
Web Intelligence and Agent Systems: An international journal 3 (2005) 17–30 17
IOS Press

Gradient descent for symmetric and
asymmetric multiagent reinforcement
learning

Ville K önönen
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Abstract. A gradient-based method for both symmetric and asymmetric multiagent reinforcement learning is introduced in this
paper. Symmetric multiagent reinforcement learning addresses the problem with agents involved in the learning task having equal
information states. Respectively, in asymmetric multiagent reinforcement learning, the information states are not equal, i.e. some
agents (leaders) try to encourage agents with less information (followers) to select actions that lead to improved overall utility
values for the leaders. In both cases, there are a huge number of parameters to learn and we thus need to use some parametric
function approximation methods to represent the value functions of the agents. The method proposed in this paper is based on
the VAPS framework that is extended to utilize the theory of Markov games, which is a natural basis of multiagent reinforcement
learning.
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1. Introduction

Most of the earlier work in the field of multiagent
reinforcement learning deals with tabular methods and
thus the proposed methods are only applicable with
very limited problem instances. In this study, we pro-
pose a value function based numerical solution method
for both symmetric and asymmetric multiagent rein-
forcement learning, which takes explicitly into account
the possible changing exploration policy. The method
is based on the VAPS (Value And Policy Search) frame-
work originally proposed by Baird and Moore [1] in
single-agent domains. In this paper, we extend VAPS
to multiagent domains. Symmetric multiagent rein-
forcement learning deals with the problem where the
roles of the learning systems (agents) are symmetric,
i.e. the payoff function of an individual agent depends
on the other agents’ action choices but all agents are
capable of making their decisions on their own. Asym-
metric multiagent reinforcement learning addresses, in
its turn, the problem where the information states of

the agents involved with the learning task are not equal;
some agents (leaders) try to encourage agents with less
information (followers) to select actions that lead to
improved payoff for the leader. This kind of configura-
tion arises e.g. in semi-centralized multiagent systems
with an external global utility associated to the system.
Additionally, space and computational requirements of
asymmetric learning model are often lower than the
requirements in the symmetric case.

Multiagent reinforcement learning methods have
been discussed earlier by many authors. Existing meth-
ods can be roughly divided into three distinct groups:
1) methods utilizing direct gradients of agents’ value
functions, 2) methods that estimate the value functions
and then use this estimate to compute an equilibrium
of the process and 3) methods that use direct policy
gradients.

Early methods for multiagent reinforcement learn-
ing include e.g. [6] and [23]. The method presented
in [6] uses a simplified version of Q-learning to esti-
mate agents’ value functions. This method can fail to
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converge in some difficult coordination problems and
some improvements aiming to overcome these prob-
lems were published in [12] and [11]. Moreover, a
set of performance comparisons between single-agent
reinforcement learning and multiagent reinforcement
learning were performed in [6]. In [23], a simple
gradient-based method is used to optimize agents’ value
functions directly so that it is always a best response
to opponents’ changing strategies. In all of these pa-
pers, the methods are tested with repeated games and
deterministic reward values. In [13], Kapetanakis et
al. propose the technique that converge almost always
in fully stochastic environments, i.e. when rewards are
stochastic.

A more recent study falling into the third category
is [5], in which uses a policy gradient method origi-
nally proposed by Sutton, McAllester, Singh and Man-
sour in [26], in multiagent context. The policy gradient
method tries to find the optimal policy from a restricted
class of parameterized policies. However, this method
leans on the Markov property of the environment and
is not thus directly suitable for multiagent domains.
Bowling and Veloso solve this problem by using the
WoLF (Win or Learn Fast) principle [4] to adjust the
learning rate so that the convergence is guaranteed (al-
beit only with very simple problems). Another study
on policy gradients is [21], in which the VAPS frame-
work originally proposed by Baird and Moore in [1]
for single-agent domains is expanded for cooperative
games.

The first learning method for multistate Markov
games was proposed by Littman in [16]. He introduced
a Q-learning method for Markov games with two play-
ers and a zero-sum payoff structure. This method is
guaranteed to converge from arbitrary initial values to
the optimal value functions. However, the zero-sum
payoff structure can be a very restrictive requirement
in some systems and thus Hu and Wellman extended
this algorithm to general-sum Markov games in [10].
Unfortunately, their method is guaranteed to converge
only under very restrictive conditions. Littman pro-
posed a new method in [17], which relaxes these limita-
tions by adding some additional (a priori) information
about the roles of the agents in the system. Wang and
Sandholm proposed a method that is guaranteed to con-
verge with any team Markov game to the optimal Nash
equilibrium in [28]. Conitzer and Sandholm presented
an algorithm that converges to a Nash equilibrium in
self-play and learn to play optimally against stationary
opponents in [7]. Sun and Qi propose in [24] a method
for alternating turn games and study consequences of
making rationality assumptions about opponents.

Another problem that arises with general-sum
Markov games is the computational complexity of the
calculation of Nash equilibrium solutions. It is still an
open question if there exist computationally efficient
methods for determining Nash equilibria in an arbitrary
game. To overcome this problem, Greenwald and Hall
proposed a multiagent reinforcement learning method
that uses the correlated equilibrium concept in place
of the Nash equilibrium in [9]. Correlated equilibrium
points can be calculated using linear programming and
thus the method remains tractable also with larger prob-
lem instances. Some complexity results about Nash
equilibria can be found in [8].

