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Abstract. A novel model for asymmetric multiagent reinforcement learning is introduced in this paper. The model addresses
the problem where the information states of the agents involved in the learning task are not equal; some agents (leaders) have
information how their opponents (followers) will select their actions and based on this information leaders encourage followers to
select actions that lead to improved payoffs for the leaders. This kind of configuration arises e.g. in semi-centralized multiagent
systems with an external global utility associated to the system. We present a brief literature survey of multiagent reinforcement
learning based on Markov games and then propose an asymmetric learning model that utilizes the theory of Markov games.
Additionally, we construct a practical learning method based on the proposed learning model and study its convergence properties.
Finally, we test our model with a simple example problem and a larger two-layer pricing application.
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1. Introduction

Reinforcement learning methods have attained lots
of attention in recent years [12]. Although these meth-
ods and procedures were earlier considered to be too
ambitious and to lack a firm foundation, they have
now been established as practical methods for solving
Markov decision processes. However, the requirement
for reinforcement learning methods to work is that the
problem domain where the methods are applied obeys
the Markov property. In many real-world problems this
property is not fully satisfied but many reinforcement
learning methods can still handle these situations rel-
atively well. Especially, in the case of two or more
decision makers in the same system the Markov prop-
erty does not hold and more advanced methods should
be used instead. One possible solution is to use com-
petitive Markov decision processes since there exists a
suitable theoretical framework for these processes and
some learning methods have also been proposed.

Earlier work utilizing Markov games in multiagent
reinforcement learning deals with a symmetric learning
model, i.e. each agent in the system has equal infor-
mation in the action selection task. In this paper we

introduce an asymmetric learning model where infor-
mation states are not equal; some agents (leaders) try
to encourage agents with less information (followers)
to select actions that lead to improved payoffs for the
leaders. This approach has several key benefits over
the symmetric learning model:

1. Opposite to the symmetric learning model, the
value of the equilibrium point is unique for the
leader in each state. This uniqueness implies
strong convergence properties of the model.

2. Asymmetric solution always exists in pure strate-
gies. This leads to very fast equilibrium point
evaluation. However, it is also possible to cal-
culate mixed strategy equilibria by using bi-level
optimization techniques (see [2]).

3. Many problem instances are inherently hierarchi-
cal. This is true e.g. in semi-centralized multi-
agent systems. Additionally, space and compu-
tational requirements of the asymmetric learning
model are often lower than in the symmetric case.

Although it is natural to apply asymmetric learning
techniques with inherently hierarchical problems, it is
also possible to simply enforce some ordering among
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learners and use the asymmetric learning model in the
place of the symmetric learning model in nonhierar-
chical problems. In many cases, e.g. in coordination
problems and team games, this approach can still lead
to very good results.

Multiagent reinforcement learning methods have
been discussed earlier by many authors. Existing meth-
ods can be roughly divided into three distinct groups:
1) methods utilizing direct gradients of agents’ value
functions, 2) methods that estimate the value functions
and then use this estimate to compute an equilibrium
of the process and 3) methods that use direct policy
gradients.

Early methods for multiagent reinforcement learn-
ing include e.g. [6] and [24]. The method presented
in [6] uses a simplified version of Q-learning to esti-
mate agents’ value functions. This method can fail to
converge in some difficult coordination problems and
some improvements aiming to overcome these prob-
lems were published in [14] and [13]. Moreover, a
set of performance comparisons between single-agent
reinforcement learning and multiagent reinforcement
learning were performed in [6]. In [24], a simple
gradient-based method is used to optimize agents’ value
functions directly so that it is always a best response
to opponents’ changing strategies. In all of these pa-
pers, the methods are tested with repeated games and
deterministic reward values. In [15], Kapetanakis et
al. propose the technique that converge almost always
in fully stochastic environments, i.e. when rewards are
stochastic.

A more recent study falling into the third category
is [5], in which uses a policy gradient method originally
proposed by Sutton, McAllester, Singh and Mansour
in [26], in multiagent context. The policy gradient
method tries to find the optimal policy from a restricted
class of parametrized policies. However, this method
leans on the Markov property of the environment and
is not thus directly suitable for multiagent domains.
Bowling and Veloso solve this problem by using the
WoLF principle [4] to adjust the learning rate so that the
convergenceis guaranteed (albeit only with very simple
problems). Another study on policy gradients is [22],
in which the VAPS framework originally proposed by
Baird and Moore in [1] for single-agent domains is
expanded for cooperative games.

The first learning method for multistate Markov
games was proposed by Littman in [19]. He introduced
a Q-learning method for Markov games with two play-
ers and a zero-sum payoff structure. This method is
guaranteed to converge from arbitrary initial values to

the optimal value functions. However, the zero-sum
payoff structure can be a very restrictive requirement
in some systems and thus Hu and Wellman extended
this algorithm to general-sum Markov games in [11].
Unfortunately, their method is guaranteed to converge
only under very restrictive conditions. Littman pro-
posed a new method in [20], which relaxes these limita-
tions by adding some additional (a priori) information
about the roles of the agents in the system. Wang and
Sandholm proposed a method that is guaranteed to con-
verge with any team Markov game to the optimal Nash
equilibrium in [30]. Conitzer and Sandholm presented
an algorithm that converges to a Nash equilibrium in
self-play and learn to play optimally against stationary
opponents in [7].

It still remains as an open question if there exist
computationally efficient methods for computing Nash
equilibria of finite games. To overcome this prob-
lem, Greenwald and Hall proposed a multiagent re-
inforcement learning method that uses the correlated
equilibrium concept in place of the Nash equilibrium
in [10]. Correlated equilibrium points can be calcu-
lated using linear programming and thus the method
remains tractable also with larger problem instances.
Some complexity results about Nash equilibria can be
found in [8].

A totally different approach to multiagent reinforce-
ment learning is the COllective INtelligence (COIN)
architecture proposed by Wolpert and Tumer [34]. The
COIN architecture can been seen rather as a frame-
work for adjusting single-agent reinforcement learning
algorithms for multiagent domains than a standalone
method for multiagent reinforcement learning. The
main idea of COIN is to define reward signals for each
agent according to some global fitness measure. Due
to the overall structure of the COIN, the method is very
scalable and remains robust as the problem size scales
up. The COIN framework is also used in many large-
scale realworld applications, see e.g. [35] and [33].

Our previous contributions in the field of multiagent
reinforcement learning include an asymmetric multi-
agent reinforcement learning model [16]. The pub-
lication serves as a stepping stone for this more ad-
vanced work. Additionally, we have proposed nu-
merical methods for multiagent reinforcement learning
in [17] and [18].

We begin the paper by introducing the background
and basic solution concepts of game theory. Then we
briefly go through the theory behind Markov decision
processes and introduce some learning methods applied
to multiagent reinforcement learning problem. Finally,
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we propose our asymmetric learning model for mul-
tiagent reinforcement learning, study its convergence
properties and test it with example problems that have
reasonable large state-action spaces.

