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Abstract

In this work, Morfessor, a morpheme seg-
mentation model and algorithm developed
by the organizers of the Morpho Chal-
lenge, is outlined and references are made
to earlier work. Although Morfessor does
not take part in the official Challenge com-
petition, we report experimental results for
the morpheme segmentation of English,
Finnish and Turkish words. The obtained
results are very good. Morfessor outper-
forms the other algorithms in the Finnish
and Turkish tasks and comes second in the
English task. In the Finnish speech recog-
nition task, Morfessor achieves the lowest
letter error rate.

1 Introduction

This paper briefly describes three consecutive
steps in the development of a morpheme seg-
mentation and simple morphology induction al-
gorithm, calledMorfessor. Morfessor has been
developed by the organizers of the Morpho Chal-
lenge and was therefore excluded from the official
competition. However, we believe that the perfor-
mance of Morfessor in the Morpho Challenge task
will be of interest to a broader audience than the
current authors, especially since the obtained re-
sults are generally very good.

The readers should keep in mind that a compar-
ison of Morfessor to its competitors is not entirely
fair, since portions of the Finnish and English data
sets used in the competition have been utilized
during the development of the Morfessor model.
It is thus probable that the model implementation
to some degree reflects properties of these very
data sets. Nevertheless, the data set of the third
language, Turkish, is as new to the organizers as
to the participants. No modifications to the tested
versions of the Morfessor model have been made
after the acquisition of the Turkish data.

In the following sections, some characteristics
of the Morfessor model will be outlined and ex-
perimental results obtained in the morpheme seg-
mentation as well as Finnish speech recognition
task will be reported and discussed.

2 Characterization of the Morfessor
model

Morfessor is an unsupervised method for the seg-
mentation of words into morpheme-like units. The
general idea behind the Morfessor model is to
discover as compact a description of the data as
possible. Substrings occurring frequently enough
in several different word forms are proposed as
morphs and the words are then represented as
a concatenation of morphs, e.g., “hand, hand+s,
left+hand+ed, hand+ful”.

An optimal balance is sought between compact-
ness of themorph lexiconversus the compactness
of the representation of thecorpus. The morph
lexicon is a list of all distinct morphs (e.g., “hand,
s, left, ed, ful”) together with some stored prop-
erties of these morphs. The representation of the
corpus can be seen as a sequence of pointers to
entries in the morph lexicon; e.g. the word “left-
handed” is represented as three pointers to morphs
in the lexicon.

A very compact lexicon could consist of the in-
dividual letters of the language. However, this
would result in a very expensive representation
of the corpus, since every word would be broken
down into as many morphs as the number of let-
ters it contains. The opposite situation consists of
having a short representation of the corpus (e.g.,
no words would be split into parts), but then the
lexicon would necessarily be very large, since it
would have to contain all distinct words that occur
in the corpus. Thus, the optimal solution is usually
a compromise between these two extremes.

Among others, de Marcken (1996),
Brent (1999), Goldsmith (2001), and Creutz
and Lagus (2002; 2003; 2004; 2005a; 2006) have



shown that the above type of model produces
segmentations that resemble linguistic morpheme
segmentations, when formulated mathematically
in a probabilistic framework or equivalently
using the Minimum Description Length (MDL)
principle (Rissanen, 1989).

An alternative popular approach to the segmen-
tation of words and phrases is based on the works
by Zellig S. Harris (1955; 1967). For instance,
Schone and Jurafsky (2000; 2001) make use of
a Harrisian approach to suggest word stems and
suffixes. In this approach, word or morpheme
boundaries are proposed at locations where the
predictability of the next letter in a letter sequence
is low. Such a model does not use compactness
of representation as an explicit optimization crite-
rion. Other related work is described more thor-
oughly in our previous publications.

Next, the three tested versions of the Morfessor
model will be described briefly. These versions are
calledMorfessor Baseline, Morfessor Categories-
ML, andMorfessor Categories-MAP. The versions
correspond to chronological development steps,
starting with the simplest model and ending with
the most complex one. For a discussion on how
the early versions can be seen as special cases of
the latest model, the reader is encouraged to con-
sult (Creutz and Lagus, 2006). Note that the cur-
rent paper merely presents the underlying ideas
and characteristics of the Morfessor model; in or-
der to find an exact mathematical formulation it is
necessary to read our previous works.

