of
the general class of Cohen-Grossberg competitive dynami-
cal systems [7].

B. The stable states of the Softmaz-network

Let us calculate the stable states of the differential equa-
tions (4). These occur at the points in which the time
derivatives for the neuron outputs vanish:

diagla —NInn+ (1 —-~v)1jln =0 (5)
The non-trivial solutions for (5) are

a—Nhnp+(1-+)1=0 (6)
SInp=N"1ta+(1-7)1] (7

If the lateral weights v; are chosen as in (2), the columns
of the inverse N~! sum to one, and we may further sim-
plify (7) to

n =exp(l - 7) exp(N~ ') ®
=7'exp(N~"a)
The output of each neuron j is thus proportional to the
exponential function of the weighted sum of afferent inputs
to that neuron and its neighbors, with weights given by
U; =[(N"1);...(N" Yk ;]*. A comparison of our choice
for the “nominal” lateral weights —v; and the resulting
“effective” lateral weights 7; is depicted in figure 1.

nominal lateral weights

. IR .

effective lateral weights

0.1!

0.1

portf] T T [ttr0ae

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 A

Fig. 1. The nominal lateral weights —v; and the corresponding ef-
fective lateral weights &; in the case of one-dimensional neuron
lattice. For comparison, in the same picture with the effective
weights, also Gaussian (dashed line) and Laplacian (dotted line)
functions are shown.

The output of a single neuron can therefore be written
as

T
K
n; =+ exp(P’ @) = v exp (Z ﬂz-,ju,) ¢
i=1 9)

Contrasting this to (1), it is clear that with a suitable choice
for 7', the network outputs equal a softmaz of the effective
afferent inputs 043 = ﬂfa, which are weighted sums of the
original afferent inputs . Some possible choices for 7' are
discussed below.

Although not explicitly shown here, the steepness param-
eter of the softmax, denoted with £ in (1), can be incorpo-
rated into the model by appropriate scaling of the afferent
weight vectors p;, which results in a corresponding scaling

of the afferent inputs a; = p] €.

C. Constraining the total activity of the network

The choice for v/ depends on the desired normalization
— should the network outputs sum up to some constant,
or should the length of the network output vector ||n|| be
normalized? The normalization can be performed accord-
ing to the scheme introduced in [8]. In difference equation
form, the approximation for the Softmax-network outputs
can thus be written as

1 :=n + ddiag(a — NInn + 19" Nlnn)n
(10)

if the outputs are to sum up to some constant (§ is a step
size parameter), and as

1 :=n + ddiagla — Nlnn + 197 diag(N Inn)n]n
(11)

if the network output vector should be of constant length.

D. Simulating the Softmax-network

In figure 2, simulation results with a one-dimensional
lattice consisting of 1,000 neurons are shown. The initial
outputs of the network were random in the first simulation
and ordered in the second. For comparison, also shown is a
softmax function of the inputs that is calculated explicitly
using Gaussian effective weights.

afferent inputs Gaussian softmax of afferent inputs
[
H
'I\ : II\\
[V ;o\ ;
/ \ INE
Y, 4 N A pd

initial outputs 1 inal outputs 1

A ; .
i Iy:
ST "-’i’\

initial outputs 2

inal outputs 2

e, M -
N ! s A 0
5] fif - I
e { . Y A __Jf""fi’\

Fig. 2. Simulations with a one-dimensional Softmax-network. Net-
work units are evenly spaced along the x-axis; the input to or
output from the i* unit corresponds to the y-coordinate of the
dot placed at £ = ¢. The afferent inputs are shown on top left, an
explicitly calculated softmax with Gaussian effective weights on
top right; the random initial outputs of the Softmax-network on
middle left, and the corresponding final outputs on middle right;
the non-random initial outputs of the Softmax-network on bottom
left, and the corresponding final outputs on bottom right.

III. THE S-MAP

The S-Map [9] is a network model with a learning algo-
rithm for the afferent weight updates. It is based on the
Softmax-network in the sense that it utilizes the Softmax-
network for determining the outputs of the neurons for a
given input vector.

A. S-Map learning algorithm

The S-Map learning algorithm is used to tune the afferent
weights. The updates are proportional to the activity of the
unit that the weight is associated with, and the activities
of the neighboring units. Using the “dot-product metric”
to measure the similarity between the afferent weights p;
and afferent inputs &, the learning rule can be written as

K
pitt =l + 6 (Z ¢§n§> (I phuih)e!

i=1 (12)
In words, the stronger the activities 7; that are given by (9)
near unit j, where “nearness” is determined by the weight-
ing factors ¢§-, the more the afferent weight vector p; turns
toward the present afferent input vector &*. The matrix in
the second parentheses keeps the weight vectors normalized

to unit length, assuming a small value for the step size pa-
rameter 6¢ [8]. Allowing the weight vector lengths to take
on also other values besides unity corresponds to varying
the steepness of the softmax (1).

The S-map learning algorithm (12) can be further simpli-
fied to employ pure Hebbian learning, so that the afferent
weight updates are proportional to the unit’s own activity
only:

pith =+ 8t (L= ppT)E" (13)

B. Probabilistic interpretation of the S-Map

Let us assume that the afferent weight vector lengths are
normalized to some constant that is common to all neurons
—i.e., we may write the afferent weights as Bu;, ||u,|| =1
for all j. Then, it is possible to make the following inter-
pretation: each neuron j of the network generates a density
in the input space:

p&lj; M, f) =
normalizing ! K g
:(constant) X €Xp ﬂ(; Vi,jﬂi) g (14)
1=

where 3 is the inverse of the variance of the density. Note
that the density generated by neuron j is centered at the
im}z%ge of that neuron in the input space, which is given by
> i—1 Vi,jib;- The interpretation bears similarities to that
introduced in the GTM algorithm of Bishop et al. [10].