2. Game theory

This section is mainly concernedwith the basic prob-
lem settings and definitions of game theory. We start
with some preliminary information about mathemati-
cal games and then proceed to their solution concepts
which are essential for the rest of the paper.

2.1. Basic concepts

Mathematical games can be represented in different
forms. The most important forms are theextensive
form and thestrategic form. Although the extensive
form is the most richly structured way to describe game
situations, the strategic form is conceptually simpler
and it can be derived from the extensive form. In
this paper, we use games in strategic form for making
decisions at each time step.

Examples of both extensive form and strategic form
games can be seen in Figs 1 and 2. Games in strategic
form are usually referred to asmatrix games and partic-
ularly in the case of two players, if the payoff matrices
for both players are separated, asbimatrix games. In
general, anN -person matrix game is defined as fol-
lows:

Definition 1. A matrix game is a tuple Γ =
(A1, . . . , AN , r1, . . . , rN ), whereN is the number of
players,Ai is the strategy space for the playeri and
ri : A1 × A2 × . . . × AN → R is the payoff function
for the playeri.

An example of a game in extensive form. Nodes
1.1 and 2.2 are decision nodes of the player 1 and
2, respectively. Each arch connected to a decision
node (marked witha) is denoting the decision of the
corresponding player. Dashed boxes are information
states for the corresponding player, e.g. player 2 does
not observe the actual strategy choice of the player 1.
The ith number in a leaf node is the resulting payoff
for the playeri.

An example of a game in strategic form. The rows
in the matrix represent strategies for the player 1 and
columns for the player 2. In each entry of the matrix,
theith number is the payoff for the playeri.

1.1

2.2

2.2

4,4

1,2

2,2

3,2

Fig. 1. An example of a game in extensive form. Nodes 1.1 and
2.2 are decision nodes of the player 1 and 2, respectively. Each arch
connected to a decision node (marked witha) is denoting the decision
of the corresponding player. Dashed boxes are information states for
the corresponding player, e.g. player 2 does not observe the actual
strategy choice of the player 1. Theith number in a leaf node is the
resulting payoff for the playeri.

2,2

1,0

4,0

3,1

Fig. 2. An example of a game in strategic form. The rows in the
matrix represent strategies for the player 1 and columns for the player
2. In each entry of the matrix, theith number is the payoff for the
playeri.

In a matrix game, each playeri simultaneously
chooses a strategyai ∈ Ai. In addition to pure strate-
giesAi, we allow the possibility that the player uses
a random (mixed) strategy. If we denote the space
of probability distributions over a setA by ∆(A), a
randomization by a player over his pure strategies is
denoted byσi ∈ Σi ≡ ∆(Ai).

2.2. Equilibrium concepts

In decision problems with only one decision maker,
it is adequate to maximize the expected utility of the
decision maker. However, in games there are many
players and we need to define more elaborated solution
concepts. Next we will shortly present two relevant
solution concepts of matrix games.

Definition 2. If N is the number of players, the strate-
giesσ1∗ , . . . , σN∗ constitute aNash equilibrium solution
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of the game if the following inequality holds for all
σi ∈ Σi and for alli:

ri(σ1
∗ , . . . , σ

i−1
∗ , σi, σi+1∗ , . . . , σN∗ )

� ri(σ1
∗ , . . . , σ

N
∗ )

The idea of the Nash equilibrium solution is that the
strategy choice of each player is a best response to his
opponents’ play and therefore there is no need for devi-
ation from this equilibrium point for any player alone.
Thus, the concept of Nash equilibrium solution pro-
vides a reasonable solution concept for a matrix game
when the roles of the players are symmetric. However,
there are decision problems in which one of the players
has the ability to enforce his strategy to other players.
For solving these kind of optimization problems we
have to use a hierarchical equilibrium solution concept,
i.e. two-playerStackelberg equilibrium concept, where
one player is acting as the leader (player 1) and the
other as the follower (player 2). The leader enforces
his strategy to the opponent and the follower is reacting
rationally to this enforcement.

The basic idea is that the leader selects his strategy
so that he enforces the opponent to select the response
that leads to the optimal response for the leader. Algo-
rithmically, in the case of finite bimatrix games where
the player 1 is the leader and the player 2 is the follower,
obtaining a Stackelberg solution(a1

S , a2
S(a1)) can be

seen as the following two-step algorithm:

1. a2
S(a1) = arg maxa2∈A2 r2(a1, a2)

2. a1
S = argmaxa1∈A1 r1(a1, a2

S(a1))

In step 1, the follower’s strategy is expressed as a
function of the leader’s strategy. In step 2, the leader
maximizes his own utility by selecting the optimal strat-
egy pair. The only requirement is that the follower’s re-
sponse is unique; if this is not the case, some additional
restrictions must be set.

As an example of the Stackelberg equilibrium so-
lution concept, let us consider the game in Fig. 3. If
we now stipulate that the player 1 is the leader and
the player 2 is the follower, the player 1 can enforce
his strategy to the player 2. Thus, before the player 1
enforces his strategy to the player 2, he has to consider
the possible responses of the player 2 and then enforce
the strategy which is the most favorable to him. In this
example game, if the player 1 chooses the strategya1

1,
then the best response of the player 2 isa2

1. If the player
1 choosesa1

2, then the follower’s response isa2
2 and if

the player 1 choosesa1
3, the player 2 responses using

strategya2
3. Clearly, the player 1 maximizes his own

0,1

1,0

-1,-2

-2,-1

-3,-1-1,0

-2,-1

Fig. 3. An example matrix game. Its unique Nash equilibrium in pure
strategies is(a1

2, a2
2). If the player 1 is the leader, the Stackelberg

equilibrium solution is(a1
1, a2

1). Correspondingly, if the player 2 is
the leader,(a1

1, a2
3) is the Stackelberg equilibrium solution [3].

utility by choosing strategya1
1 and thus the Stackelberg

equilibrium solution is(a1
1, a

2
1).

An example matrix game. Its unique Nash equilib-
rium in pure strategies is(a1

2, a
2
2). If the player 1 is the

leader, the Stackelberg equilibrium solution is(a1
1, a

2
1).

Correspondingly, if the player 2 is the leader,(a1
1, a

2
3)

is the Stackelberg equilibrium solution [3].

3. Single-agent reinforcement learning

In this section, we briefly introduce the mathematical
theory of noncompetitive Markov decision processes.
In addition, practical solution methods for these pro-
cesses are discussed at the end of this section.

3.1. Markov decision process

A fundamental concept in aMarkov Decision Pro-
cess is an agent that interacts with the environment
in the manner illustrated in Fig. 4. The environment
evolves (changes its state) probabilistically and for each
state there is a set of possible actions that the agent may
take. Every time the agent takes an action, a certain
cost is incurred.

Formally, we define the Markov decision process as
follows:

Definition 3. A Markov Decision Process (MDP) is a
tuple(S, A, p, r), whereS is the set of all states,A is
the set of all actions,p : S × A → ∆(S) is the state
transition function andr : S × A → R is the reward
function. ∆(S) is the set of probability distributions
over the setS.