2.1 Morfessor Baseline

The Morfessor Baseline algorithm was originally
introduced in (Creutz and Lagus, 2002), where it
was called the “Recursive MDL” method. Ad-
ditionally, the Baseline algorithm is described in
(Creutz and Lagus, 2005b; Hirsimäki et al., 2006).
The implementing computer program is publicly
available for download athttp://www.cis.
hut.fi/projects/morpho/.

The Baseline method is acontext-independent
splitting algorithm. It is used as a baseline, or ini-
tialization, for the latercontext-dependentmodel
versions (Categories-ML and Categories-MAP).
In slightly simplified form, the optimization crite-
rion utilized in Morfessor Baseline corresponds to
the maximization of the following posterior prob-
ability:

P (lexiconj corpus) /P (lexicon)P (corpusj lexicon) =Y
letters�P (�) � Y

morphs�P (�): (1)

The lexicon consists of all distinct morphs spelled
out; this forms a long string of letters�. The prob-
ability of the lexicon is the product of the proba-
bility of each letter in this string. Analogously,
the corpus is represented as a sequence of morphs,
which corresponds to a particular segmentation of
the words in the corpus. The probability of this
segmentation equals the product of the probability
of each morph token�. Letter and morph proba-
bilities are maximum likelihood estimates.

When segmentations produced by the Base-
line method are compared to linguistic morpheme
segmentations, the algorithm suffers from three
types of fairly common errors:undersegmenta-
tion of frequent strings,oversegmentationof rare
strings, andmorphotactic violations. This fol-
lows from the fact that the most concise repre-
sentation is obtained when any frequent string is
stored as a whole in the lexicon (e.g., English
“having, soldiers, states, seemed”), whereas in-
frequent strings are better coded in parts (e.g.,
“or+p+han, s+ed+it+ious, vol+can+o”). Morpho-
tactic violations are a consequence of the context-
independent nature of the model: For instance, the
morphs “-s” and “-ed” are frequently occurring
suffixesin the English language, but the algorithm
occasionally suggests them in word-initial posi-
tion asprefixes(“s+wing, ed+ward, s+urge+on”).

2.2 Morfessor Categories-ML

Morfessor Categories-ML (Creutz and Lagus,
2004) introduces morph categories. The segmen-
tation of the corpus is modeled using a Hidden
Markov Model (HMM) with transition probabil-
ities between categories and emission probabili-
ties of morphs from categories (see Fig. 1). Three
categories are used:prefix, stem, and suffix and
an additionalnon-morpheme(or noise) category.
Some distributional properties of the morphs in
a proposed segmentation of the corpus are used
for determining category-to-morph emission prob-
abilities. A morph that is observed to precede a
large number of different morphs is a likely prefix
(e.g., English “re-, un-, mis-”); this is measured
by right perplexity(Fig. 2a). Correspondingly, a
morph that is observed to follow a large set of
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Figure 1: Hidden Markov model used in Categories-ML and Categories-MAP to computeP (corpusj lexicon). The picture shows the HMM representing one word in the corpus (thejth word,
which has been split intonj morphs). The word consists of a sequence of morphs�j� which are emit-
ted from latent categoriesCj�. Note that the transition probabilities comprise transitions from and to a
special word boundary category (#).

morphs is likely to be a suffix (e.g., “-s, -ed, -ing”);
this is measured byleft-perplexity (Fig. 2b). A
morph that is not very short is likely to be a stem
(e.g., “friend, hannibal, poison”); see Fig. 2c. A
morph that is not an obvious prefix, stem, or suf-
fix in the position it occurs may be an indication
of an erroneous segmentation. Such morphs are
tagged as noise (e.g., all morphs in the segmenta-
tion “vol+can+o”).

The identification of “noise’ and likely erro-
neous segmentations makes it possible to apply
some heuristics in order to partly remedy the
shortcomings of Morfessor Baseline. Underseg-
mentation is reduced by forcing splits of redun-
dant morphs in the lexicon. These morphs consist
of other morphs that are also present in the lexicon
(e.g., “seemed = seem+ed”). Some restrictions ap-
ply, such that splitting into noise morphs is prohib-
ited. The opposite problem, oversegmentation, is
alleviated by joining morphs tagged as noise with
their neighbors (e.g, “vol+can+o” becomes “vol-
cano”). Morphotactic violations are less likely to
occur due to the context-sensitivity of the HMM
model.