A totally different approach to multiagent reinforce-
ment learning is the COllective INtelligence (COIN)
architecture proposed by Wolpert and Tumer [34]. The
COIN architecture can been seen rather as a frame-
work for adjusting single-agent reinforcement learning
algorithms for multiagent domains than a standalone
method for multiagent reinforcement learning. The
main idea of COIN is to define reward signals for each
agent according to some global fitness measure. Due
to the overall structure of the COIN, the method is very
scalable and remains robust as the problem size scales
up. The COIN framework is also used in many large-
scale realworld applications, see e.g. [35] and [33].

Our previous contributions in the field of multiagent
reinforcement learning include an asymmetric multia-
gent reinforcement learning method [14], which intro-
duces an alternative solution concept to the Nash so-
lution concept in Markov games, i.e. the Stackelberg
solution concept. Additionally, we have proposed a
gradient-based learning method for both symmetric and
asymmetric multiagent reinforcement learning in [15],
which serves as a stepping stone for this more advanced
work.

We begin the paper by introducing the background
and basic solution concepts of game theory. Then we
briefly go through the theory behind Markov decision
processes and introduce some learning methods used
with multiagent reinforcement learning problem. Fi-
nally, we extend the VAPS for multiagent case and
test it with two example problems that have reasonable
large state-action spaces.

2. Game theory

This section is mainly concernedwith the basic prob-
lem settings and definitions of game theory. We start
with some preliminary information about mathemati-
cal games and then proceed to their solution concepts
which are essential for the rest of the paper.
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2.1. Basic concepts

Mathematical games can be represented in different
forms. The most important forms are theextensive form
and thestrategic form. Although the extensive form is
the most richly structured way to describe game situ-
ations, the strategic form is conceptually simpler and
can be derived from the extensive form. In this paper,
we use games in strategic form for making decisions at
each time step.

Games in strategic form are usually referred to as
matrix games and particularly in the case of two players,
if the payoff matrices for both players are separated, as
bimatrix games. In general, anN -person matrix game
is defined as follows:

Definition 1. A matrix game is a tuple Γ =
(A1, . . . , AN , r1, . . . , rN ), where N is the number
of players,Ai is the strategy space for playeri and
ri : A1 × A2 × . . . × AN → R is the payoff function
for playeri.

In a matrix game, each playeri simultaneously im-
plements a strategyai ∈ Ai. In addition to pure strate-
giesAi, we allow the possibility that the player uses
a random (mixed) strategy. If we denote the space
of probability distributions over a setA by ∆(A), a
randomization by a player over his pure strategies is
denoted byσi ∈ Σi ≡ ∆(Ai).

2.2. Equilibrium concepts

In decision problems with only one decision maker,
it is adequate to maximize the expected utility of the
decision maker. However, in games there are many
players and we need to define more elaborated solution
concepts. Next we will shortly present two relevant
solution concepts of matrix games.

Definition 2. If N is the number of players, the strate-
giesσ1

∗, . . . , σ
N
∗ constitute aNash equilibrium solution

of the game if the following inequality holds for all
σi ∈ Σi and for alli:

ri(σ1
∗ , . . . , σ

i−1
∗ , σi, σi+1

∗ , . . . , σN
∗ )

� ri(σ1
∗ , . . . , σ

N
∗ )

The idea of the Nash equilibrium solution is that the
strategy choice of each player is a best response to his
opponents’ play and therefore there is no need for devi-
ation from this equilibrium point for any player alone.
Thus, the concept of Nash equilibrium solution pro-
vides a reasonable solution concept for a matrix game

when the roles of the players are symmetric. However,
there are decision problems in which one of the players
has the ability to enforce his strategy to other players.
For solving these kind of optimization problems we
have to use a hierarchical equilibrium solution concept,
i.e. theStackelberg equilibrium concept. In the two-
player case, where one player is acting as the leader
(player 1) and the another as the follower (player 2),
the leader enforces his strategy to the opponent and the
follower reacts rationally to this enforcement.

The basic idea is that the leader selects his strategy
so that he enforces the opponent to select the response
that leads to the optimal response for the leader. Algo-
rithmically, in the case of finite bimatrix games where
player 1 is the leader and player 2 is the follower, ob-
taining a Stackelberg solution(a1

S , a2
S(a1)) can be seen

as the following two-step algorithm:

1. a2
S(a1) = arg maxa2∈A2 r2(a1, a2)

2. a1
S = arg maxa1∈A1 r1(a1, a2

S(a1))

In step 1, the follower’s strategy is expressed as a
function of the leader’s strategy. In step 2, the leader
maximizes his own utility by selecting the optimal strat-
egy pair. The only requirement is that the follower’s re-
sponse is unique; if this is not the case, some additional
restrictions must be set.

3. Single-agent reinforcement learning

In this section, we briefly introduce the mathematical
theory of noncompetitive Markov decision processes.
In addition, practical solution methods for these pro-
cesses are discussed at the end of this section.

3.1. Markov decision process

A fundamental concept in aMarkov Decision Pro-
cess is an agent that interacts with the environment
in the manner illustrated in Fig. 1. The environment
evolves (changes its state) probabilistically and for each
state there is a set of possible actions that the agent may
take. Every time the agent takes an action, a certain
cost is incurred.

