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The Self-Organizing Map is used for analysis of financial state-
ments, focusing on bankruptcy prediction. The phenomenon of
going bankrupt is analyzed qualitatively, and companies are also
classified into healthy and bankrupt-prone ones. In the qualitative
analysis, the Self-Organizing Map is used in a supervised manner:
both input and output vectors are represented in the weight vec-
tor of each unit, and during training, the whole weight vector is
updated, but the best-matching unit search is based on the input
vector part only. In the quantitative analysis, three classifiers that
utilize the Self-Organizing Map are compared to Linear Discrimi-
nant Analysis and Learning Vector Quantization. A modification of
the Learning Vector Quantization algorithm to accommodate the
Neyman-Pearson classification criterion is also presented.

1 Introduction

Assessing the probability of bankruptcy of an enterprise is one of the key is-
sues in a credit granting decision. Besides analyzing the strategy, personnel
etc. of the firm, the financiers usually perform an analysis of the financial
statements. One standard approach has been to use a mathematical model
based on Linear Discriminant Analysis [1,2], but a wide variety of other sta-
tistical techniques have also been proposed. Recently, models utilizing neural
networks have been introduced and compared with the “traditional” techniques
— see e.g. [5,14,12,7,16,18,6,3,15,17].

The importance of the problem has made it something of a benchmark test
for different models. Usually, in these tests the problem has been reduced to
a classification of companies into healthy and non-healthy ones. There are
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two characteristics common to many of the reported studies: they are based
on fairly small data sets, and the proportion of the bankrupt firms is much
higher in the data than in the total population from which the sample is
selected. This makes the results somewhat difficult to interpret. With small
data sets, especially when the results are not cross-validated, the differences
in classifier performance cannot be clearly distinguished from statistical noise;
with biased sample, one may also get an over-optimistic view of the classifier
performance on the total population. In the present study, we have tried to
avoid these problems by using a very large sample consisting of nearly 5 000
financial statements, in which the ratio of healthy and bankrupt-prone firms
is the same as in the base population.

2 The tools

The study consists of two parts: qualitative analysis and classification. Both
parts utilize the Self-Organizing Map (SOM) [10]. In qualitative analysis, the
SOM is used to form a “non-linear regression” from the input space into a
plane; this makes it possible to visually examine the differences between firms
that go bankrupt and those that do not. The idea is similar to that used
in [6,13,3,9]. In classification, SOM is used as a vector quantizer, and also to
determine the basis function centers of a Radial Basis Function (RBF') network
(for a review of RBF networks, see e.g. [4]).

2.1 Qualitative Analysis

The input vectors x(t), t = 1,..., N consist of the financial indicators that
are derived from the financial statements, and of binary indicator variables
that correspond to whether the company went bankrupt within a certain time
interval after giving that particular financial statement. As a preprocessing
technique, the original values of the indicators are nonlinearly transformed
using histogram equalization for each component separately.

Below, we shall denote those input vector components that contain the finan-
cial indicators by x/(t), and those components that contain the bankruptcy
indicator variables by x°(t); thus, x(¢) = [x/T(t) x*"'(¢)]", superscript T de-
noting the vector transpose. The SOM model vectors m; are correspondingly
divided into two parts: m; and m?.

The x°(t) part of an input vector is not used in searching the winner unit, so



that the winner index c¢(¢) is given by

c(t) = argmin [/ () = m/ (1)]] (1)

However, after the winner has been found, all the components of the whole
model vectors are updated using the SOM rule

my (¢ +1) := my(t) + heg),;[x(t) — my(7)] (2)

where A ; is a Gaussian neighborhood function, defined as in [10].
2.2 Classification

The classification of companies into healthy and non-healthy ones is done in
two different ways: minimizing the total number of misclassifications, and us-
ing the Neyman-Pearson classification criterion [11]. With the latter technique,
the type I error (classifying a bankrupt company erroneously as a healthy
company) is fixed to a suitable value, and within this constraint the type II
error (classifying a healthy company erroneously as a bankrupt company) is
minimized. In practice, a classifier that is based on the Neyman-Pearson cri-
terion would be the preferred one: type I error is much more costly than type
IT error, but because the proportion of non-bankrupt companies is higher, a
classifier that minimizes the total number of misclassifications would pay more
attention on minimizing the type II errors.