2.3 Morfessor Categories-MAP

The Categories-MAP model version (Creutz and
Lagus, 2005a) emerged in an attempt to reformu-
late Categories-ML in a more elegant fashion. In
Categories-ML, the optimal segmentation of the
corpus is sought through Maximum Likelihood
(ML) re-estimation, whereas the complexity of the
lexicon is controlled heuristically. In a Maximum
a Posteriori (MAP) model, an explicit probabil-
ity is calculated for both the lexicon and the rep-
resentation of the corpus conditioned on the lex-

icon. Categories-MAP and the Baseline method
are MAP models.

The most important new feature of the
Categories-MAP model is that the lexicon may
contain hierarchical entries. That is, a morph can
either consist of a string of letters (as in the previ-
ous models) or of two submorphs, which can re-
cursively consist of submorphs.

As was the case in the Baseline model, frequent
strings typically end up as entries of their own
in the lexicon (e.g, the English word “straight-
forwardness”). However, unlike in the Baseline
model, these frequent strings now have a hierar-
chical representation; see Figure 3. In a mor-
pheme segmentation task, the existence of this
inner structure makes it possible to “expand”
morphs into their submorphs, thereby avoiding
undersegmentation. Since every morph at ev-
ery level is tagged with its most likely category,
it is possible to avoidoversegmentation as well,
since one can refrain from expanding nodes in
the tree if the next level containsnon-morphemes,
i.e. “noise morphs”. For instance, in Figure 3,
the word “straightforwardness” is expanded into
“straight+forward+ness”. The morph “forward” is
not expanded into its constituents “for+ward” (al-
though this may have been appropriate), because
“for” is tagged as a non-morpheme in the current
context.

3 Morpheme Segmentation Experiments

In the following, some differences between the
tested versions of Morfessor as well as the three
tested languages are illustrated in the light of ex-
perimental results. The experiments were run
on the datasets provided in the Challenge. The
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Figure 2: Sketch of sigmoid functions (used in the Categories models), which express how the right and
left perplexity as well as the length of a morph affect its tendency to function as a prefix, suffix, or stem.
The parametersa; b; 
; d determine the shape of the sigmoids. A probability distribution is obtained by
first computing the probability that a morph� belongs tononeof the three categories. The probability
of this so-called non-morpheme, or noise, category given the morph� equals:(1� prefix-like(�)) � (1�
suffix-like(�)) � (1 � stem-like(�)). Then the remaining probability mass is distributed between prefix,
stem and suffix proportionally to the prefix-, stem- and suffix-likeness values.

straightforwardness/STM

straight/STM forward/STM

straightforward/STM ness/SUF

ward/STMfor/NON

Figure 3: Hierarchical representation of the En-
glish word “straightforwardness” in the lexicon in-
duced by Morfessor Categories-MAP. Each morph
has been tagged with a category: stem (STM), suf-
fix (SUF), or non-morpheme (NON). (No morph
was tagged as a prefix in this example.) The finest
resolution that does not contain non-morphemes is
rendered using a bold-face font. This corresponds
to the proposed morpheme segmentation.

Morfessor Baseline algorithm is entirely unsuper-
vised and does not require that any parameters be
set. The Categories algorithms have one parame-
ter (the perplexity thresholdb in Fig. 2) that needs
to be set to an appropriate value for optimal perfor-
mance. This parameter value was optimized sepa-
rately for each language on the small development
sets (model segmentations) provided.1

1A fixed (dataset-independent) scheme works fine for the
other parameters in Fig. 2:a = 10=b; 
 = 2; d = 3:5. This
is good, since the amount of necessary supervision should be
kept to a minimum.
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Figure 4: F-measures computed for the placement
of morpheme boundaries in relation to linguistic
morpheme segmentations, obtained by the three
different versions of Morfessor on the three test
languages.

3.1 Results

The morpheme segmentation task of the competi-
tion is won by the participant achieving the highest
F-measureof correctly placed morpheme bound-
aries. Figure 4 shows the F-measures of the three
Morfessor methods on the three tested languages.
The F-measure is the harmonic mean ofprecision
andrecall. The precisions and recalls obtained by
Morfessor are displayed in Figures 5 and 6, re-
spectively.