Formally, we define the Markov decision process as
follows:

Definition 3. A Markov Decision Process (MDP) is a
tuple(S, A, p, r), whereS is the set of all states,A is
the set of all actions,p : S × A → ∆(S) is the state
transition function andr : S × A → R is the reward
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Fig. 1. An overview of the learning system.

function. ∆(S) is the set of probability distributions
over the setS.

Additionally, we need apolicy, i.e. a rule stating
what to do, given the knowledge of the current state of
the environment. The policy is defined as a function
from states to actions:

π : St → At, (1)

wheret refers to the discrete time step. The policy is
stationary if there are no time dependents, i.e.

π : S → A. (2)

In this paper, we are only interested about stationary
policies. The goal of the agent is to find the policyπ∗
that maximizes his expected discounted utilityR:

Vπ(s) = Eπ [R|s0 = s]
(3)

= Eπ

[ ∞∑
t=0

γtrt+1|s0 = s

]
,

wherert is an immediate reward at time stept and
γ is a discount factor. Moreover, the value for each
state-action pair is:

Qπ(s, a) = Eπ [R|s0 = s, a0 = a] = r(s, a)
(4)

+γ
∑
s′

p(s′|s, a)Vπ(s′).

Finding the optimal policyπ∗ can be seen as an
optimization problem, which can be solved e.g. using
dynamic programming algorithms.

3.2. Solving MDPs

Using dynamic programming requires solving the
following equation for all statess ∈ S:

Vπ∗(s) = max
a∈A(s)

Qπ∗(s, a). (5)

These equations,Bellman optimality equations, form
a basis for reinforcement learning algorithms. There

are two basic methods for calculating the optimal pol-
icy, policy iteration andvalue iteration. In the policy
iteration algorithm, the current policy is evaluated and
then improved using greedy optimization based on the
evaluation step. The value iteration algorithm is based
on successive approximations of the value function and
there is no need for repeated computation of the exact
value function.

In both algorithms, the exact model of the environ-
ment should be known a priori. In many situations,
however, we do not have the model available. Fortu-
nately, it is possible to approximate the model from
individual samples on-line. These methods are called
temporal difference methods and can be divided to off-
policy and on-policy methods based on whether they
are using the same policy they are optimizing for learn-
ing or not. An example of on-policy methods isSARSA-
learning which has the update rule [22]:

Qt+1(st, at) = (1 − αt)Qt(st, at) + αt[rt+1
(6)

+γQt(st+1, at+1)],

where the action selection in the statest+1 occurs ac-
cording to the current policy. An example of off-policy
methods is Q-learning. Its update rule is [29]:

Qt+1(st, at) = (1 − αt)Qt(st, at) + αt[rt+1
(7)

+γ max
b∈A

Qt(st+1, b)].

4. Multiagent reinforcement learning

Until now, we have only discussed the case where
there is only one agent in the environment. In this
section we extend the theory of MDPs to the case of
multiple decision makers in the same environment. At
the end of the section, a number of solving and learning
methods for this extended model are briefly discussed.

4.1. Markov games

With multiple agents in the environment, the funda-
mental problem of single-agent MDPs is that the ap-
proach treats the other agents as a part of the environ-
ment and thus ignores the fact that the decisions of the
other agents may influence the state of the environment.

One possible solution is to use competitive multia-
gent Markov decision processes, i.e.Markov games. In
a Markov game, the process changes its state accord-
ing to the action choices of all the agents and can thus
be seen as a multicontroller Markov decision process.
Formally, we define a Markov game as follows:
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Definition 4. A Markov game (stochastic game) is de-
fined as a tuple(S, A1, . . . , AN , p, r1, . . . , rN ), where
N is the number of agents,S is the set of all states,
Ai is the set of all actions for each agenti ∈ {1, N},
p : S ×A1 × . . .× AN → ∆(S) is the state transition
function,ri : S × A1 × . . . × AN → R is the reward
function for agenti. ∆(S) is the set of probability
distributions over the setS.

Again, as in the case of single-agent MDP, we need
a policyπi for each agenti (the policies are assumed
to be stationary):

πi : S → Ai, ∀i ∈ {1, N}. (8)

The expected discounted utility of agenti is the fol-
lowing:

V i
π1,...,πN (s) = Eπ1,...,πN [Ri|s0 = s]

(9)

= Eπ1,...,πN

[ ∞∑
t=0

γtri
t+1|s0 =s

]
,

whereri
t is the immediate reward at time stept for

agenti andγ is a discount factor. Moreover, the value
for each state-action pair is

Qi
π1,...,πN (s, a1, . . . , aN)

= Eπ1,...,πN [Ri|s0 = s, a1
0

(10)
= a1, . . . , aN

0 = aN ] = ri(s, a1, . . . , aN )

+γ
∑
s′

p(s′|s, a1, . . . , aN )V i
π1,...,πN (s′).

Contrast to the single-agent MDP, finding the opti-
mal policyπi

∗ for each agenti can be seen as a game
theoretical problem where the strategies the players can
choose are the policies defined in Eq. (8).