Additionally, we need apolicy, i.e. a rule stating
what to do, given the knowledge of the current state of
the environment. The policy is defined as a function
from states to actions:
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Environment

Agent

Action

Cost
State

Fig. 4. An overview of the learning system.

π : St → At, (1)

wheret refers to the discrete time step. The policy is
stationary if there are no time dependents, i.e.

π : S → A. (2)

In this paper, we are only interested about stationary
policies. The goal of the agent is to find the policyπ∗
that maximizes his expected discounted utility:

Vπ(s) = Eπ [R|s0 = s]
(3)

= Eπ

[ ∞∑
t=0

γtrt+1|s0 = s

]
,

wherert is an immediate reward at time stept and
γ is a discount factor. Moreover, the value for each
state-action pair is:

Qπ(s, a) = Eπ [R|s0 = s, a0 = a]
(4)

= r(s, a) + γ
∑
s′

p(s′|s, a)Vπ(s′).

Finding the optimal policyπ∗ can be seen as an
optimization problem, which can be solved e.g. using
dynamic programming algorithms.

3.2. Solving MDPs

Using dynamic programming requires solving the
following equation for all statess ∈ S:

Vπ∗(s) = max
a∈A(s)

Qπ∗(s, a). (5)

These equations,Bellman optimality equations, form
a basis for reinforcement learning algorithms. There
are two basic methods for calculating the optimal pol-
icy, policy iteration andvalue iteration. In the policy
iteration algorithm, the current policy is evaluated and
then improved using greedy optimization based on the
evaluation step. The value iteration algorithm is based
on successive approximations of the value function and

there is no need for repeated computation of the exact
value function.

In both algorithms, the exact model of the environ-
ment should be known a priori. In many situations,
however, we do not have the model available. Fortu-
nately, it is possible to approximate the model from
individual samples on-line. These methods are called
temporal difference methods and can be divided to off-
policy and on-policy methods based on whether they
are using the same policy they are optimizing for learn-
ing or not. An example of on-policy methods is SARSA
which has the update rule [23]:

Qt+1(st, at) = (1 − αt)Qt(st, at)
(6)

+αt[rt+1 + γQt(st+1, at+1)],

where the action selection in the statest+1 occurs ac-
cording to the current policy. An example of off-policy
methods is Q-learning. Its update rule is [32]:

Qt+1(st, at) = (1 − αt)Qt(st, at)
(7)

+αt[rt+1 + γ max
b∈A

Qt(st+1, b)].

When an off-policy method like Q-learning is used,
some other policy than the one being optimized can be
used for exploring the state space. Therefore off-policy
methods are more widely used in real applications.

4. Multiagent reinforcement learning

Until now, we have only discussed the case where
there is only one agent in the environment. In this
section we extend the theory of MDPs to the case of
multiple decision makers in the same environment. At
the end of the section, a number of solving and learning
methods for this extended model are briefly discussed.

4.1. Markov games

With multiple agents in the environment, the funda-
mental problem of single-agent MDPs is that the ap-
proach treats the other agents as a part of the environ-
ment and thus ignores the fact that the decisions of the
other agents may influence the state of the environment.

One possible solution is to use competitive multia-
gent Markov decision processes, i.e.Markov games. In
a Markov game, the process changes its state accord-
ing to the action choices of all the agents and can thus
be seen as a multicontroller Markov decision process.
Formally, we define a Markov game as follows:
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Definition 4. A Markov game (stochastic game) is de-
fined as a tuple(S, A1, . . . , AN , p, r1, . . . , rN ), where
N is the number of agents,S is the set of all states,
Ai is the set of all actions for each agenti ∈ {1, N},
p : S ×A1 × . . .× AN → ∆(S) is the state transition
function,ri : S × A1 × . . . × AN → R is the reward
function for the agenti. ∆(S) is the set of probability
distributions over the setS.

Again, as in the case of single-agent MDP, we need
a policyπi for each agenti (the policies are assumed
to be stationary):

πi : S → Ai, ∀i ∈ {1, N}. (8)

The expected discounted utility of agenti is the fol-
lowing:

V i
π1,...,πN (s) = Eπ1,...,πN [Ri|s0 = s]

(9)

= Eπ1,...,πN

[ ∞∑
t=0

γtri
t+1|s0 = s

]
,

whereri
t is the immediate reward at time stept for

agenti andγ is a discount factor. Moreover, the value
for each state-action pair is

Qi
π1,...,πN (s, a1, . . . , aN)

=Eπ1,...,πN [Ri|s0 = s, a1
0 =a1, . . . , aN

0 =aN ]
(10)

= ri(s, a1, . . . , aN )

+γ
∑
s′

p(s′|s, a1, . . . , aN)V i
π1,...,πN (s′).

Contrast to the single-agent MDP, finding the opti-
mal policyπi

∗ for each agenti can be seen as a game
theoretical problem where the strategies the players can
choose are the policies defined in Eq. (8).

4.2. Solving markov games

In the case of multiagent reinforcement learning, it
is not enough to maximize the expected utilities of in-
dividual agents. Instead, our goal is to find an equilib-
rium policy of the Markov game, e.g. a Nash equilib-
rium policy. The Nash equilibrium policy is defined as
follows:

Definition 5. If N is the number of agents andΠi is
the policy space for the agenti, the policiesπ1∗, . . . , πN∗
constitute a Nash equilibrium solution of the game if
the following inequality holds for allπ i ∈ Πi and for
all i in each state:

V i
π1∗,...,πi,...,πN∗

(s) � V i
π1∗,...,πN∗

(s)

It is noteworthy that Definition 5 coincides with Def-
inition 2 when individual strategies are replaced with
policies. The Stackelberg equilibrium concept can be
extended for policies in similar fashion. We refer to
methods build on Markov games with the Nash equi-
librium concept as symmetric methods and to meth-
ods that utilize the Stackelberg equilibrium concept as
asymmetric methods.

If the exact model, i.e. rewards and state transition
probabilities, is known a priori, it is possible to solve the
game using standard mathematical optimization meth-
ods. However, only a few special cases of Markov
games can be solved with linear programming and, in
general, more complex methods are needed.

4.3. Symmetric learning in markov games

A Markov game can be seen as a set of matrix games
associated with each states ∈ S. In these matrix
games, payoffs for each playeri are equal to function
Qi

π1,...,πN . The learning methods utilize the fact that if

the optimal value functionsV i are known, it is possible
to obtain a solution of a Markov game by solving the
matrix games associated to each states. Of course, the
value functions are not normally known and they must
be estimated during the learning process.

As in the case of single agent reinforcement learning,
Q-values defined in Eq. (10) can be learned from ob-
servations on-line using some iterative algorithm. For
example, in the two-agent case, if we use Q-learning,
the update rule for the agent 1 is [11]:

Q1
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q1

t (st, a
1
t , a

2
t )

(11)
+αt[r1

t+1 + γNash{Q1
t (st+1)}],

whereNash{Q1
t (st+1)} is a Nash equilibrium outcome

of the bimatrix game defined by the payoff function
Q1

t (st+1). The corresponding update rule for the agent
2 is [11]:

Q2
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q2

t (st, a
1
t , a

2
t )

(12)
+αt[r2

t+1 + γNash{Q2
t (st+1)}].

