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Abstract In the following sections, some characteristics
of the Morfessor model will be outlined and ex-

In this work, Morfessor, a morpheme seg-  perimental results obtained in the morpheme seg-
mentation model and algorithm developed = mentation as well as Finnish speech recognition
by the organizers of the Morpho Chal- task will be reported and discussed.
lenge, is outlined and references are made
to earlier work. Although Morfessor does 2 Characterization of the M orfessor
not take part in the official Challenge com- model
petition, we report experimental results for
the morpheme segmentation of English,
Finnish and Turkish words. The obtained
results are very good. Morfessor outper-
forms the other algorithms in the Finnish
and Turkish tasks and comes second in the
English task. In the Finnish speech recog-
nition task, Morfessor achieves the lowest
letter error rate.

Morfessor is an unsupervised method for the seg-
mentation of words into morpheme-like units. The

general idea behind the Morfessor model is to
discover as compact a description of the data as
possible. Substrings occurring frequently enough
in several different word forms are proposed as
morphsand the words are then represented as
a concatenation of morphs, e.g., “hand, hand+s,
left+hand+ed, hand+ful”.

An optimal balance is sought between compact-
ness of themorph lexiconversus the compactness
This paper briefly describes three consecutivedf the representation of theorpus The morph
steps in the development of a morpheme segexicon is a list of all distinct morphs (e.g., “hand,
mentation and simple morphology induction al-s, left, ed, ful”) together with some stored prop-
gorithm, calledMorfessor Morfessor has been erties of these morphs. The representation of the
developed by the organizers of the Morpho Chal<orpus can be seen as a sequence of pointers to
lenge and was therefore excluded from the officiakentries in the morph lexicon; e.g. the word “left-
competition. However, we believe that the perfor-handed” is represented as three pointers to morphs
mance of Morfessor in the Morpho Challenge taskin the lexicon.
will be of interest to a broader audience than the A very compact lexicon could consist of the in-
current authors, especially since the obtained redividual letters of the language. However, this
sults are generally very good. would result in a very expensive representation

The readers should keep in mind that a comparef the corpus, since every word would be broken
ison of Morfessor to its competitors is not entirely down into as many morphs as the number of let-
fair, since portions of the Finnish and English dataters it contains. The opposite situation consists of
sets used in the competition have been utilizedhaving a short representation of the corpus (e.g.,
during the development of the Morfessor model.no words would be split into parts), but then the
It is thus probable that the model implementationlexicon would necessarily be very large, since it
to some degree reflects properties of these veryould have to contain all distinct words that occur
data sets. Nevertheless, the data set of the thirdh the corpus. Thus, the optimal solution is usually
language, Turkish, is as new to the organizers ag compromise between these two extremes.
to the participants. No modifications to the tested Among others, de Marcken (1996),
versions of the Morfessor model have been mad8rent (1999), Goldsmith (2001), and Creutz
after the acquisition of the Turkish data. and Lagus (2002; 2003; 2004; 2005a; 2006) have

1 Introduction



shown that the above type of model produces

segmentations that resemble linguistic morpheme P (lexicon| corpug o

segmentations, when formulated mathematically P(lexicon) P(corpus| lexicon) =
in a probabilistic framework or equivalently H P(a) - H P(p). 1)
using the Minimum Description Length (MDL) letters a morphs

principle (Rissanen, 1989). . _ o
An alternative popular approach to the segmen:rhe Ie_X|con consists of z_:III distinct morphs spelled
ut; this forms a long string of letters The prob-

tation of words and phrases is based on the work8h . |
by Zellig S. Harris (1955: 1967). For instance,ab'“ty of the lexicon is the product of the proba-