4.2. Solving Markov games

In the case of multiagent reinforcement learning, it
is not enough to maximize the expected utilities of in-
dividual agents. Instead, our goal is to find an equilib-
rium policy of the Markov game, e.g. a Nash equilib-
rium policy. The Nash equilibrium policy is defined as
follows:

Definition 5. If N is the number of agents andΠi is
the policy space for agenti, the policiesπ1

∗, . . . , π
N
∗

constitute a Nash equilibrium solution of the game if
the following inequality holds for allπ i ∈ Πi and for
all i in each state:

V i
π1∗,...,πi,...,πN∗

(s) � V i
π1∗,...,πN∗

(s)

It is noteworthy that Definition 5 coincides with Def-
inition 2 when individual strategies are replaced with
policies. The Stackelberg equilibrium concept can be
extended for policies in similar fashion. We refer to
methods build on Markov games with the Nash equi-
librium concept as symmetric methods and to meth-
ods that utilize the Stackelberg equilibrium concept as
asymmetric methods.

If the exact model, i.e. rewards and state transition
probabilities, is known a priori, it is possible to solve the
game using standard mathematical optimization meth-
ods. However, only a few special cases of Markov
games can be solved with linear programming and, in
general, more complex methods are needed.

4.3. Symmetric learning in Markov games

As in the case of single agent reinforcement learning,
Q-values defined in Eq. (10) can be learned from ob-
servations on-line using some iterative algorithm. For
example, in the two-agent case, if we use Q-learning,
the update rule for agent 1 is [10]:

Q1
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q1

t (st, a
1
t , a

2
t )

(11)
+αt[r1

t+1 + γNash{Q1
t (st+1)}],

whereNash{Q1
t (st+1)} is the Nash equilibrium out-

come of the bimatrix game defined by the payoff func-
tion Q1

t (st+1). The update rule for agent 2 is symmet-
ric.

Note that it is guaranteed that every finite ma-
trix game possesses at least one Nash equilibrium in
mixed strategies. However, there need not exist a
Nash equilibrium point in pure strategies and there-
foreNash{Q1

t (st+1)} in Eq. (11) returns the value of
a mixed strategy equilibrium.

4.4. Asymmetric learning in Markov games

A Markov game can be seen as a set of matrix games
associated with each states ∈ S. If the value functions
of both the leader and the follower are known, we can
obtain an asymmetric solution of the Markov game by
solving the matrix game associated with each states
using the Stackelberg solution concept. The following
three stage protocol solves a Stackelberg equilibrium
solution in a states ∈ S:

1. Determination of the cooperation strategiesac =
(a1c, a2c) by finding the maximum element of the
matrix gameQ1

π1,π2
in the states:

arg max
a1 ∈ A1

a2 ∈ A2

Q1
π1,π2(s, a1, a2). (12)
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2. Determination of the leader’s enforcement (and
action,a1

S = g(s, ac)):

g(s, ac)
(13)

= arg min
a1∈A1

‖f(Q2
π1,π2(s, a1, a2)), ac‖.

3. Determination of the follower’s responsea2
S :

a2
S = arg max

a2∈A2
Q2

π1,π2(s, g(s, ac), a2).(14)

In the protocol,‖a, ac‖, a ∈ A2 is a distance mea-
sure, defined in the Q-value space of the leader, mea-
suring the distance between the Q-value corresponding
a particular action and the Q-value associated to the
cooperation strategies (maximal possible payoff for the
leader), i.e.

‖x, ac‖ = |Q1
π1,π2(s, a1, x)

(15)
−Q1

π1,π2(s, a1c, a2c)|.
The functionf is used to select actions by player

2; e.g. in the case of of greedy action selection
f = argmaxa2∈A2 . In practical implementations of
the protocol, e.g. when the protocol is applied to action
selection during learning, the minimization in step 2
can be replaced with thesoftmin function and the max-
imization in step 3 with thesoftmax function for ensur-
ing the proper exploration of the state-action space.

Actual learning of the payoffsQ1
π1

S
,π2

S

andQ2
π1

S
,π2

S

can be done by using any suitable method from the field
of reinforcement learning. In this paper we present
the equations for asymmetric multiagent Q-learning. If
agent 1 is the leader and agent 2 is the follower, update
rules for the Q-values are as follows:

Q1
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q1

t (st, a
1
t , a

2
t )

(16)
+αt[r1

t+1 + γ max
b∈A1

Q1
t (st+1, b, T b)]

and

Q2
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q2

t (st, a
1
t , a

2
t )

(17)
+αt[r2

t+1 + γ max
b∈A2

Q2
t (st+1, g(st+1, a

c
t+1), b)].

In Eq. (16), the operatorTb conducts the follower’s
unique response to the leader’s action enforcementb.

In this paper, we use also SARSA-like on-policy
versions of the above learning rules. In this case, the
learning agent deviates from the equilibrium solution
by using the same policy that is used for the exploration
of the state-action space when it estimates the value of
the state at the time instancet. Note that theoretical
convergence guarantees for this kind of learning rules

are not provided. However, as can be seen from the
test cases at the end of the paper, this method also
leads to almost as good results as off-policy learning
rules. Additionally, it is more natural to use SARSA-
like learning with the VAPS framework and the direct
policy gradient.

5. VAPS for multiagent reinforcement learning

In this paper, we propose a class of stochastic gra-
dient descent algorithms for multiagent reinforcement
learning. This class of algorithms is called VAPS
(Value And Policy Search) and was originally proposed
by Baird and Moore in [1] for single-agent reinforce-
ment learning tasks. Unlike direct update rules, VAPS
takes explicitly the changing exploration policy into
account. A straight consequence of this is that it is
possible to combine both value function based and di-
rect policy gradient methods in one gradient descent
algorithm. In some cases, this can lead to quicker con-
vergence than using only one of these methods alone.
In this section, we extend the VAPS framework for the
multiagent case with two agents. Moreover, we assume
that the agents observe all action choices and rewards
and know the exploration policies of both agents.