Note that it is guaranteed that every finite matrix
game possesses at least one Nash equilibrium in mixed
strategies. However, there is not necessarily Nash equi-
librium point in pure strategies and thereforeNash{·}
in Eqs (11) and (12) returns the value of a mixed strat-
egy equilibrium.

The major drawback of the genericNash-operator is
that the operator is not unique. Non-uniqueness induces
two major problems:
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1. It is not possible to provide general convergence
proofs. This is a straight consequence of the non-
uniqueness of the Nash operator; there are several
Nash solutions and hence the value of the operator
is not well-defined.

2. All agents should select the same equilibrium so-
lution. This can be very considerable problem,
since there can exists a vast number of different
equilibria in a Markov game. It is possible to
solve this problem, however, by using some re-
finements of the Nash equilibrium concept (re-
duce the space of the equilibrium solutions) or,
in general, by allowing some messaging between
agents. Learning methods that set additional re-
quirements for the equilibria are proposed e.g.
in [30], [31] and [29].

If the payoff structures of the matrix games associ-
ated with the states are zero-sum, it is possible to solve
the games by using theMaxMin operator, which is
unique. However, the zero-sum property could be too
restrictive for many problem domains.

Moreover, calculating Nash equilibrium solution(s)
of the matrix game at each step of the algorithm can
be a very complex task. Greenwald and Hall overcome
this problem by using correlated equilibrium concept in
place of Nash equilibrium [10]. Correlated equilibria
of a matrix game can be determined efficiently by using
linear programming.

5. Asymmetric learning in markov games

In this section, we introduce a mathematical model
for asymmetric multiagent reinforcement learning. We
start by extending the Stackelberg equilibrium concept
for Markov games and then proceed to actual solving
and learning methods for these processes. Correspond-
ing definitions and theorems for matrix games can be
found in [3]. For brevity, all mathematics in this sec-
tion is presented in the case of two agents, the agent
one acting as the leader and the agent two as the fol-
lower. However, the extension to the case of arbitrary
number of agents is quite straightforward and various
agent hierarchies can be easily constructed.

The asymmetric learning model relaxes the prob-
lems of the symmetric model presented in the previ-
ous section by allowing communication between agents
(leader’s enforcements). However, if both agents ac-
cept their roles and keep a copy of the opponent’s Q-
function, there is no need for “real” communication
between agents; both agents are capable of calculating
an equilibrium solution alone.

5.1. Mathematical model

Let us begin with the following definition and as-
sumption that lead to the Stackelberg equilibrium con-
cept for Markov games:

Definition 6. Let Π1 andΠ2 be (finite) policy spaces
for the agents 1 and 2, respectively. Further, let
R(π1) ∈ Π2, ∀π1 ∈ Π1 be the set of follower’s (agent
2) response policies to leader’s enforcement policies.

Assumption 1. The set of follower’s (agent 2) response
policiesR(π1) ∈ Π2, ∀π1 is a singleton, i.e. in every
states ∈ S the follower’s response is unique.

If Assumption 1 does not hold, some extra restric-
tions should be made. For example, the leader can
be risk averse in the sense that he secures his possi-
ble losses against the choices of the follower or there
can exist a social convention that stipulates the action
selection method used by the follower.

Based on Definition 6 and Assumption 1, there is a
mappingT : Π1 → Π2 so that ifπ2 ∈ R(π1) then
π2 = Tπ1. In other words, the mappingT conducts
the follower’s best response to the leader’s enforce-
ment. Using the mappingT we can define the leader’s
Stackelberg policyπ1

S as follows:

Definition 7. LetΠ1 be the finite policy space for agent
1 (leader). Then a Stackelberg equilibrium policyπ 1

S ∈
Π1 satisfies the following inequality for allπ1 ∈ Π1 in
all s ∈ S:

V 1
π1,Tπ1(s) � V 1

π1
S

,Tπ1
S
(s)

Clearly, the follower’s response is:

π2
S = Tπ1

S. (13)

In the asymmetric learning model, the leader en-
forces his action first. Hence, the follower’s policy is
depended on this enforcement, i.e.

π2 : S × A1 → A2. (14)

The following theorem (adaptation for the Stackel-
berg equilibrium concept from [9]) leads to the actual
procedure for determining a Stackelberg equilibrium
policy for Markov games:

Theorem 1. The following two assertions are equiva-
lent:

1. The pair(π1
S , π2

S) is a Stackelberg equilibrium
point in the discounted Markov game with equi-
librium payoffs(V 1

π1
S

,π2
S

(s), V 2
π1

S
,π2

S

(s)), ∀s ∈ S.
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2. ∀s ∈ S, the pair (π1
S(s), π2

S(s, π1
S(s))) con-

stitutes a Stackelberg equilibrium point in the
static bimatrix game(Q1

π1
S

,π2
S
(s, a1, a2), Q2

π1
S

,π2
S

(s, a1, a2)), a1 ∈ A1, a2 ∈ A2.

proof: For the agent 1 in the arbitrary states ∈ S, the
state-action functionQ1

π1
S

,π2
S

can be written as follows:

Q1
π1

S
,π2

S
(s, a1, a2) = r1(s, a1, a2)

+γ
∑
s′

p(s′|s, a1, a2)V 1
π1

S
,π2

S
(s′).

Now, if Assertion 2 holds, it follows that

Q1
π1

S
,π2

S
(s, a1, π2

S(s, a1)) � V 1
π1

S
,π2

S
(s), ∀a1 ∈ A1

with equality forπ1
S(s). Therefore it also holds that

V 1
π1,π2

S
(s) � V 1

π1
S

,π2
S
(s), ∀π1 ∈ Π1, ∀s ∈ S.

Similarly, for the agent 2:

V 2
π1

S
,π2(s) � V 2

π1
S

,π2
S
(s), ∀π2 ∈ Π2, ∀s ∈ S.

For the agent 1, if Assertion 1 holds, the policyπ 1
S

is a best response to the policyπ2
S . Then it follows, in

the arbitrary states ∈ S, for the MDP associated to the
policy π2

S :

π1
S(s) = arg max

a1∈A1
[r1(s, a1, π2

S(s, a1))

+γ
∑
s′

p(s′|s, a1, π2
S(s, a1))V 1

π1
S

,π2
S
(s′)].

Clearly, this defines a best response to the opponent’s
action choiceπ2

S(s, a1) in the bimatrix game associated
to the states. The proof for the agent 2 is symmetric.