Schone and Jurafsky (2000; 2001) make use q ility of eagh letter in this string. Analogously,
a Harrisian approach to suggest word stems an e corpus is represented as a sequence of morphs,
suffixes. In this approach, word or morphemewhich corresponds to a particular segmentation of

boundaries are proposed at locations where th@e words n the colrpl;s. Tr:je pro?ib'“ty %f th's
predictability of the next letter in a letter sequencesegmem"ﬂIon equals the product of the probability
f each morph tokep. Letter and morph proba-

is low. Such a model does not use compactnesg

of representation as an explicit optimization crite-b”{::/is are maximum |Ike|lh00dd esgmt;altesﬁ B
rion. Other related work is described more thor-l_ enh sdegmentatlons (|joro I_uce. by the h ase-
oughly in our previous publications. ine method are compared to linguistic morpheme

) segmentations, the algorithm suffers from three
Next, the three tested versions of the MorfessoEypes of fairly common errorsundersegmenta-

model will be described_ briefly. These versiops areion of frequent stringspversegmentationf rare
calledMorfessor BaselineMorfessor Categories- strings, andmorphotactic violations This fol-

ML, andMorfessor Catego_rles-MAH'he VETSIONS 155 from the fact that the most concise repre-
corrgspon_d 0 ch_ronologlcal development Ste_pssentation is obtained when any frequent string is
starting with the simplest modelland e.ndlng Withgiored as a whole in the lexicon (e.g., English
the most complex one. For a discussion on howhaving, soldiers, states, seemed”), whereas in-

the early versions can be seen as special cases I?équent strings are better coded in parts (e.g.,
the latest model, the reader is encouraged to con

or+p+han, s+ed+it+ious, vol+can+o”). Morpho-
sult (Creutz and Lagus, 2006). Note that the CUlactic violations are a consequence of the context-

rent paper merely presents the underlying ideag,yenendent nature of the model: For instance, the
and characteristics of the Morfessor model; in or-

¢ h 7 ~"'morphs “-s” and “-ed” are frequently occurring
der to find an exact mathematlcal formulation it IS<ffixesn the English language, but the algorithm
necessary to read our previous works.

occasionally suggests them in word-initial posi-
tion asprefixes(“s+wing, ed+ward, s+urge+on”).
2.1 Morfessor Basdline )
2.2 Morfessor CategoriesML

The Morfessor Baseline algorithm was originally njorfessor Categories-ML (Creutz and Lagus,
introduced in (Creutz and Lagus, 2002), where ito0o4) introduces morph categories. The segmen-
was called the “Recursive MDL" method. Ad- tation of the corpus is modeled using a Hidden
ditionally, the Baseline algorithm is described inparkov Model (HMM) with transition probabil-
(Creutz and Lagus, 2005b; Hirsimaki et al., 2006) jties between categories and emission probabili-
The implementing computer program is publicly ties of morphs from categories (see Fig. 1). Three
available for download altt p: //wwv. ci's.  categories are usedorefix, stem and suffix and
hut . fi/projects/ norpho/. an additionalnon-morphemédor noise category.

The Baseline method is @ontext-independent Some distributional properties of the morphs in
splitting algorithm. It is used as a baseline, or ini-a proposed segmentation of the corpus are used
tialization, for the latercontext-dependernnodel for determining category-to-morph emission prob-
versions (Categories-ML and Categories-MAP).abilities. A morph that is observed to precede a
In slightly simplified form, the optimization crite- large number of different morphs is a likely prefix
rion utilized in Morfessor Baseline corresponds to(e.g., English “re-, un-, mis-"); this is measured
the maximization of the following posterior prob- by right perplexity (Fig. 2a). Correspondingly, a
ability: morph that is observed to follow a large set of



Transition probabilities between morph categories
P(Ci1|Cio) P(C2|Ci) P(Ci|Ci2) P(Cinj+1)| Ciny)

Categories

Emission probabilities P(Hin | Ciny)

Morphs M1 Hj2 Hin;

Figure 1: Hidden Markov model used in Categories-ML and @aties-MAP to compute
P(corpus lexicon). The picture shows the HMM representing one word in the coiftie ;! word,
which has been split inta; morphs). The word consists of a sequence of moyphsvhich are emit-
ted from latent categorieS;.. Note that the transition probabilities comprise traosisi from and to a
special word boundary category (#).