5.1. VAPS

The main idea of VAPS is to minimize the total error
of the policy, i.e. minimize the errorE [1]:

E =
∞∑

t=0

∑
ht∈Ht

P (ht)e(ht), (18)

wheree(·) is an immediate error function,Ht is the set
of all possible histories of lengtht, ht ∈ Ht is a history
(sequence) containing all states, actions and rewards
generated by the policy until the time instancet, i.e.

ht = {s0, a0, r1, s1, a1, r2, . . . , st−1,
(19)

at−1, rt, st, at, rt+1},
andP (ht) is the probabilityof the historyht. Formally,
P (ht) can be expressed as follows [1]:

P (ht) = P (at|st)P (rt+1|st)

×
t−1∏
i=0

P (ai|si; θ)P (ri+1|si) (20)

P (si+1|si)P (NE|si),
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where the proposition NE stands fornot end andθ is
an arbitrary parameter vector containing parameters for
the function approximating Q-values. The probability
functionP (at|st) denotes the probability of choosing
the actionat at the time instancet as a consequence of
the exploration process. The VAPS framework should
be fixed to the actual learning algorithm by selecting
the immediate error functione(ht) in an appropriate
way. We extend this framework for the multiagent case
by including terms corresponding to action choices and
rewards of both agents into the history. Formally, in
the multiagent case, the historyht is as follows:

ht={s0, a
1
0, a

2
0, r

1
1 , r

2
1 , s1, a

1
1, a

2
1, r

1
2 , r

2
2 , . . . , st−1,

a1
t−1, a

2
t−1, r

1
t , r2

t , st, a
1
t , a

2
t , r

1
t+1, r

2
t+1}, (21)

wherea1
t anda2

t are the actions selected by the agents
at the time instancet. Respectively,r1

t+1 andr2
t+1 are

rewards for the agents at the time instancet.
For generality, we assume that the action selection

probabilities of both agents depend on the parameter
vectorsθi, i = 1, 2. Formally, the probability of the
historyht is as follows:

P (ht) = P (a1
t |st)P (a2

t |st)P (r1
t+1|st)P (r2

t+1|st)

×
t−1∏
i=0

P (a1
i |si; θ1, θ2)P (a2

i |si; θ1, θ2) (22)

×P (r1
i+1|si)P (r2

i+1|si)P (si+1|si)P (NE|si).

Moreover, in the multiagent case, we denote the ex-
pected total error of agenti as:

Ei =
∞∑

t=0

∑
ht∈Ht

P (ht)ei(ht), (23)

whereei(ht) is an immediate error function for agent
i. Various error functions are proposed below. By
substituting Eq. (22) into Eq. (23) and differentiating
with respect to an arbitrary parameterθ in the vector
θi, we get the following equation for the gradient of
Ei:

∂Ei

∂θ
=

∞∑
t=0

∑
ht∈Ht

P (ht)
[
∂ei(ht)

∂θ

+ei(ht)
t−1∑
j=0

∂

∂θ

(
lnP (a1

j |sj ; θ1, θ2) (24)

+ lnP (a2
j |sj ; θ1, θ2

)]
.

Note that becauseP (ht) is a real number, the cor-
responding term can be omitted from Eq. (24) and we

still get an unbiased estimate of the gradient. However,
this is true only if the state transitions are sampled by
following the current stochastic policy.

The probability terms in Eq. (24) correspond to the
exploration process. For example, if we are using the
softmax action selection method with the asymmetric
learning model, a possible choice for this probability
distribution is theGibbs distribution, i.e. in the case of
agent 1:

P (a1|s; θ1, θ2) =
ekQ1(s,a1,Ta1)∑
a∈A1 ekQ1(s,a,Ta)

, (25)

wherek is the temperature parameter. Note that the
Gibbs distribution approaches greedy action selection
when k approaches infinity and therefore we select
eventually the actual Stackelberg equilibrium point.
Correspondingly, for agent 2, the Gibbs distribution is
as follows:

P (a2|s; θ1, θ2) =
ekQ2(s,a1∗,a2)∑

a∈A2 ekQ2(s,a1∗,a)
, (26)

wherea1∗ is the enforcement of agent 1. Additionally,
in the experiments of this paper, we make the simpli-
fying assumption that the operatorT and the equilibria
do not depend on the weightsθ1 andθ2. Due to this
assumption, the VAPS works much like in the single-
agent case: the behavior of the opponent is assumed
to be fixed. This simplification worked fine in all test
cases presented at the end of this paper.

A desirable property of the time-varying action se-
lection function is that it would eventually approach the
real equilibrium point, particularly the greedy action
selection in the deterministic case. In the symmetric
case, the equilibrium point can be stochastic and the
action selection functionP (ai

t|st) should be a com-
bination of the true equilibrium probabilities and the
probabilities generated by the exploration process. The
Nash operator does depend on the weightsθ 1 andθ2

but is not a smooth function of these weights. This
implies difficulties in the calculation of the probability
terms in Eq. (24). However, if the immediate error
function does not depend on the current policy, as in
the Q-learning, it is possible to use e.g. greedy action
selection.

