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ABSTRACT

With the continuous increase in computing power, it
has become possible to process and classify masses of
natural data, such as statistical information, images,
speech, as well as other kinds of signals and measure-
ments coming from very different sources. Many prob-
lems occur in industry, finance, remote sensing, medi-
cine, and natural sciences, to mention only a few main
fields, in which one needs efficient tools for visualiza-
tion, prediction, clustering, and profiling.

Often the explicit modelling of the processes under-
lying the measurements is very hard and so inferences
from the measurement data must be made by learning
methods. A widely used class of learning algorithms
are the neural learning paradigms. In this paper, em-
phasis is on unsupervised neural learning. Especially
the techniques of Self-Organizing Maps and Indepen-
dent Component Analysis are reviewed and shown to
be useful in this context. Some examples are shown
on applications of these techniques on financial data
analysis.

1. INTRODUCTION

A large majority of the present-day neural network
research and applications have focused on supervised
learning in feedforward networks like the Multi-Layer
Perceptron network, the Radial Basis Function net-
work, or the LVQ network [9]. Together with their pow-
erful training algorithms, these networks provide highly
efficient model-free methods for designing non-linear
mappings between inputs and outputs using a database
of training samples. Prominent examples are pattern
recognition, optical character readers, industrial diag-
nostics, condition monitoring, modelling complex black
box systems for control, and time series analysis and
forecasting. There are a great deal of practical sample
cases showing the power of supervised neural networks,

and their relations to statistical methods like regression
and Bayesian inference are well understood [6].

Unsupervised learning algorithms are the other im-
portant subclass of neural learning. The characteris-
tic feature of unsupervised neural learning is that the
training set only contains input samples. No desired
outputs or target outputs are available at all. Basically,
these algorithms fall into one of two categories [9]: first,
extensions of the linear transform coding methods of
statistics like Principal Component Analysis, and sec-
ond, learning vector coding methods that are based on
competitive learning.

Of the two main types of unsupervised learning out-
lined above, we review in this paper two algorithms:
the Self-Organizing Map, which is a competitive learn-
ing method related to but not equivalent to vector cod-
ing; and Independent Component Analysis, which can
be seen as an extension of PCA. Examples of these two
methods on financial data analysis, visualization, and
hidden factor recovery are given.

2. THE SELF-ORGANIZING MAP

One of the best-known neural networks in the unsu-
pervised category is the Self-Organizing Map (SOM)
introduced by Kohonen [17]. It belongs to the class of
vector coding algorithms. In vector coding, the prob-
lem is to place a fixed number of vectors, called code-
words, into the input space which is usually a high-
dimensional real space. The input space is represented
by a training sample (X1, ...,x1). For example, the in-
puts can be measurements from a machine or a chem-
ical process, or financial data describing a company or
a customer. Typically, the codewords are found to cor-
respond to relevant clusters among the input training
data, e.g. customer groups or typical process states,
and they can be efficiently used to cluster new inputs.

One way to understand the SOM [17], [18] is to con-
sider it as a neural network implementation of vector



coding: each codeword is the weight vector of a neural
unit. However, there is an essential extra feature in the
SOM. The neurons are arranged to a 1-, 2- or multi-
dimensional lattice such that each neuron has a set of
neighbors. The goal of learning is not only to find the
most representative code vectors for the input training
set in the mean square sense, but at the same time to
build a topological mapping from the input space to
the grid of neurons.

Mathematically, this can be defined as follows. For
any data point x in the input space, one of the code-
words is closest to it. Assume that w; is the closest
among all codewords:

Ix = will = minllx — will,j = 1,... N (1)

The unit ¢ having the weight vector w; is then called
the best-matching unit (BMU) for vector x, and index
i = i(x) can be considered as the output of the map.
Note that for fixed x, Eq. (1) defines the index 4 of
the BMU, and for fixed i, Eq. (1) defines the Voronoi
set of unit ¢ as the set of points x that satisfy (1). By
the above relation, the input space is mapped to the
discrete set of neurons.