morphs is likely to be a suffix (e.g., “-s, -ed, -ing”); icon. Categories-MAP and the Baseline method
this is measured bieft-perplexity (Fig. 2b). A are MAP models.
morph that is not very short is likely to be a stem The most important new feature of the
(e.g., “friend, hannibal, poison”); see Fig. 2c. A Categories-MAP model is that the lexicon may
morph that is not an obvious prefix, stem, or suf-contain hierarchical entries. That is, a morph can
fix in the position it occurs may be an indication either consist of a string of letters (as in the previ-
of an erroneous segmentation. Such morphs areus models) or of two submorphs, which can re-
tagged as noise (e.g., all morphs in the segmentaursively consist of submorphs.
tion “vol+can+0”). As was the case in the Baseline model, frequent
The identification of “noise’ and likely erro- strings typically end up as entries of their own
neous segmentations makes it possible to appliyn the lexicon (e.g, the English word “straight-
some heuristics in order to partly remedy theforwardness”). However, unlike in the Baseline
shortcomings of Morfessor Baseline. Undersegmodel, these frequent strings now have a hierar-
mentation is reduced by forcing splits of redun-chical representation; see Figure 3. In a mor-
dant morphs in the lexicon. These morphs consisghbheme segmentation task, the existence of this
of other morphs that are also present in the lexicomnner structure makes it possible to “expand”
(e.g., “seemed = seem+ed”). Some restrictions apgnorphs into their submorphs, thereby avoiding
ply, such that splitting into noise morphs is prohib-undersegmentation. Since every morph at ev-
ited. The opposite problem, oversegmentation, igry level is tagged with its most likely category,
alleviated by joining morphs tagged as noise withit is possible to avoicdbversegmentation as well,
their neighbors (e.g, “vol+can+o0” becomes “vol- since one can refrain from expanding nodes in
cano”). Morphotactic violations are less likely to the tree if the next level contaimon-morphemes
occur due to the context-sensitivity of the HMM i.e. “noise morphs”. For instance, in Figure 3,

model. the word “straightforwardness” is expanded into
“straight+forward+ness”. The morph “forward” is
2.3 Morfessor CategoriesMAP not expanded into its constituents “for+ward” (al-

_ . though this may have been appropriate), because
The Categories-MAP model version (Creutz andsq,» ig tagged as a non-morpheme in the current
Lagus, 2005a) emerged in an attempt to reformugqpiext.

late Categories-ML in a more elegant fashion. In

Categories-ML, the optimal segmentation of theg M or pheme Segmentation Experiments
corpus is sought through Maximum Likelihood

(ML) re-estimation, whereas the complexity of theln the following, some differences between the
lexicon is controlled heuristically. In a Maximum tested versions of Morfessor as well as the three
a Posteriori (MAP) model, an explicit probabil- tested languages are illustrated in the light of ex-
ity is calculated for both the lexicon and the rep-perimental results. The experiments were run
resentation of the corpus conditioned on the lexon the datasets provided in the Challenge. The
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Figure 2: Sketch of sigmoid functions (used in the Categamedels), which express how the right and
left perplexity as well as the length of a morph affect itstkemcy to function as a prefix, suffix, or stem.
The parameters, b, ¢, d determine the shape of the sigmoids. A probability distidsuis obtained by
first computing the probability that a morphbelongs tononeof the three categories. The probability
of this so-called non-morpheme, or noise, category givemrtbrphy equals:(1 — prefix-like(u)) - (1 —
suffix-likgp)) - (1 — stem-likéx)). Then the remaining probability mass is distributed betweefix,
stem and suffix proportionally to the prefix-, stem- and stffi®ness values.
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Figure 3: Hierarchical representation of the En-LL clolks clolis clislk=
glish word “straightforwardness” inthe lexiconin- 29[ BlIS|18  ElEE8  EE S
duced by Morfessor Categories-MAP. Each morph S{ES BELS BENS

has been tagged with a category: stexnn), suf- 0 English Finnish Turkish
fix (SUF), or non-morphemeNON). (No morph

was tagged as a prefix in this example.) The finest . .
resolution that does not contain non-morphemes i§'9Ure 4: F-measures computed for the placement

rendered using a bold-face font. This correspond§’ MOrpheme boundaries in relation to linguistic
to the proposed morpheme segmentation morpheme segmentations, obtained by the three

different versions of Morfessor on the three test
languages.