The classifiers used for minimizing the total number of misclassifications are
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),
k-Nearest-Neighbour Classifier (kNN), and Learning Vector Quantization
(LVQ). With the Neyman-Pearson criterion, the following classifiers are used:
Linear Discriminant Analysis (LDA), Learning Vector Quantization (LVQ),
Self-Organizing Map (SOM), and SOM-based Radial Basis Function Network
(RBF-SOM).

The parameters needed for each classifier are determined using five-fold cross-
validation, in which the sample is first divided into five different sets. The sets
are otherwise random, but all the financial statements from any particular
company are required to belong to the same set. Then, the model is trained
using four of these sets, and its performance is evaluated on the fifth. This
is repeated five times so that each set in turn is used as the validation set.
The performance for the given parameters is finally obtained as the average
performance on the validation sets.

The SOM-based classifiers are briefly discussed below, as is also the modifica-
tion of the LVQ for the Neyman-Pearson criterion.



2.2.1 SOM Classifiers

The SOM is used for classification in two different ways, which we shall call
SOM-1 and SOM-2; in addition to these, there is also a third classifier, RBF-
SOM, that is partly based on the SOM.

With SOM-1 and SOM-2 classifiers, all the financial statements that are
mapped to the same neuron are assigned the same class label, ie. the map
consists of “bankruptcy units” and “non-bankruptcy units”. The difference be-
tween these two models is in the labeling method of map units.

SOM-1 is based on a simple voting scheme: for each unit 7, P(bankruptcy|7) is
estimated to be the proportion of the financial statements mapped to the 7*®
unit that were given by companies that had gone bankrupt. This conditional
probability in turn is used as the classification criterion. If there are no input
vectors mapped to some unit, the unit assumes the label of the class with
higher a priori probability, which in this case is the class of healthy companies.

SOM-2 classifier utilizes a strategy similar to that used in qualitative analysis
(see section 2.1). The estimate of conditional probability of bankruptcy given
the unit, P(bankruptcy|i), is based on a bankruptcy indicator component m?
of the model vector of that unit. These indicator components are not used in
the winner unit search, but they are updated with the other components, as
in equations (1) and (2). In effect, SOM-2 may be considered as a smoothed
version of SOM-1; the smoothing is here carried out by the neighborhood
function, but some other type of smoothing kernel could be used as well.

The third model that utilizes the SOM, here referred to as the RBF-SOM, is
a standard RBF network (see [4]), in which the basis function locations are
determined using the SOM. The training takes place in two steps:

(i) A SOM is trained using the vectors x/(¢) as inputs. For each map unit i
is associated one Gaussian basis function ¢;(x/) that is centered on the
model vector mzf of the map unit. The width 3; of the i*® Gaussian is
found using a procedure proposed in [8]: set

B = pmjn [[m/ — m{| 3)

where the optimal value of parameter p — common to all basis functions
— is searched using cross-validation.

(ii) The weights W connecting the basis functions to the output unit are
chosen to minimize the error

£ = 5 X IWalx! ()] - 1) (@

where vector ¢[x/(t)] consists of the individual basis functions ¢;(x/).



The minimization of the error £ is easily accomplished by finding its
gradient with respect to the weights, equating the gradient to zero, and
solving the resulting group of linear equations.

2.2.2  Modifying LV Q) for the Neyman-Pearson Criterion

The LVQ is usually used to minimize the total number of misclassifications;
however, it can also accommodate the Neyman-Pearson criterion, as shown
below. The original LVQ learning rule [10] is

m/(t) + a(t)[x/(t) — mf(t)] when x/(¢) and m/(¢)
mf(t +1) = belong to the same
class, (5)
m/(t) — a(t)[x/(t) —m/(t)] otherwise

c

Here x(t) is an input vector, m(t) is an LVQ prototype vector and «(t) is the
learning rate parameter. Changing (5) to

m/(t) + a(t)B[x/ (t) — m](t)] when x/(t) and m/(¢)

7 belong to the same

m(f+1) = class (6)
’ 6

m/(t) — a(t)(1 — B)[x’(t) — m/(¢)] otherwise

the desired level of type I error results with the asymmetry parameter 3, 0 <
B < 1 suitably chosen — exactly what is needed for a classifier employing the
Neyman-Pearson criterion.