By a topological mapping we mean that if an ar-
bitrary point x is mapped to unit ¢, then all points in
neighborhoods of x are mapped either to ¢ itself or to
one of the units in the neighborhood of i in the lat-
tice. This implies that if ¢ and j are two neighboring
units on the lattice, then their Voronoi sets in the input
space have a common boundary. Whether the topolog-
ical property can hold for all units, however, depends
on the dimensionalities of the input space and the neu-
ron lattice: because no topological maps between two
spaces of different dimensions can exist in the strict
mathematical sense, a two-dimensional neural layer can
only follow locally two dimensions of the multidimen-
sional input space. Usually the input space has a much
higher dimension, but the data cloud (xj, ...,x7) used
in training may be roughly concentrated on a lower-
dimensional manifold, which the map is able to follow
at least approximately [18].

The well-known Kohonen algorithm for self-orga-
nization of the code vectors is as follows [18]:

1. Choose initial values randomly for the weight
vectors w; of the units ¢

2. Repeat Steps 3,4 until the algorithm has con-
verged:

3. Draw a sample x from the training set and
find the best matching unit i according to Eq.

(1)

4. Adjust the weight vectors of all units by
W, =W, +7*h, % (X — W) (2)

where «y is a gain factor and h, is a function of
the distance r = ||i—j|| of units 7 and j measured
along the lattice.

(In the original version [17], the neighborhood function
h, was equal to 1 for a certain neighborhood of i, and
0 elsewhere. The neighborhood and the gain v should
slowly decrease in time).

The convergence and the mathematical properties of
this algorithm have been considered by several authors,
e.g. [18], [20].

3. SOM IN CORPORATE BANKRUPTCY
PREDICTION

The Self-Organizing Map has been found to be a valu-
able tool for analyzing financial statements. In a num-
ber of earlier studies [2, 14, 21, 22], the SOM has been
used for data visualization, and in some cases also for
classification of companies into healthy and bankruptcy-
prone ones.

The material used in our recent studies [15] consists
of Finnish small and medium-sized enterprises, using
the line of business, age, and size as the selection cri-
teria. It was also required that the history and state
of the enterprise be known well enough: if there were
no data available for a longer period than two years
before the bankruptcy, or if the last known financial
statements were very poor, the company was rejected
from the sample. In the final sample, there were 8 484
financial statements given by 2 116 companies, of which
568 have gone bankrupt.

The financial indicators used for training the SOM
are three commonly used ratios that measure the prof-
itability and solidity of a company: (i) operating mar-
gin and rents, (ii) net income, and (iii) equity ratio.
In addition to these, (iv) net income of the previous
year is also included; together with the net income of
the present year, it reflects the change in profitability.
Before training, the indicators were first preprocessed
using histogram equalization separately for each indi-
cator.

The SOM after training is shown in figure 1. In each
subfigure, one component of the weight vectors associ-
ated with the map units is displayed. The gray-level
coloring shows the relative values of that component in
different parts of the map, black corresponding to “bad”
values — either low values of financial ratios, or high
proportion of bankruptcies. Note how the profitability



generally increases when going downwards, while solid-
ity generally increases to the right. The bankruptcies
are concentrated in the upper left-hand corner of the
map, where both profitability and solidity are low.

Net income
prev. year
L1

Oper. margin  Net income

and rents

Equity ratio

Figure 1: The first-level SOM. Shown are the relative
values of the financial indicators, proportion of enter-
prises with varying number of years to bankruptcy, and
proportion of all enterprises that went bankrupt within
five years after giving the financial statement.

Examples of trajectories formed by an enterprise
during several consecutive years are depicted in fig-
ure 2. Generally, the trajectories tend to move counter-
clockwise: a decrease in profitability, which shows as an
upward movement, eventually results in a decrease in
solidity, thus producing a leftward movement as well.
Exceptions to this rule indicate abnormalities, such as
sudden changes in the capital structure of the enter-
prise.

Figure 2: Trajectories of four companies on the first-
level SOM — the two companies on the left went eventu-
ally bankrupt. The year the enterprise was mapped to
each trajectory point is plotted next to the trajectory;
the area with a high bankruptcy risk is marked with a
(thresholded) darker shade.

It seems plausible that this methodology could be
extended also to quantitative analysis. The first step
could be the classical “bankruptcy prediction problem”,
in which one tries to answer the question whether or
not some company will go bankrupt, given its financial

statements. This has become something of a bench-
mark problem and has been widely studied, so it could
be used to get an idea of the performance level of the
methodology introduced here.