5.2. Obtaining asymmetric solution of markov game

As stated in Theorem 1, a Markov game can be seen
as a set of matrix games associated with each state
s ∈ S. If the value functions of both the leader and the
follower are known, we can obtain an asymmetric so-
lution of the Markov game by solving the matrix game
associated with each states using the Stackelberg equi-
librium solution concept. The following three stage
protocol solves a Stackelberg equilibrium solution in a
states ∈ S:

1. Determination of the cooperation strategiesac =
(a1c, a2c) by finding the maximum element of the
matrix gameQ1

π1,π2
in the states:

arg max
a1 ∈ A1

a2 ∈ A2

Q1
π1,π2(s, a1, a2). (15)

2. Determination of the leader’s enforcement (and
action,a1

S = g(s, ac)):

g(s, ac)
(16)

= arg min
a1∈A1

‖f(Q2
π1,π2(s, a1, a2)), ac‖.

3. Determination of the follower’s responsea2
S :

a2
S =arg max

a2∈A2
Q2

π1,π2(s, g(s, ac), a2). (17)

In the protocol,‖a, ac‖, a ∈ A2 is a distance mea-
sure, defined in the Q-value space of the leader, mea-
suring the distance between the Q-value corresponding
a particular action and the Q-value associated to the
cooperation strategies (maximal possible payoff for the
leader), i.e.

‖x, ac‖ = |Q1
π1,π2(s, a1, x)

(18)
−Q1

π1,π2(s, a1c, a2c)|.
The function f is used to select actions by the

player 2; e.g. in the case of of greedy action selec-
tion f = argmaxa2∈A2 . In practical implementations
of the protocol, e.g. when the protocol is applied to
action selection during learning, the minimization in
step 2 can be replaced with thesoftmin function and
the maximization in step 3 with thesoftmax function
for ensuring the proper exploration of the state-action
space.

5.3. Practical off-policy learning algorithm

Actual learning of the payoffsQ1
π1

S
,π2

S
andQ2

π1
S

,π2
S

can be done by using any suitable method from the field
of reinforcement learning. In this paper we present the
equations for asymmetric multiagent Q-learning. If the
agent 1 is the leader and the agent 2 is the follower,
update rules for the Q-values are as follows:

Q1
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q1

t (st, a
1
t , a

2
t )

(19)
+αt[r1

t+1 + γ max
b∈A1

Q1
t (st+1, b, T b)],

Q2
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q2

t (st, a
1
t , a

2
t ) (20)

+αt[r2
t+1 + γ max

b∈A2
Q2

t (st+1, g(st+1, a
c
t+1), b)].

Learning steps for the leader and the follower are
shown in Algorithms 1 and 2, respectively. Note that
only the leader needs a copy of the opponent agent.
These algorithms do not dictate the actual action se-
lection procedure; the only requirement is that every
state-action tuple is visited infinitely often when teach-
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ing is continued infinitely long. For example, it is pos-
sible to select actions by sampling from the uniform
distribution. However, it is more efficient to calculate
an asymmetric solution of the matrix game associated
with the current state and differ from this solution with
some small probability by using e.g. softmax action
selection.

5.4. Convergence properties of the off-policy method

In this section we study the convergenceof the above
presented learning method. We build our study on two
theorems published by Szepesvári and Littman in [27].
For brevity, all mathematics in this section is presented
in the case of two agents.

We begin by introducing the following lemma
and corollary originally proposed by Szepesvári and
Littman in [27]:

Lemma 1. [Conditional Averaging Lemma] Let0 �
αt andωt be random variables. Assume that the fol-
lowing hold with probability 1: E[ωt|αt �= 0] = A,
E[ω2

t ] < B < ∞,
∑∞

t=1 αt = ∞ and
∑∞

t=1 α2
t <

C < ∞ for someB, C > 0. Then, the process

Qt+1 = (1 − αt)Qt + αtωt

converges to A with probability 1.

Corollary 1. If X is an arbitrary set andPt : Q(X) →
Q(X) is an operator that performs a mapping from
the Q-value spaceQ to itself, the following process
converges to the fixed pointQ∗ (x ∈ X):

Qt+1(x) = (1 − ft(x))Qt(x) + ft(x)[PtQt](x)

if the following assumptions hold:

1. The following process converges toQ∗with prob-
ability 1:

Qt+1(x) = (1 − ft(x))Qt(x)

+ft(x)[PtQ
∗](x)

2. There exists a number0 < a < 1 and a sequence
λt � 0 converging to zero with probability 1 such
that‖PtQ−PtQ

∗‖ � a‖Q−Q∗‖+λt holds for
all Q ∈ Q.

3. 0 � ft(x) � 1, t � 0 and
∑n

t=1 ft(x) converges
to infinity uniformly in x asn → ∞.

Note that in [27], the expectations in Lemma 1 are
conditioned with the history spaceFt (increasing se-
quence ofσ-fields). However, the properties con-
cerning theseσ-fields are satisfied trivially with asyn-

chronous reinforcement learning methods and hence,
for brevity, we neglect these conditions in our inspec-
tions.

The crucial point is to note that both the leader’s and
the follower’s learning processes are in the form of the
process in Corollary 1. In this work we identifyX by
the set of state-action tuples(s, a1, a2). Additionally
we set that:

ft(s, a1, a2) =




αt(st, a
1
t , a

2
t ) if(s, a1, a2)

= (st, a
1
t , a

2
t )

0 otherwise

For brevity, we denoteαt(st, a
1
t , a

2
t ) = αt. Further,

if usual conditions of the stochastic approximation the-
ory for the learning rate parameterαt hold, we imme-
diately see that condition 3 in Corollary 1 holds. We
proceed by proving condition 1.

We start the proof by stipulating the operatorPt for
the leader and for the follower as follows:

PtQ
1 = r1

t+1 + γ max
b∈A1

Q1(st+1, b, T b)

PtQ
2 = r2

t+1 + γ max
b∈A2

Q2(st+1, g(st+1, a
c
t+1), b)

From condition 1 in Corollary 1,we get the following
two processes:

Q1
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q1

t (st, a
1
t , a

2
t )

+αt[PtQ
1
S ](st, a

1
t , a

2
t )

Q2
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q2

t (st, a
1
t , a

2
t )

+αt[PtQ
2
S ](st, a

1
t , a

2
t ).

Now we can see that these two processes are in the
one-dimensional form presented in Lemma 1. Thus, to
prove condition 1, it is sufficient to show that:

Q1
S = E[PtQ

1
S ]

Q2
S = E[PtQ

2
S ],

where the expectation operatorE is defined over the
state spaceS. For the leader, we get as follows:

E[PtQ
1
S ] = r1

t+1 + γE[max
b∈A1

Q1
S(st+1, b, T b)].

Moreover, it applies that

Q1
S = r1

t+1 + γ
∑

st+1∈S

p(st+1|st, a
1
t , a

2
t )V

1
S

= r1
t+1

+γ
∑

st+1∈S

p(st+1|st, a
1
t , a

2
t ) max

b∈A1
Q1

S(st+1, b, T b)

= r1
t+1 + γE[max

b∈A1
Q1

S(st+1, b, T b)].
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1. In the statest, select actionsa1
t anda2

t .
2. Observe a new statest+1 and rewardsr1

t+1, r2
t+1.