The motivation for the modified algorithm is similar to that of the original al-
gorithm in [10]. Whereas the original algorithm (5) approximates the decision
boundaries where

p(x|C1)P(C1) — p(x|C2) P(C2) = 0 (7)

C; and C, being the classes, the modified version (6) approximates the bound-
aries

Bp(x|C1)P(C1) — (1 = B)p(x|C2) P(C2) = 0 (8)

But this yields a classification rule that can be written as the likelihood ratio
test for a Neyman-Pearson classifier:

p(x[C1) & (1-B)P(C)
p(x|C2) & BP(C1)

=\ 9)



Here, the classification threshold A\ would be chosen so that the desired type
I error rate is achieved. In practice, this is accomplished by finding a suitable
value for 3 using cross-validation.

Let us note that with the Neyman-Pearson-LVQ), also the prototype vector
initialization should be slightly modified. This speeds up the convergence of
the algorithm and can also increase the classification accuracy by reducing
the risk of the prototype vectors getting stuck in local minima. Ordinarily,
the LVQ prototype vectors are initialized so that they are located within their
respective classes, which is usually done using a kNN to check the prototype
vector class labels. With the Neyman-Pearson-LVQ, an appropriately weighted
kNN should be used instead.

3 Material

The material used in the present study represents a certain segment of Kera
Ltd.’s customer companies. The segment consists of small and medium-sized
Finnish industrial enterprises, from which the sample has been selected using
the line of business, age, and size as the pruning criteria. It was also required
that the history and state of the enterprise is known well enough: if there was
no data available for a longer period than two years before the bankruptcy,
or if the last known financial statements were very poor, so that the company
had a high risk of going bankrupt within the next few years, the company was
excluded from the sample. However, in excess to these criteria, no data was
rejected because it was “atypical”, or looked like an outlier.

The total number of financial statements used is 4 898; these have been given
by 1 137 companies, of which 304 have gone bankrupt. The lengths of the
known financial statement histories vary from 1 to 14 years, and their mode is
5 years. The financial indicators used here are operating margin, net income
before depreciation and extraordinary items, net income before depreciation
and extraordinary items of the previous year, and equity ratio.

4 Results and discussion

In the qualitative analysis, the SOM turned out to be a very valuable tool.
Its main strength is, that the visual exploration of the financial indicator -
bankruptcy risk space becomes possible. The capability of the SOM to locate
similar input vectors to nearby units helps to find the common properties of
companies mapped to some particular region of the map. Consequently, an



unknown company can be easily and quite reliably characterized on the basis
of its location on the map.

The U-matrix representation and Sammon projection (for an introduction to
these techniques of visualizing the SOM, see [10]) of the map, displayed in
figure 1, suggest that there are no clearly separated clusters in the input space
but that the input vectors (to be precise, the x/-part of them, i.e. the finan-
cial indicators) come from a single cluster instead. The Sammon projection
also shows that the input space can be rather well approximated with a two-
dimensional SOM shaped like the one used here: no significant folding, to
approximate an intrinsically higher-dimensional input space, or stretching, to
approximate an input space of different shape, of the map is visible.

Fig. 1. U-matrix representation (left) and Sammon projection of the trained SOM

In figure 2, the relative values of the financial indicators on each unit of the
map are displayed, together with the numbers of healthy and non-healthy
companies that are mapped to the units. The two “natural dimensions” of the
map may be roughly characterized as the profitability (vertical direction) and
solidity (horizontal direction) of the company. Perhaps the most interesting,
however, is the figure 3 which shows how the bankruptcy risk is related to
the relative values of the financial indicators. The proportion of the failing
companies is highest in the upper left corner of the map, and the shorter the
time to bankruptcy, the stronger the tendency of the companies to have their
financial statements located in this area.

The classification results trying to minimize the total number of misclassi-
fications in are displayed in table 1; the results using the Neyman-Pearson
criterion are in table 2. The results shown here are the average performances
in the validation sets, using five-fold cross-validation.