Morfessor Baseline algorithm is entirely unsuper-

vised and does not require that any parameters bg; Reqits

set. The Categories algorithms have one parame-

ter (the perplexity thresholtlin Fig. 2) that needs The morpheme segmentation task of the competi-
to be set to an appropriate value for optimal perfor1ion is won by the participant achieving the highest
mance. This parameter value was optimized sepd=-measureof correctly placed morpheme bound-

rately for each |anguage on the small developmerﬁ.ries. Figure 4 shows the F-measures of the three
sets (model segmentations) provided. Morfessor methods on the three tested languages.

The F-measure is the harmonic mearpadcision

andrecall. The precisions and recalls obtained by

Morfessor are displayed in Figures 5 and 6, re-
1A fixed (dataset-independent) scheme works fine for thespectively,

other parameters in Fig. 2. = 10/b,¢ = 2,d = 3.5. This .
is good, since the amount of necessary supervision should be The results show that there are different tenden-

kept to a minimum. cies for the English data, on the one hand, and the
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Figure 5: Precision of the three Morfessor meth-Figure 6: Recall of the three Morfessor methods
ods on the three languages tested. on the three languages tested.

Finnish and Turkish data, on the other hand. Eofncountered in a piece of running text is relatively

Finnish and Turkish, the context-dependent Catlidh. By contrast, word forming in English in-

egories models produce clear improvements ovef0!ves fewer morphemes. The type/token ratio is

the context-independent Baseline splitting algo/0Wer and the proportion of frequently occurring

rithm (with F-measures 10 — 20 points higher;WOrd formg is.higher. _ _

Fig 4). For English, the improvement is minor, but !N the Finnish and Turkish segmentation task,
on the other hand the Baseline here attains a cod/lorfessor outperforms all algorithms proposed by
siderably higher level than for Finnish and Turk-the participants of the Morpho Challenge; com-
ish. The best F-measure obtained by MorfessoP@re the following F-measures for Finnish: 67.0 %

for all three languages is at the same level, aroungMorfessor Categories-ML) vs. 64.7% (best par-
70 %. ticipant), and for Turkish: 70.7% (Morfessor

oy o -
The precision and recall plots in Figures 5 andCategorl_es MAP) vs. 6.5'3 0 (best participant). In

. L . .~ the English segmentation task, Morfessor comes
6 provide more detailed information. For English,

. 0 i -
even though the F-measures of all three algorithm_%zCSo (T/S.(bgsi.ga/:tigi\g(;:te)ssor Categories-ML) vs.

are approximately equal, the produced segmenta-
tlpns_ are very dlfferent._ _Categorles—MAP has & Einnish Speech Recognition
significantly higher precision than the other model .

) . Experiments
versions (and correspondingly a lower recall). For

Finnish and Turkish, the Categories models diSN-gram language models have been estimated
play a great improvement of recall in relation t0from the segmentations produced by the three
the Baseline method. This comes at the expensgiorfessor models on the Finnish data. The lan-
of lower precision, which is observed for Finnish guage models have been used in speech recog-
and to a lesser degree on the Turkish data. nition experiments, and results are shown in Ta-
In order to better understand the differences obble 1. The evaluation of the language models alone
served in the results for the different languages(cross-entropy on a held-out data set) suggests that
the output at various stages of the segmentatiothe Categories models are better than Morfessor
process has been studied for each of the MorfeBaseline, since their cross-entropy is lower. The
sor model variants. No obvious explanation hasross-entropies do not, however, correlate with
been found other than the difference in the morthe actual speech recognition results. Categories-
phological structures of the languages. FinnistMAP obtains the lowest letter error rate (LER) —
and Turkish are predominantly agglutinative lan-1.30 % of the recognized letters are incorrect in
guages, in which words are formed through thecomparison with the reference transcript — which
concatenation of morphemes. The type/token rais also lower than the letter error rate achieved
tio is high, i.e., the number of different word forms by any participant of the Challenge (best result:



. o Mathias Creutz and Krista Lagus. 2005a. Induc-
Table 1. Results from the Finnish speech recog- ing the morphological lexicon of a natural lan-

nition experiments: cross-entropy (log-perplexity) guage from unannotated text. Rioceedings of the
of the language modelg1), letter error rate (LER) International and Interdisciplinary Conference on

and word error rate (WER). Adaptive Knowledge Representation and Reasoning
. AKRR’'05
Method H [bits] LER[%] WER [%)] ( )
Baseline 13.59 1.31 9.84 Mathias Creutz and Krista Lagus. 2005b. Unsu-
Categ.-ML 13.53 1.32 10.18 pervised morpheme segmentation and morphology

induction from text corpora using Morfessor 1.0.
Technical Report A81, Publications in Computer
and Information Science, Helsinki University of

Technology.
1.32%). Nevertheless, the word error rate (WER)

of Categories-MAP is higher than that of Mor- Mathias Creutz and Krista Lagus. 2006. Unsuper-

: ) . . vised models for morpheme segmentation and mor-
fessor Baseline and the WER:s of three partici- phology learning ACM Transactions on Speech and

pants. This suggests that the letter errors made | anguage ProcessingAccepted for publication).
by Categories-MAP are spread over a larger num-

ber of words, which increases WER, whereas th! X Yo, LISt

. words using prior distributions of morph length and
other methods have a concentration of errors on a requency. InProc. ACL'03 pages 280287, Sap-
smaller set of words. poro, Japan.

Categ.-MAP 13.53 1.30 10.05

athias Creutz. 2003. Unsupervised segmentation of

5 Conclusions C. G. de Marcken. 1998Jnsupervised Language Ac-
quisition Ph.D. thesis, MIT.

In the morpheme segmenf[atlon task, the Currenjohn Goldsmith. 2001. Unsupervised learning of the
versions of Morfessor attain an F-measure value morphology of a natural language€omputational
of about 70 % for all three tested languages. For Linguistics 27(2):153-198.
English, a language with “poorer” morpholo ) ,

ngl m r% rg b ndpri to di pv rg}(/hZelllg S. Harris. 1955. From phoneme to morpheme.
and less morphéme bounadaries 1o diISCoVer, € onqage 31(2):190-222. Reprinted 1970 Re-
simple Baseline method seems to almost reach to pers in Structural and Transformational Linguistjcs

this level. The characteristically agglutinative lan- Reidel Publishing Company, Dordrecht, Holland.

guages Finnish and Turkish, which have “richer Zellig S. Harris. 1967. Morpheme boundaries within

morphology and a larger number of morpheme \yords: Report on a computer testTransforma-
boundaries to be detected, require more complex tions and Discourse Analysis Pape®8. Reprinted

models (the context-sensitive Categories model) to 1970 inPapers in Structural and Transformational
perform on the same level. It is particularly en- h'gﬁ;‘rﬁ'cs Reidel Publishing Company, Dordrecht,
couraging to see that Morfessor performs so well '

in the Turkish segmentation task, since TurkishTeemu Hirsiméki, Mathias Creutz, Vesa Siivola, Mikko

data was never used in the development of the Kurimo, Sami Virpioja, and Janne Pylkkdnen.
2006. Unlimited vocabulary speech recognition

model. with morph language models applied to finnish.
Computer Speech and Languagn press).
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