3. Solve the matrix game associated with the statest+1 by using Stackelberg equilibrium concept. Let us denote the values corresponding
these solutions asVal1(st+1) andVal2(st+1) for the leader and the follower, respectively.

4. Update Q-values for both agents by using the equations:
Q1

t+1(st, a1
t , a2

t ) = (1 − αt)Q1
t (st, a1

t , a2
t ) + αt[r1

t+1 + γVal1(st+1)]

and
Q2

t+1(st, a1
t , a2

t ) = (1 − αt)Q2
t (st, a1

t , a2
t ) + αt[r2

t+1 + γVal2(st+1)].

Algorithm 1. Single learning step for the leader. Q-learning type off-policy method.

1. In the statest, select actionsa1
t anda2

t .
2. Observe a new statest+1 and a rewardr2t+1.
3. Obtain the action enforcement from the leader in the statest+1.
4. Maximize the utility with respect to the enforcement. Let us denote the value corresponding the solutionVal2(st+1).
5. Update Q-value table by using the equation:

Q2
t+1(st, a1

t , a2
t ) = (1 − αt)Q2

t (st, a1
t , a2

t ) + αt[r2
t+1 + γVal2(st+1)].

Algorithm 2. Single learning step for the follower. Q-learning type off-policy method.

Hence, we conclude thatQ1
S = E[PtQ

1
S]. Similarly,

for the follower we get:

E[PtQ
2
S]

= r2
t+1 + γE[max

b∈A2
Q2

S(st+1, g(st+1, a
c
t+1), b)]

and

Q2
S = r2

t+1 + γ
∑

st+1∈S

p(st+1|st, a
1
t , a

2
t )V

2
S

= r2
t+1

+γE[max
b∈A2

Q2
S(st+1, g(st+1, a

c
t+1), b)],

henceQ2
S = E[PtQ

2
S ]. The proof of condition 1 in

Corollary 1 is complete.
To study condition 2 in Corollary 1, we study a

stricter condition for both agents, i.e.

‖PtQ − PtQ̂‖ � a‖Q − Q̂‖,
for some constant0 < a < 1 and for allQ, Q̂ ∈ Q.
This condition assures that the operatorPt is a real
contraction operator. We begin by stipulating the norm
‖ · ‖:

‖ · ‖ = max
s∈S

max
a1∈A1

max
a2∈A2

|f(s, a1, a2)|,

wheref is an arbitrary function ofs ∈ S, a1 ∈ A1

anda2 ∈ A2. For the lhs of condition 2, we get the
following:

γ|max
b∈A1

Q(st+1, b, T b)− max
b∈A1

Q̂(st+1, b, T b)|.

The rhs of condition 2 is:

a max
s∈S

max
b∈A1

max
c∈A2

|Q(s, b, c) − Q̂(s, b, c)|.

Now, by settinga = γ we get the following inequal-
ity:

|max
b∈A1

Q(st+1, b, T b)− max
b∈A1

Q̂(st+1, b, T b)|

� max
s∈S

max
b∈A1

max
c∈A2

|Q(s, b, c) − Q̂(s, b, c)|.

If the inequality holds when we fix its rhs to the state
st+1, it also holds in the maximizing state. Therefore
it is sufficient to show that:

|max
b∈A1

Q(st+1, b, T b)− max
b∈A1

Q̂(st+1, b, T b)|

� max
b∈A1

max
c∈A2

|Q(st+1, b, c) − Q̂(st+1, b, c)|.

It is easy to show that this inequality holds for team
Markov games in which the asymmetric solution is the
global maximum of the game and the games with zero-
sum payoff structure. However, because the follow-
er’s responseTa, a ∈ A1 is depended on his Q-values
and changes during learning, the inequality does not
hold for general-sum Markov games. In each learn-
ing step, the leader effectively has only the fraction of
Q-values available, i.e. Q-values indexed with a pair
(a, Ta), a ∈ A1. Therefore we write a weaker version
of the inequality:

|max
b∈A1

Q(st+1, b, T b)− max
b∈A1

Q̂(st+1, b, T b)|

� max
b∈A1

|Q(st+1, b, T b)− Q̂(st+1, b, T b)|,

which is straightforward to show to be true for any re-
sponseTb. The meaning of this inequality is that the
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Zero-sum game Team game

Non-cooperative Cooperative

Payoff structure

Fig. 5. Payoff structure vs. nature of games.

process moves the available Q-values closer to each
other, in particular closer to the values associated with
the asymmetric solution. If the follower’s responses
change between two updates in some state, it can cause
a large difference of the leader’s value in that state.
However, if the follower is not changing its responses
constantly, this would not cause convergenceproblems.
In the case of the symmetric learning model, the re-
sponse is not even unique (as there can exist multi-
ple Nash equilibria) and thus there are many different
distributions from where the responses are sampled.
Similar deduction also applies for the follower.

The stronger convergence properties are straight con-
sequence of the communication between agents. The
value of the Stackelberg solution is unique for the leader
and therefore there is an incentive for the leader always
use the same Stackelberg strategy and this implies that
the value of the equilibrium is always unique for both
agents. For general-sum games, it is still not possible
to give general convergence proof.

5.5. Applicability of the asymmetric learning model

The proposed asymmetric multiagent reinforcement
learning model itself does not set any restrictions on the
payoff structure of the game. However, the ordering
among decision makers and the asymmetric nature of
the proposed model lead to the immediate question: in
what situations is the asymmetric learning model ap-
plicable? Another, more philosophical question is: do
the decision makers agree on their roles in the decision
process?

In Fig. 5, an illustration of how the nature of the
mathematical game depends on its payoff structure is
presented. In a team game, the same utility function
is shared by both agents and hence the correlation be-
tween agents’ payoff values is at maximum. On the
other hand, in zero-sum games the payoffs are comple-
ments of each other and there is a maximal negativecor-
relation between payoff values. In general-sum games,
the objectives of the agents are partially conflicting and
therefore these games lie between the extreme cases
presented above in the line of Fig. 5.

In team games, there can be multiple different Nash
equilibrium solutions and therefore some equilibrium
selection method is needed. One possible solution is

to fix the ordering of the decision makers and to apply
asymmetric solution concept. In this case, it is also easy
to agree on the roles of the decision makers (asymmetric
solution is the global maximum).

In non-cooperative domains, the use of the asym-
metric solution is only reasonable if the outcome of
the game for the leader depends on his action choice.
The reason for this is that, in a sequential decision pro-
cess, the follower knows the leader’s action choice and
therefore has a vantage over the leader. At the end of
this paper we present a pricing application where the
leader (supplier) and the followers (brokers) have par-
tially conflicting objectives and the leader can affect
greatly to the outcome by his enforcements. Note, that
in zero-sum games, the asymmetric solution is simply
the alternating-turn version of the well-known MaxMin
solution concept discussed in [19].