4. INDEPENDENT COMPONENT
ANALYSIS

Recently, the method of Independent Component Anal-
ysis (ICA) has attracted considerable interest in the
signal processing and neural network communities [1,
4, 5,7, 12, 13, 19]. Consider a set of parallel signals
or time series z;(t), with 4 indexing the individual time
series and ¢t denoting discrete time. In the basic ICA, a
generative model is assumed, by which the original sig-
nals z;(t) are instantaneous linear mixtures of indepen-
dent source signals s;(t), with some unknown mixture
coefficients a; ;:

zi(t) = Z ai,j8;(t) (3)

for each signal ;(t). Such a model may not be un-
realistic in some sensor array applications in which a
number of independent signals s; arrive at a number
of sensors but are weighted and superimposed due to
the different locations of the sensors. Also, in the case
of financial time series, there may be some underlying
factors like seasonal variations or economic events that
affect a number of simultaneous time series but can be
assumed to be quite independent.

If we go to vector-matrix formulation, defining a
vector-valued time series x(t) with elements x;(t), a
vector-valued source signal s(¢) with elements s;(t),
and a matrix A = (a;,;), then we can write

x(t) = As(t). (4)

Matrix A is called the mixing matrix. The problem is
to invert this model and find out the vector s(t), given
sequential observations on x(t), but without knowing
the mixing matrix A.

The fundamental restriction of the ICA model is
that we can only estimate non-Gaussian independent
components (except if just one of the independent com-
ponents is Gaussian). Moreover, neither the energies
nor the signs of the independent components s;(t) can
be estimated, because any constant multiplying an in-
dependent component in eq. (4) could be cancelled by
dividing the corresponding column of the mixing ma-
trix A by the same constant. For mathematical con-
venience, we define here that the amplitudes of the in-
dependent components s;(t) have unit variance. This



makes the (non-Gaussian) independent components u-
nique, up to their signs. Note that no order is defined
between the independent components.

In the basic approach to solving the ICA problem,
the solution is sought in the form

§=y=Wx (5)

The goal is now to find a matrix W that makes the
elements of y statistically independent. We call such
a matrix a separating matrix. A recent review of vari-
ous information theoretic contrast functions for solving
W, like mutual information, negentropy, maximum en-
tropy, and infomax, as well as the maximum likelihood
approach, is given by Cardoso [5], who also discusses
the numerical problems in minimizing / maximizing
such contrast functions.

The problem of solving the separating matrix W
is somewhat simplified if we consider only one of the
source signals at a time. From eq. (5) it follows

Si=yi=wix (6)

with w; the i-th row of W. We have earlier suggested
and analyzed neural type one-unit learning rules [11]
that give as solutions one row w; of the separating ma-
trix. A condition of local convergence to a correct solu-
tion was given. The condition is very robust and shows
that a wide range of nonlinear functions in our learning
rules are possible.

The problem is further simplified by performing a
preliminary sphering or prewhitening of the data x:
the observed vector x is first linearly transformed to
another vector whose elements are mutually uncorre-
lated and all have unit variances. This transformation
is always possible and can be accomplished by classical
Principal Component Analysis. At the same time, the
dimensionality of the data should be reduced so that
the dimension of the transformed data vector equals n,
the number of independent components. This also has
the effect of reducing noise. It can be shown that after
this preprocessing, W will be an orthogonal matrix.

As an example of contrast functions, consider the
simple case of maximizing the kurtosis E{y}} —3E{y?}
of the estimated signals y;; but because we assumed
that the estimated signals have unit variance, this re-
duces to maximizing the fourth moment E{y}}. Its

gradient with respect to w; (see Eq. (6)) is 4E{ (w7 x)3x}.

In a gradient type learning rule, the row w; of the sep-
arating matrix W would be sought using an instanta-
neous version of this gradient, in which the expectation
is dropped and the gradient is computed separately for
each input vector x. In addition, a normalization term
would be needed that keeps the norm of w; equal to

one — remember that our W matrix must be orthogonal
due to the prewhitening of the data x.