In classification, it is clear that a classifier based on the Neyman-Pearson cri-
terion is much more useful than one minimizing the total number of misclas-



Table 1

Classification results using some standard classifiers when minimizing the total num-
ber of misclassifications (per cent), based on financial statements given 2 ... 0 years

before bankruptcy

Classifier total error error I error II
LvVQ 8,6 65,2 2,7
kNN (k=15) 8,5 75,2 1,5
LDA 10,5 471 6,6
QDA 11,1 55,9 6,5
Table 2
Classification results using Neyman-Pearson criterion with two different error I val-
ues (per cent), based on financial statements given 2 ... 0 years before bankruptcy
Classifier error I target total error st.dev. errorI st.dev. error II st.dev.
LDA 25 15,7 (1,0) 25,7 (5,4 146  (1,5)
30 14,1 (1,0) 295  (5,1) 125 (1,4)
LvQ 25 15,9  (0,8) 25,7 5,4) 14,9 (1,6)
30 14,3 (1,0) 30,3  (4,5) 12,5 (1,5)
RBF-SOM 25 15,8 (0,8) 26,4 (6,1) 14,7 (1,3)
30 13,5  (1,0) 30,5 (6,4) 11,7 (1,6)
SOM-1 25 18,9 (2,8) 247 (6,3) 184 (3/4)
30 18,2  (1,6) 30,8 (9,2 16,9 (2,4)
SOM-2 25 16,6  (1,3) 254 (6,7) 15,7 (2,0)
30 14,8 (0,4) 30,4 (6,8) 13,2 (0,9)

sifications. One trick that is often used in practice to make the latter classifier
type work is to artificially balance the difference in the a priori probabilities
of the classes. However, to do this by throwing away some of the financial
statements given by the healthy companies would be wasting data, and such
an artificial balancing would also result in an incorrect classification threshold



which would have to be corrected somehow — and for many types of classifiers,
e.g. LVQ, this would be a difficult if not impossible task.

Using the Neyman-Pearson criterion, most classifiers performed roughly at
the same level, with the exception of the brute-force-approach SOM-1 that
was clearly outperformed by other classifiers. The SOM-2 worked much bet-
ter: the smoothing by the Gaussian neighborhood function seems to make it
surprisingly insensitive to the number of units, as shown in figure 4, where the
performance of the SOM-1 and SOM-2 classifiers as a function of the map size
is depicted.

SOM with RBF performed slightly better than any other classifier consid-
ered here, although its generalization properties appear to be highly sensitive
to the value of the kernel width parameter p. However, its performance was
not significantly different from that of LDA and LVQ, and LDA has an addi-
tional advantage of simplicity — the only parameter that needs to be chosen
is the classification threshold. An interesting alternative to these classifiers
might be a weighted kNN for Neyman-Pearson classification task; at least the
performance of the kNN classifier in minimizing the total number of misclas-
sifications was promising.

An important next step in this study would be using information from several
consecutive years. It seems that the information used here is not enough in all
cases; for instance, a fast growing company with rather low solidity has quite
different prospects than another company which also has low solidity but no
growth. The state of a company during a few consecutive years might also
reveal important factors concerning the ability of the management to adapt
to the changing environment.
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Fig. 2. The relative values of the financial indicators — the lighter the color, the
better the relative value. The number of the healthy (upper figure) and bankruptcy
(lower figure) companies that have been mapped to each map unit is also shown;
here a company has been considered as a healthy one, if it has not gone bankrupt
within five years.
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Fig. 3. Financial indicators vs. bankruptcies, depicted 5 ...

cial indicators; on the two lower rows, light color corresponds to higher proportions

of bankruptcy companies. In the rightmost panel of the bottom row, a “bankruptcy
zone” is drawn: more than one third of the companies that are projected on the left

side of the line have gone bankrupt within five years.
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Fig. 4. On the left: the classification accuracies of the SOM-1 (dashed line) and
SOM-2 (solid line) classifiers vs. the number of map units — the lower lines represent
the percentage of all misclassifications, the upper lines type I misclassifications (clas-
sifying a bankrupt company erroneously as a healthy company). On the right: SOM-2
classifier performance standard deviations, using 5-fold cross-validation. Again, the
lower line represents the percentage of all misclassifications, the upper line type I
misclassifications.
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