In learning problems, the payoff structure is not
known to the agents a priori and it can vary in differ-
ent states. Therefore, the selection of the equilibrium
concept depends heavily on the problem instance. For
example, in the two-level pricing application presented
at the end of this paper, the asymmetric equilibrium
concept is a natural choice between the supplier and the
brokers (the supplier charges the brokers and the bro-
kers in turn charge their customers). At the same time,
the relationship between the two brokers is symmetric.

6. Space and computational requirements

The learning model of two agents was discussed in
the previous section. The extension to the case of three
or more agents is fairly straightforward and can be
roughly divided into three categories:

1. One leader and two or more followers. In this
category, the leader is enforcing his action to each
follower. The followers are playing among them-
selves by using some equilibrium concept.

2. Two or more leaders and two or more follow-
ers. Leaders and followers are playing among
themselves by using some equilibrium concept.
The leaders are enforcing their action choices to
the specific followers or all of them.

3. Many levels of hierarchy. The leader on the
highest level enforces his action to the second
level leader and the second level leader enforces,
in turn, his action to the followers. It is possible
that on all hierarchy levels there are more than one
agents and they are playing among themselves by
using some equilibrium concept.
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Next we will inspect the space and computational
requirements of asymmetric multiagent reinforcement
learning. It is assumed that action selections of all
agents in the system influence the payoff functions of
all agents, i.e. the influence diagram of the system is
a fully connected graph. It is noteworthy that these
space requirements are also eligible for the comparison
of computational requirements; one state-actions tuple
is also a parameter in tabular implementations of these
algorithms.

Let us denote the size of the state space as|S| and
assume that the action spaces are state independent.
Furhermore, let|Ai|be the size of action space for agent
i. For brevity, we make an simplifying assumption
that all action spaces are equal size, i.e.|Ai| = |A|, ∀i.
Then we obtain the following space requirement:

SStackelberg = |S||A|NTot
, (21)

whereNTot is the total number of learning agents.
This space requirement is the same as in the case of
Nash equilibrium. Note that the space requirement
corresponds the number of parameters required to store
Q-values in each agent of the system. In the symmetric
learning model, all agents must have a model of their
opponents whereas in the case of asymmetric learning
model only the leaders should have models of their
followers.

7. Example problems

In this section, we solve two simple example prob-
lems by using both symmetric and asymmetric rein-
forcement learning models discussed earlier in this pa-
per. These problems are variations from the commonly-
used grid world problem, which is used for test-
ing single-agent and multiagent reinforcement learn-
ing algorithms in many works, e.g. in [25], [21], [10]
and [20]. Our test cases are the same as in [11], where
the problems were solved using a tabular version of
the symmetric multiagent reinforcement learning al-
gorithm. Moreover, we test the proposed asymmetric
learning model with a larger pricing application.

7.1. Grid world example

In both problems we have a grid world containing
nine cells and two competing agents (Fig. 6). The
agents start from the lower corners 1 and 2, respec-
tively, and on each round they can move to the adjacent
cells (4-neighborhood). In problem 1, there are two

G2 G1

21 21

G2
G1

Fig. 6. The game boards used in the example problems. In both
cases, agents are initially located in the cells marked with numbers1
and2. Goal cells are marked withG1- andG2-symbols. In problem
2, there are barriers in the start cells (marked with thick lines).

distinct goal positions and in the second problem, the
goal cell is the same for both agents. The agents get
large positive payoffs when they reach the right goal
positions. In the symmetric learning model both agents
get the small negative payoffs when they try to move to
the same position and agents are returned back to their
original positions. In the asymmetric learning model,
only the agent 1 (leader) gets the negative payoff and is
thus trying to avoid the collision by its enforcements.
Hence, the ultimate goal of the agents is to reach the
goal cells using as few moves as possible.

In problem 2, there are two barriers in the cells 1
and 2. When the agent tries to move upward from
the start position, it gets through with probability 0.5
and, respectively with probability 0.5 barrier blocks the
movement and the agent remains in the start position.
This extension can be modeled as a stochastic state
transition in the corresponding Markov game.

We characterize the problem with the following
Markov game:

– A state in this problem is a pairs = (p1, p2), i.e.
the positions of the agents. Hence, the state space
of this example consists of9 ∗ 9 = 81 states.

– Both agents get positive payoffs of 0.9 when they
find the right goal cells.

– The action set for both agents isAi={Left, Right,
Up, Down}, i = 1, 2. Both agents are restricted
to stay on the game board.

– The discount factorγ is 0.99.
– Both agents select their actions using the softmax

action selection method.
– In the asymmetric model the agent 1 is acting as

the leader.
– In the symmetric model, if the agents collide both

agents get small negative rewards of−0.1 and in
the asymmetric model only the leader gets this
negative reward.

We solve the problem by using Q-learning like off-
policy methods presented earlier in this paper with sym-
metric and asymmetric learning models. The learn-
ing rate parameterα and the temperature parameter in
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Fig. 7. Few optimal paths in problem 1.

Table 1
Averaged payoff values from 50 test runs in the form (agent 1, agent
2)

problem 1 problem 2
symmetric 0.87,0.87 0.51,0.79
asymmetric 0.87,0.87 0.37,0.88

Fig. 8. Optimal paths in problem 2.

the softmax action selection are modified linearly with
time. Note that the learning rate decaying scheme used
in the simulation runs does not obey the conditions de-
fined in stochastic approximation theory. However, in
real problems, the learning rate decaying scheme that
satisfies these theoretical conditions induces often very
slowly convergence and thus this kind of scheme is sel-
dom used in real applications and empirical research.

When one of the agents reaches the goal position,
agents are moved back to their initial positions and the
test run is restarted with a new episode. The maximum
length of the episode is restricted to 10 moves. We
repeated test runs 50 times in every test case. In Fig. 7,
there are few equilibrium paths generated by the sym-
metric and the asymmetric learning models in problem
1. Respectively, in Fig. 8, there are equilibrium paths
in problem 2.

The averaged payoff values calculated from test runs
are shown in Table 1. In problem 1, both learning
models performed equally and found optimal paths. In
problem 2, the symmetric model found both optimal
paths illustrated in Fig. 8 while the asymmetric model
found only the rightmost path. The reason for this phe-
nomenon is that only the leader gets negative feedback
and this motivates him to move upward in the start state.
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Fig. 9. The convergence of the symmetric multiagent reinforcement
learning algorithm in problem 1.
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Fig. 10. The convergence of the asymmetric multiagent reinforce-
ment learning algorithm in problem 1.

The convergence curves of the learning models are
shown in Figs 9–12. In these curves one point is an
Euclidean distance between two vectors containing Q-
values from consecutive iterations of the algorithm. In
all cases, both agents learned at the same pace. Overall,
the learning in the asymmetric case is slightly faster
than in the symmetric case. Note that in problem 2,
the variance of the convergence speed is higher than in
problem 1 due to the stochastic nature of the problem.