In this paper we test the symmetric learning model
with a Q-learning type off-policy method. We sam-
ple the opponent’s action from an uniform distribution
in each state and then select the action, based on the
opponent’s action selection, by using the Gibbs distri-
bution. This method guarantees sufficient exploration
of the state-action space; however, the exploration pol-
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G2 G1

21

Fig. 2. The game board used in the example problem. Agents are
initially located in the cells marked with numbers1 and2. Goal cells
are marked with symbolsG1 andG2.

Fig. 3. Some optimal paths generated by both symmetric and asym-
metric multiagent reinforcement learning models.
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Fig. 4. Convergence of the symmetric learning model with Q-learn-
ing.

icy does not approach an equilibrium point during the
learning.

If the underlying Markov game has terminal states,
a natural way is to set the length of the history to the
length of anepisode, i.e. the trace from a start state to
an end state. After the episode is completed (the end
state is found) the history is cleared. In this case, we

are minimizing the expected error of the episode.

5.2. Error functions in multiagent domains

The choice of the immediate error functione i(ht)
stipulates the actual learning algorithm. In principle, it
is possible to use any learning rule that can be expressed
in the time difference form with the VAPS framework.
For example, in the symmetric case with Q-learning,
the immediate error function takes the following form:

ei(ht)Q =
1
2

∑
st∈S

P (st|st−1, a
1
t−1, a

2
t−1)

×[ri
t + γNash{Qi

t−1(st)} (27)

−Qi
t−1(st−1, a

1
t−1, a

2
t−1)]

2.

Correspondingly, the SARSA error function in the
asymmetric case takes the following form:

ei(ht)SARSA =
1
2

∑
st∈S

P (st|st−1, a
1
t−1, a

2
t−1)

×
∑

a1
t∈A1

P (a1
t |st)

∑
a2

t∈A2

P (a2
t |st)

(28)
×[ri

t + γQi
t−1(st, a

1
t , a

2
t )

−Qi
t−1(st−1, a

1
t−1, a

2
t−1)]

2.

Since Eq. (24) includes the immediate error term
directly, it is possible to use a combination of the value
function based and direct policy gradient learning in the
VAPS framework. In the case of SARSA-learning, the
total immediate error function is a linear combination of
the error generated by the value functionapproximation
and the direct reward:

ei(ht)=(1−β)ei(ht)SARSA+β(b−γtri
t+1),(29)

whereri
t+1 is sampled by following the current pol-

icy andβ ∈ [0, 1] is the weight of the direct rewards.
Whenβ = 0, VAPS performs a direct value function
based learning and whenβ = 1, VAPS reduces to the
REINFORCE algorithm proposed by Williams in [31]
and [32]. The parameterb sets the reward baseline.
However, there is not so much evidence on how this
parameter should be adjusted. Some theoretical sug-
gestion can be found in [30].

If the problem instance is highly non-Markov, it
would be necessary to useβ-value of one or very nearly
equal to one. This is especially true in partially ob-
served Markov decision problems in which the agents
do not observe the actual state but some function of this
state.
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Fig. 5. Convergence of the asymmetric learning model with Q-
learning.
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Fig. 6. Convergence of the asymmetric learning model with SARSA-
learning.

5.3. Calculation of equilibrium points in matrix
games

Both symmetric and asymmetric learning models re-
quire the calculation of the equilibrium point in each it-
eration of the learning algorithm, i.e. the calculation of
an equilibrium solution of the matrix game associated
with the next state. In this paper we need to calculate
the Nash equilibrium point in the case of the symmet-
ric learning model and the Stackelberg equilibrium in
the case of the asymmetric learning model. The Nash
equilibrium solution of the matrix game is guaranteed
to exist only in mixed strategies of the players [20] and
we thus need to use some sophisticated mathematical
optimization algorithm for obtaining the solution. On

the other hand, every matrix game has a Stackelberg
equilibrium solution (not necessarily unique) in pure
strategies and thus it is possible to solve this problem by
simply enumerating all possible action combinations of
the leader and the follower.

The calculation of the Nash equilibrium solution de-
pends heavily on the number of players and the exact
game structure. Most of the developed methods cal-
culate the equilibrium solution in the two-player game
(note that in the case of the single player, the Nash equi-
librium solution is simply the maximum of the player’s
utility function) and the general payoff structure. There
exists a number of methods for computing a sample
equilibrium. It is still an open question if there exist
computationally efficient methods for finding all Nash
equilibria. In this work, we use theLemke-Howson-
algorithm for determining Nash equilibria. A good
survey of methods for Nash equilibrium computation
is [18].

Obtaining a mixed strategy Stackelberg equilibrium
of a matrix game leads to a bilevel optimization prob-
lem that is a special case of hierarchical optimization
problems. A thorough presentation of bilevel optimiza-
tion problems and their actual solution procedures can
be found in [2]. In this paper, we restrict our attention
only to Stackelberg solutions in pure strategies.

5.4. Convergence issues

Symmetric multiagent reinforcement learning is not
guaranteed to converge to optimal values. This prob-
lem is partly due to the fact that the Nash equilibrium
of a matrix game is not unique and, in general, the
Nash operator used with symmetric multiagent rein-
forcement learning in Eq. (11) returns the value of an
arbitrary equilibrium. Another problem with symmet-
ric multiagent reinforcement learning is the coordina-
tion of equilibrium selection. If agent 1 selects an other
equilibrium than agent 2, the result is not a Nash equi-
librium. This problem can be solved by using the same
deterministic algorithm in all agents in the system.