Summing up all the densities (14) and normalizing, a
mixture density is obtained. Assuming equal prior proba-
bilities for all units, the posterior probability that the neu-
ron j were “responsible” for the data vector &* is then given
by

p(€'15; M, B)
Y i1 (€55 M, B)

e [ﬂ (Zfil ﬂi,jp‘i)Tgt]
) Y1 exp [5 (Efil ’%"M)T €t]

p(jleh M, B) =

(15)

which can be equated with (9) because of the assumption
made in the beginning of this subsection. We may therefore
write

15 = p(jl€"; M, B) (16)
— the outputs of the neurons for a given input vector are

equal to the probabilities that they were “responsible” for
generating that input vector.

C. Properties of the S-Map

The S-Map algorithm has been shown to minimize the
negative log likelihood for a given data set [9], provided
that the weights ¢% in (12) equal the effective weights 7; ;
in (14) and (15).

The S-Map has many properties in common with the
SOM and GTM algorithms — it might even be character-
ized as a crossbreed of those two algorithms, combining the
computational simplicity and the ability to self-organize of
the SOM with the probabilistic framework of GTM. A more
thorough discussion of the S-Map, SOM and GTM can be
found in [9].

D. Simulations

In this section, we present results of training the S-map
and its simplified version with an artificial data set. The
data consists of 500 points from a uniform random dis-
tribution in the unit square. Initially, the afferent weight
vectors were set to random values. The initial and final
configurations of the maps plotted on top of the data are
shown in figure 3. A batch version of the algorithms was
used here: the weight vectors were updated only after go-
ing through all the data vectors. Moreover, we used an
Euclidean metric version of the algorithms, in which equa-
tions (12) and (13) become

K
p,§+1 = pfs + 6 <Z 171',;‘77;) (& - ;) (17)

=1
and

t+1

pitt = ph 4 6t nk(E — uy) (18)

respectively.

The simulations show that both the S-Map and the sim-
plified S-Map produce a topologically ordered mapping
even from random initialization.

Fig. 3. Random initialization (top), the trained S-Map (middle) and
the trained simplified S-Map (bottom)

IV. DISCUSSION

Much of the work done in neural modelling at the early
phases of artificial neural network research was bottom-up
in the sense that the models started from a minimum of
functional principles realizable in parallel neural networks,
biological or artificial. The emphasis was on the exact net-
work architectures and the dynamics of activation and neu-
ral learning. This made many of the models hard to analyze
rigorously, however, although their validity could often be
substantiated by extensive simulations.

In the present day research, more and more emphasis
is put on “principled” approaches, in which the goals of
neural learning are given explicitly, often using Bayesian
statistics, and the algorithms are derived from the top-
down criteria by conventional numerical methods. Little
concern is devoted to whether the algorithms could actually
be realized in biological or even artificial neural circuits.

We have here attempted to formulate a neural network
for self-organization that is based on a simple feedback ar-
chitecture and activation functions, yet can be shown to
be equivalent to a rigorous probabilistic model in which
the neuron activities are equal to well-defined probabilities.
By experiments, the model was shown to be able to self-
organize in the same way as the well-known Self-Organizing
Map.

(1]
2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

[10]

REFERENCES

T. Kohonen, Self-Organizing Maps. Springer Series in Informa-
tion Sciences 30, Berlin Heidelberg New York: Springer, 1995.
T. Fukai and S. Tanaka, “A simple neural network exhibiting
selective activation of neuronal ensembles: from winner-take-all
to winners-share-all,” Neural Computation, vol. 9, pp. 77-97,
1997.

J. Bridle, “Probabilistic interpretation of feedforward classifica-
tion network outputs, with relationships to statistical pattern
recognition,” in Neurocomputing: Algorithms, architectures and
applications (F. Fogelman Soulié and J. Hérault, eds.), (New
York), Springer-Verlag, 1990.

S. Grossberg, “Adaptive pattern classification and universal re-
coding: I. Parallel development and coding of neural feature
detectors,” Biological Cybernetics, no. 23, pp. 121-134, 1976.
T. Kohonen, “The ‘neural’ phonetic typewriter,” Computer,
vol. 21, no. 3, pp. 11-22, 1988.

D. Tal and E. L. Schwartz, “Computing with the leaky integrate-
and-fire neuron: logarithmic computation and multiplication,”
Neural Computation, vol. 9, pp. 305-318, 1997.

M. Cohen and S. Grossberg, “Absolute stability of global pattern
formation and parallel memory storage by competitive neural
networks,” IEEE Trans. Systems, Man and Cybernetics, vol. 13,
pp- 815-826, 1983.

E. Oja, “A simplified neuron model as a principal component
analyzer,” Journal of Mathematical Biology, vol. 15, pp. 267—
273, 1982.

K. Kiviluoto and E. Oja, “S-map: A network with a simple self-
organization algorithm for generative topographic mappings,”
in Advances in Neural Information Processing Systems (M. L.
Jordan, M. J. Kearns, and S. A. Solla, eds.), vol. 10, MIT Press,
1998. To appear.

C. M. Bishop, M. Svensen, and C. K. I. Williams, “GTM: A
principled alternative to the self-organizing map,” in Advances
in Neural Information Processing Systems (M. C. Mozer, M. I.
Jordan, and T. Petche, eds.), vol. 9, MIT Press, 1997.