The results show that there are different tenden-
cies for the English data, on the one hand, and the
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Figure 5: Precision of the three Morfessor meth-
ods on the three languages tested.

Finnish and Turkish data, on the other hand. For
Finnish and Turkish, the context-dependent Cat-
egories models produce clear improvements over
the context-independent Baseline splitting algo-
rithm (with F-measures 10 – 20 points higher;
Fig 4). For English, the improvement is minor, but
on the other hand the Baseline here attains a con-
siderably higher level than for Finnish and Turk-
ish. The best F-measure obtained by Morfessor
for all three languages is at the same level, around
70 %.

The precision and recall plots in Figures 5 and
6 provide more detailed information. For English,
even though the F-measures of all three algorithms
are approximately equal, the produced segmenta-
tions are very different. Categories-MAP has a
significantly higher precision than the other model
versions (and correspondingly a lower recall). For
Finnish and Turkish, the Categories models dis-
play a great improvement of recall in relation to
the Baseline method. This comes at the expense
of lower precision, which is observed for Finnish
and to a lesser degree on the Turkish data.

In order to better understand the differences ob-
served in the results for the different languages,
the output at various stages of the segmentation
process has been studied for each of the Morfes-
sor model variants. No obvious explanation has
been found other than the difference in the mor-
phological structures of the languages. Finnish
and Turkish are predominantly agglutinative lan-
guages, in which words are formed through the
concatenation of morphemes. The type/token ra-
tio is high, i.e., the number of different word forms
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Figure 6: Recall of the three Morfessor methods
on the three languages tested.

encountered in a piece of running text is relatively
high. By contrast, word forming in English in-
volves fewer morphemes. The type/token ratio is
lower, and the proportion of frequently occurring
word forms is higher.

In the Finnish and Turkish segmentation task,
Morfessor outperforms all algorithms proposed by
the participants of the Morpho Challenge; com-
pare the following F-measures for Finnish: 67.0 %
(Morfessor Categories-ML) vs. 64.7 % (best par-
ticipant), and for Turkish: 70.7 % (Morfessor
Categories-MAP) vs. 65.3 % (best participant). In
the English segmentation task, Morfessor comes
second: 69.0 % (Morfessor Categories-ML) vs.
76.8 % (best participant).

4 Finnish Speech Recognition
Experiments

N-gram language models have been estimated
from the segmentations produced by the three
Morfessor models on the Finnish data. The lan-
guage models have been used in speech recog-
nition experiments, and results are shown in Ta-
ble 1. The evaluation of the language models alone
(cross-entropy on a held-out data set) suggests that
the Categories models are better than Morfessor
Baseline, since their cross-entropy is lower. The
cross-entropies do not, however, correlate with
the actual speech recognition results. Categories-
MAP obtains the lowest letter error rate (LER) –
1.30 % of the recognized letters are incorrect in
comparison with the reference transcript – which
is also lower than the letter error rate achieved
by any participant of the Challenge (best result:



Table 1: Results from the Finnish speech recog-
nition experiments: cross-entropy (log-perplexity)
of the language models (H), letter error rate (LER)
and word error rate (WER).

Method H [bits] LER [%] WER [%]
Baseline 13.59 1.31 9.84
Categ.-ML 13.53 1.32 10.18
Categ.-MAP 13.53 1.30 10.05

1.32 %). Nevertheless, the word error rate (WER)
of Categories-MAP is higher than that of Mor-
fessor Baseline and the WER:s of three partici-
pants. This suggests that the letter errors made
by Categories-MAP are spread over a larger num-
ber of words, which increases WER, whereas the
other methods have a concentration of errors on a
smaller set of words.

5 Conclusions

In the morpheme segmentation task, the current
versions of Morfessor attain an F-measure value
of about 70 % for all three tested languages. For
English, a language with “poorer” morphology
and less morpheme boundaries to discover, the
simple Baseline method seems to almost reach to
this level. The characteristically agglutinative lan-
guages Finnish and Turkish, which have “richer”
morphology and a larger number of morpheme
boundaries to be detected, require more complex
models (the context-sensitive Categories model) to
perform on the same level. It is particularly en-
couraging to see that Morfessor performs so well
in the Turkish segmentation task, since Turkish
data was never used in the development of the
model.
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