In asymmetric multiagent reinforcement learning, a
Stackelberg equilibrium is not unique. However, all
Stackelberg equilibria share the same value for the
leader and therefore it makes sense to select always
the same equilibrium point for the leader. The only
requirement is that the follower’s response in unique.
This problem can be circumventedby setting additional
restrictions to the follower’s action selection method
or by adding extra goals to the leader, e.g. so that the
leader does his enforcement in a risk averse manner [3].
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Fig. 7. Convergence of the asymmetric learning model with SARSA-
policy-learning.β=0.1.
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Fig. 8. Convergence of the asymmetric learning model with SARSA-
policy-learning.β = 0.3.

Whether a symmetric or asymmetric learning model
is applied to a problem with a general-sum payoff struc-
ture, small variations in the opponent’s value function
may lead to remarkable changes in the strategies and
further values of the states. Therefore it is very difficult
to provide exact convergence proofs for learning sys-
tems with general-sum payoff structure. However, con-
vergent algorithms exist for team games (both agents
share the same utility function) or for zero-sum games,
cf. [28] and [16], respectively.

6. Example problems

In this section, we solve a simple example problem
by using the VAPS frameworkwith both symmetric and
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broker 1 broker 1broker 2

Fig. 9. Timeline of the price decisions in the pricing problem. The
price symbols below the dots describe the states and the symbols
above the arrows represent price decisions.
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Fig. 10. Temperature parameterk plotted against the iteration num-
ber.

asymmetric reinforcement learning models discussed
earlier in this paper. This problem is a variation of the
commonly-usedgrid world problem, used for testing
single-agent and multiagent reinforcement learning al-
gorithms in many works, e.g. in [25,19,9], and [17].
Our test setting is the same as in [10], where the prob-
lem was solved by using a tabular version of the sym-
metric multiagent reinforcement learning algorithm. In
addition, we test the VAPS framework with a simple
pricing application.

6.1. Grid world problem

In the grid world problem we have a grid world
containing nine cells and two competing agents (Fig. 2).
The initial positions of the agents are the lower corners
1 and2, respectively, and on each round they can move
to the adjacent cells (4-neighborhood). Moreover, there
are two distinct goal positions;G1 for agent 1 andG2
for agent 2. The agents get large positive payoffs when
they reach the right goal positions. In the symmetric
learning model both agents get small negative payoffs
and are returned back to their original positions when
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they try to move to the same position. In the asymmetric
learning model, only agent 1 (leader) gets the negative
payoff and is thus trying to avoid the collision using
its enforcements. In all cases, the ultimate objective of
the agents is to reach the goal positions using as few
moves as possible.

We characterize the problem with the following
Markov game:

– A state in this problem is a pairs = (p1, p2), i.e.
the positions of the agents. Hence, the state space
of this example consists of9 × 9 = 81 states.

– Both agents get positive payoffs of 0.9 when they
find the right goal cells.

– The action set of agenti isAi = {Left, Right, Up,
Down}, i = 1, 2. The agents are restricted to stay
on the game board.

– The discount factorγ is 0.99.
– Both agents select their actions using the softmax

action selection method.
– In the asymmetric model agent 1 is acting as the

leader.
– If the agents collide, both agents get small negative

rewards of−0.1 in the symmetric model, whereas
only the leader gets this negative reward in the
asymmetric model.

The learning rate parameter and the temperature in
the softmax action selection are modified linearly with
time. The range of parameterk in Eqs (25) and (26)
was [0,20]. Note that the learning rate decaying scheme
does not obey the conditions defined in stochastic ap-
proximation theory. However, in real problems, us-
ing a learning rate decaying scheme that satisfies these
theoretical conditions would often induce very slow
convergence and such scheme is thus seldom used in
applications and in empirical research.

The test runs were carried out using the off-policy
(Q) learning method with the symmetric learning model
and both off-policy and on-policy learning with the
asymmetric learning model. In addition, test runs were
repeated with the SARSA-policy algorithm (β = 0.1
andβ = 0.3) in the case of the asymmetric learning
model.

The value function is approximated with a linear
function with one parameter for each state-actions tu-
ple. Hence the cost-to-go function takes the following
form:

Q(s, a1, a2) = θT φ(s, a1, a2), (30)

whereθ is a |S||A1||A2|-dimensional vector andφ is
a unit vector with the component corresponding to the
state-actions tuple set to one.
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Fig. 11. Averaged profits in the pricing problem. All data points are
averages of 1000 test runs each containing 10 pricing decisions for
both agents.
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Fig. 12. Convergence of the leader’s Q-values in the pricing problem.
γ = 0.3.

When an agent reaches the right goal position, both
agents are moved back to their initial positions and
the test run is restarted with a new episode. These
episodes also define the history sequence used with the
VAPS framework and hence the history is cleared after
each episode. The maximum length of an episode is
restricted to 10 moves. A few optimal paths generated
by the learning models are illustrated in Fig. 3.

We repeated the test runs 50 times and the averaged
convergence curves are shown in Figs 4–8, where the
Euclidean distance between vectors containing values
from consecutive training rounds is plotted against the
round number. Both agents converged in each test run
with an equal pace. The variance of the convergence
speed was higher with on-policy learning than with
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Fig. 13. Convergence of the leader’s Q-values in the pricing problem.
γ = 0.7.

off-policy learning. The reason is that the on-policy
methods are more sensitive to the exploration policy
than the off-policy methods. The overall convergence
was slightly slower with the SARSA-policy method
than with the normal SARSA-learning.