7.2. Two-layer pricing model

In this application, we extend the pricing model orig-
inally presented by Tesauro and Kephart in [28] to han-
dle two-layer agent hierarchies. In this model, there



118 V. Könönen / Asymmetric multiagent reinforcement learning

0 1 2 3 4 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration

C
ha

ng
es

 in
 Q

-v
al

ue
s

Agent 1
Agent 2

Fig. 11. The convergence of the symmetric multiagent reinforcement
learning algorithm in problem 2.
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Fig. 12. The convergence of the asymmetric multiagent reinforce-
ment learning algorithm in problem 2.

are two competing agents (brokers) that sell identical
products and compete against each other on the basis of
price. Additionally, there is a supplier that sell products
to both brokers. At each time step, one of the brokers
decides its new price based on the opponent’s (other
broker’s) current price and the price set by the supplier.
The supplier, in its turn, decides its action based on
the asymmetric solution concept. After the prices has
been set, the customer either buys a product from the
seller or decides not to buy the product at all. After
the customer’s decision, the brokers get their profits
according to the immediate reward functions presented
in Eqs (26) and (27). Utility values for the supplier
are shown in Eqs (28) and (29) in the case where the
brokers 1 and 2 are charged, respectively.

u1(p1, p2, s; l) =




p1 − s if p1 � p2 and
s < lp1

0 otherwise
(22)

u2(p1, p2, s; l) =




p2 − s if p1 > p2 and
s < lp2

0 otherwise
(23)

us1(p1, p2, s; l) =




s − c if p1 � p2 and
s < lp1

0 otherwise
(24)

us2(p1, p2, s; l) =




s − c if p1 > p2 and
s < lp2

0 otherwise
(25)

In Eqs (26)–(29),p1 andp2 are the prices of the bro-
kers 1 and 2, respectively,s is the price of the supplier
andl ∈ [0, 1] is the largest fraction of the broker’s price
that the broker is willing to pay to the supplier.c is the
fixed producing cost of the product.c could also be as-
sociated with some quality parameter, perhaps different
for each broker. However, in this study, the parameter
has a fixed and the same value for each broker.

The meaning of the above proposed utility functions
is that the customer purchases the product from the
broker with the lowest price. If the supplier is charging
too much from the broker (expected profit for the broker
is too low), the broker does not buy the product from
the supplier and the utility drops to zero for both the
supplier and the broker.

In this study, we use reinforcement learning to aid
the agents in anticipating the long-time consequences
of their price decisions on both levels of the agent hier-
archy. Particularly, the use of the reinforcement learn-
ing helps the agents to avoid “price wars”, i.e. repeated
price reductions among the brokers. As a consequence
of a price war, the prices would go very low and the
overall profits would be very low. Furthermore, the
supplier does not know the fractionl and therefore it is
reasonable to apply learning, e.g. reinforcement learn-
ing, also for the supplier.

We make a simplifying assumption that the broker 2
keeps its pricing strategy fixed, i.e. it decides its price
based on the immediate utility value defined in Eq. (27).
Further, the supplier also keeps its pricing strategy fixed
with the broker 2. Figure 13 illustrates this relationship.

In the corresponding Markov game, the state is the
opponent’s (other broker’s) last price and the action is
the current price decision. As the broker 2 uses the
fixed strategy, there is no need for the game between
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Broker 1 game Broker 2 game

Broker 1 Broker 2

Fixed

Fixed

Supplier

Fig. 13. Agent hierarchy in the pricing application.

the brokers. Hence, the update rules for the supplier
and the broker 1 are as follows:

Qs1
t+1(p

2
t , st, p

1
t ) = (1 − αt)Qs1

t (p2
t , st, p

1
t )

+αt[us1(p1
t , p

2
t , st; l) (26)

+γ max
b∈P

Qs1
t (p2

t+1, b, T b)]

and

Q1
t+1(p

2
t , st, p

1
t ) = (1 − αt)Q1

t (p
2
t , st, p

1
t )

+αt[u1(p1
t , p

2
t , st; l) (27)

+γ max
b∈P

Q1
t (p

2
t+1, g(p2

t+1, a
c
t+1), b)],

where P is the set of prices and T is the operator per-
forming the response of the broker 1.p2

t+1 is obtained
from the fixed game between the supplier and the bro-
ker 2. The Q-value tables are initialized by using profit
functions Eqs (26) and (28).

In our test runs, all prices lie in the unit interval and
the number of different pricing options is 25 for all
agents. The parameterl has a value of 0.8 and the
producing cost for the supplier isc = 0.2 per product.
Additionally, the maximum price for the supplier is
0.8. During training each state-action tuple was visited
1000 times. In the testing phase, the initial prices were
selected randomly and one test run consisted of 100
pricing decisions per broker. In Fig. 14, the cumulative
profit (average from 1000 test runs) of each agent is
plotted against the discount factorγ. As we can see
from this figure, the average profit of the supplier grows
monotonically as the discount factor increases. More-
over, the brokers learn a pricing strategy that leads to a
notable growth in the profits compared to the myopic
case. The optimizing broker (broker 1) rises its price
to the maximum in some situations and therefore it has

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

Discount factor
C

um
ul

at
iv

e 
pr

of
it

Supplier
Broker 1
Broker 2

Fig. 14. Averaged profits in the two-layer pricing model. All data
points are averages of 1000 test runs each containing 100 pricing
decisions for both agents. The maximal possible profit for the brokers
is 100 and for the supplier 200.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

Iteration

C
ha

ng
es

 in
 Q

-v
al

ue
s

γ=0.3, supplier
γ=0.3, broker 1
γ=0.9, supplier
γ=0.9, broker 1

Fig. 15. Convergence of the Q-values in the two-layer pricing appli-
cation.

slightly lower profits than the static broker has. How-
ever, the cumulative profits are much higher also for
the broker 1 than in the myopic case.

The convergence of the agents’ Q-value tables is
illustrated in Fig. 15, where the Euclidean distance
between Q-value vectors from consecutive training
rounds is plotted against the round number. Two differ-
ent cases with discount factors 0.3 and 0.9 are plotted
for the broker 1 and the supplier. It can be seen that
the algorithm converged very fast in every case. Con-
vergence speed with highγ values, however, is much
slower than with low values.
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8. Conclusions and future research

A novel model for asymmetric multiagent reinforce-
ment learning is presented in this paper. The paper ex-
tends the Stackelberg equilibrium concept to Markov
games and, based on this concept, a learning model
and a practical learning method are constructed. The
proposed method has stronger convergence properties
than the symmetric multiagent reinforcement learning
methods have and the evaluation of the asymmetric so-
lutions during the learning process demands less com-
putation than in the symmetric case. In addition, the
proposed method was tested with two example applica-
tions. In both cases, the method converged and showed
good performance.

The growth of the inherent dimensionality of the
problem is much bigger concern with multiagent re-
inforcement learning than with single-agent reinforce-
ment learning. Thus, in future research, efficient nu-
merical learning methods, both value function based
and direct policy gradient methods, will be presented
for asymmetric multiagent reinforcement learning.
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