Another, much more efficient algorithm is the fol-
lowing fixed point iteration [10]:

1. Take a random initial vector w(0) of norm 1. Let
k=1.

2. Let w(k) = E{x(w(k — )Tx)?} — 3w(k — 1).
The expectation can be estimated using a large
sample of x vectors (say, 1,000 points).

3. Divide w(k) by its norm.

4. Tf |w(k)Tw(k — 1)| is not close enough to 1, let
k = k+ 1 and go back to step 2. Otherwise,
output the vector w(k).

The final vector w(k) given by the algorithm equals
one of the rows of the (orthogonal) separating matrix
W.

To estimate n independent components, we run this
algorithm n times. To ensure that we estimate each
time a different independent component, we only need
to add a simple orthogonalizing projection inside the
loop. Recall that the rows of the separating matrix W
are orthonormal because of the sphering. Thus we can
estimate the independent components one by one by
projecting the current solution w(k) on the space or-
thogonal to the rows of the separating matrix W pre-
viously found. Also a symmetrical orthogonalization is
possible.

This algorithm, with the preliminary whitening and
several extensions, is implemented in the FastICA pack-
age available through the WWW [8]. A remarkable
property of the FastICA algorithm is that a very small
number of iterations, usually 5-10, seems to be enough
to obtain the maximal accuracy allowed by the sample
data. This is due to the cubic convergence shown in
[10].

5. APPLICATION: FINDING HIDDEN
FACTORS IN FINANCIAL DATA

It is a tempting alternative to try ICA on financial
data. There are many situations in that application
domain in which parallel time series are available, such
as currency exchange rates or daily returns of stocks,
that may have some common underlying factors. ICA
might reveal some driving mechanisms that otherwise
remain hidden. In a recent study of a stock portfolio
[3], it was found that ICA is a complementary tool to
PCA, allowing the underlying structure of the data to
be more readily observed.

In [16], we applied ICA on a different problem: the
cashflow of several stores belonging to the same retail
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Figure 3: (from [16]). Five samples of the original cash-
flow time series. Horizontal axis: time in weeks.

chain, trying to find the fundamental factors common
to all stores that affect the cashflow data. Thus, the
cashflow effect of the factors specific to any particular
store, i.e., the effect of the actions taken at the in-
dividual stores and in its local environment could be
analyzed.

The assumption of having some underlying inde-
pendent components in this specific application may
not be unrealistic. For example, factors like seasonal
variations due to holidays and annual variations, and
factors having a sudden effect on the purchasing power
of the customers like prize changes of various commodi-
ties, can be expected to have an effect on all the retail
stores, and such factors can be assumed to be roughly
independent of each other. Yet, depending on the pol-
icy and skills of the individual manager like e.g. adver-
tising efforts, the effect of the factors on the cash flow
of specific retail outlets are slightly different. By ICA,
it is possible to isolate both the underlying factors and
the effect weights, thus also making it possible to group
the stores on the basis of their managerial policies using
only the cash flow time series data.

The data consisted of the weekly cash flow in 40
stores that belong to the same retail chain; the cash
flow measurements cover 3 years or 156 weeks. Some
examples of the original data z;(t) are shown in Fig. 3.

The prewhitening was performed so that the origi-
nal signal vectors were projected to the subspace span-
ned by their first four principal components and the
variances were normalized to 1. Thus the dimension of
the signal space was decreased from 40 to 5. Using the
FastICA algorithm, four IC’s s;(t), i = 1,...,5 were es-
timated. As depicted in Fig. 4, the FastICA algorithm
has found several clearly different fundamental factors

hidden in the original data.

The factors have clearly different interpretations.
The upmost two factors follow the sudden changes that
are caused by holidays etc.; the most prominent exam-
ple is the Christmas time. The factor on the bottom
row, on the other hand, reflects the slower seasonal vari-
ation, with the effect of the summer holidays clearly
visible. The factor on the third row could represent
a still slower variation, something resembling a trend.
The last factor, on the second row, is different from the
others; it might be that this factor follows mostly the
relative competitive position of the retail chain with re-
spect to its competitors, but other interpretations are
also possible.
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Figure 4: (from [16]). Five independent components or
fundamental factors found from the cashflow data.

More details on the experiments and their interpre-
tation can be found in [16].
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