6.2. Pricing problem

In this problem, two competing agents (brokers) sell
identical products and compete against each other on
the basis of price. At each time step, one of the brokers
decides its new price based on the opponent’s, i.e. the
other broker’s, current price. After the price has been
set, the customer either buys a product from one seller
or decides not to buy the product at all. The objective
of the agents is to maximize their profits. We begin
the discussion by modeling the interaction between the
two brokers as an asymmetric multiagent reinforcement
learning problem.

In [27], Tesauro and Kephart modeled the interaction
between two brokers as a single-agent reinforcement
learning problem in which the goal of the learning agent
is to find the pricing strategy that maximizes its long
time profits. Additionally, reinforcement learning aids
the agents to prevent “price wars”, i.e. repeated price
reductions. As a result of a price war, the prices would
go very low and the overall profits would be small.
Tesauro and Kephart reported very good performance
of their approach when one of the brokers keeps its
pricing strategy fixed. However, if both brokers try
to learn simultaneously, the Markov property assumed
in the theory of MDPs does not hold and the learning
system encounters serious convergence problems. In

this paper, we model the system as a Markov game and
solve it by using Q-learning and the VAPS framework.

A customer buys the product from the broker having
the lowest price. After the customer has done his pur-
chase decision, both brokers get their immediate profits
according to the following utility functions:

u1(p1, p2) =
{

p1 − c if p1 � p2

0 otherwise (31)

and

u2(p1, p2) =
{

p2 − c if p1 > p2

0 otherwise, (32)

wherep1, p2 ∈ P are the current prices of the brokers
1 and 2, respectively, andc ∈ [0, 1] is a fixed marginal
cost of the product. In this paper, all prices lie in the
unit interval and the parameterc = 0.2.

We make the assumption that the brokers do not
decide their decisions simultaneously, i.e. there is an
ordering among the decision makers. Hence, we model
the system with the following Markov game endowed
with the asymmetric equilibrium concept:

– The state is the current price of the broker 2.
– Broker 1 is acting as the leader and thus decides its

price prior to the broker 2. Hence, as the state is
the current price of the broker 2, the utility of the
broker 1 depends only on its price selection and
the current state.

– Broker 2 is the follower and its utility value de-
pends on the leader’s enforcement and its own
price selection.

At each time step, broker 1 calculates the Stackelberg
equilibrium point of the matrix game associated with
the current state and makes its pricing decision based on
this solution. After that, it announces its price decision
to broker 2 who, in its turn, maximizes its utility value
based on this enforcement. This process is illustrated
in Fig. 9.

As in the previous problem, the Q-function was ap-
proximated with the linear function. The number of
different pricing options was 15 for both agents and
the learning rate parameter was decayed linearly dur-
ing the learning. The state-action space was explored
by using the Gibbs-distribution defined in Eqs (25) and
(26). The parameterk was increased as illustrated in
Fig. 10. At first the parameter had very small val-
ues ensuring sufficient exploration of the state-action
space and was then increased linearly to the high value
(k = 20) corresponding almost to greedy action selec-
tion. The training phase consisted of 300000 episodes



V. Könönen / Gradient descent for symmetric and asymmetric multiagent reinforcement learning 29

and each episode consisted of 10 pricing decisions for
both brokers. The initial states were selected randomly.

In the testing phase, the initial state (price of the bro-
ker 2) was selected randomly and each test run con-
sisted of 10 pricing decisions per broker. In Fig. 11,
the cumulative profits (averages from 1000 test runs)
of both agents are plotted against the discount factor
γ. The average profit of broker 1 grows monotonically
as the discount factor increases. The profit of broker
2 increases, albeit not monotonically. Moreover, even
the use of small discount factorγ = 0.1, corresponding
to a very shallow lookahead, leads to relatively high
profits compared toγ = 0.0. The use of higher dis-
count factors increases profits further but the growth is
not so dramatic.

The convergence of the agents’ Q-values (θ) are il-
lustrated in Figs 12 and 13 (averages from 50 test runs),
where the Euclidean distance between vectors contain-
ing values from consecutive training rounds (episodes)
is plotted against the round number (only every hun-
dredth sample is plotted). Two cases with discount
factors 0.3 and 0.7 are plotted for the broker 1. It can
be seen that the algorithm converged very fast in every
case although with highγ values the convergence is
much slower than with low values ofγ. The conver-
gence properties of the algorithm in the case of broker
2 are similar.

7. Conclusions and future research

A novel numerical method for both symmetric and
asymmetric multiagent reinforcement learning are pre-
sented in this paper. The paper extends the VAPS
framework for Markov games and the framework is
suitable for various actual multiagent reinforcement
learning methods. Additionally, it is possible to use a
combination of value function approximation and di-
rect policy gradients with the VAPS framework. The
proposed methods were tested with two example prob-
lems and the results of the test runs were compared.

The methods proposed in this paper utilize param-
eterizations of the value function. Another approach
is to parameterize the policy function directly and then
learn these parameters from observations. Hence, in
future research, we will study direct policy gradient
methods in Markov games. Moreover, there is plenty of
room for the research on efficient exploration strategies
for multiagent reinforcement learning systems.
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