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ABSTRACT

Humans tend to group together related properties in or-
der to understand complex phenomena. When modeling
large problems with limited representational resources, it
is important to be able to construct compact models of the
data. Structuring the problem into sub-problems that can
be modeled independently is a means for achieving com-
pactness. We describe the Independent Variable Group
Analysis (IVGA), an unsupervised learning principle that
in modeling a data set, also discovers a grouping of the
input variables that reflects statistical independencies in
the data. In addition, we discuss its connection to some
aspects of cognitive modeling and of representations in
the brain. The IVGA approach and its implementation
are designed to be practical, efficient, and useful for real
world applications. Initial experiments on several data
sets are reported to examine the performance and potential
uses of the method. The preliminary results are promis-
ing: the method does seem to find independent subsets of
variables. Moreover, it leads to markedly more compact
and efficient models than the full model without variable
grouping. This allows the re-allocation of freed repre-
sentational resources for other important tasks. Compact
models also contain much fewer parameters and general-
ize better, and therefore require less data for estimation.

1. INTRODUCTION

The study of effective ways of finding compact represen-
tations from data is important for the automatic analysis
and data exploration of complex data sets and natural phe-
nomena. Moreover, the study of how conceptual represen-
tations emerge in humans during individual learning and
in the course of evolution may benefit from the study of
basic computational principles that might lead to efficient
models of complex phenomena.

Modeling intricate and possibly non-linear dependen-
cies between a very large number of real-valued variables
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(features) is hard. Learning such models from data gen-
erally requires very much computational power and mem-
ory.

One way of obtaining compact models is to structure
the problem into sub-problems that can be modeled in-
dependently. The larger a problem is, the more likely it
is that there are relatively independent sub-problems. If
this kind of structuring can be done appropriately, it will
lead to efficiency of representation, such as more efficient
usage of memory space, reduced computational load, re-
duced use of energy, and improved speed of the imple-
mented system. These same principles apply both to bio-
logical and artificial systems that attempt to construct rep-
resentations of their environment.

For example, the neocortex of the human brain can
be considered as a system that attempts to learn a con-
cise representation of its environment, in order to predict
events initiated by the environment, as well as outcomes
of its own actions. In the mammalian brain different corti-
cal areas can be identified that differ from other areas both
on a gross structural level, i.e., which input and output ar-
eas they connect to, and functionally. Examples include
the somatosensory cortex and the visual cortex. Neocorti-
cal microcircuitry is remarkably uniform throughout and
the functional difference therefore appears to stem from
the connectivity while the underlying ”cortical algorithm”
is uniform. For a human, such structuring of the connec-
tivity may have arisen during evolution for many reasons,
including the cost associated with increasing brain size.
For a general discussion regarding human cortical differ-
entiation during evolution, see e.g. [1].

One cognitive, conceptual model that exhibits this
kind of structuring of representations is presented in the
work of Gärdenfors [2]. He outlines how a collection
of distinct, ordered neuronal representation areas can take
part in higher-level conceptual representations, and finally
in symbolic representations. Using his concepts, the struc-
ture consists ofdomains, each of which consists of a set
of integral quality dimensionsthat are separable from all
other quality dimensions. As an example of a domain he
mentions color, consisting of the integral dimensions hue,
chromaticity, and brightness. While it is easier to iden-
tify such domains and dimensions near the perceptual or



motor systems rather than with more abstract concepts,
it is suggested that our representations in general exhibit
this kind of structuring. The question remains, what pre-
cisely do integral and separable dimensions mean mathe-
matically, and how would such a structure be obtained. In
this work we hope to provide some insight on the matter.

It seems evident that humans group related properties
as a means for understanding complex phenomena. An
expert of a complicated industrial process such as a pa-
per machine may describe the relations between different
control parameters and measured variables by groups:A

affectsB andC, and so on. This grouping is of course
not strictly valid as all the variables eventually depend on
each other, but it helps in describing the most important
relations.

Obtaining structured models automatically would be
useful in data analysis and visualization, where the goal is
to render a large and complex problem more understand-
able to a human. Consider, for example, a robot which
mounts electronic components on a printed circuit board.
In order to input a suitable set of attribute values for a new
component to be used by the robot, the operator must be
aware of complex mutual dependencies between dozens
of component attributes. If an incorrect set of values is en-
tered, the assembly fails. In the worst case, iterative tuning
of the parameters by hand is required using trial and error.
A library which contains data of earlier used components
can be used to verify which attribute value combinations
are acceptable. It may also be possible to deduce at least
some attribute values for a new component based on the
data. The automatic detection of subsets of attributes that
do not depend on each other would considerably reduce
the cognitive load of the human operator, since she can
concentrate on a smaller sub-problem at a time. Similar
benefits also apply in the case of an automatic system per-
forming the task.

We will next describe a computational principle by
which one can learn such a structuring from data.

1.1. Principle of Independent Variable Group Analy-
sis (IVGA)

In an approach that we call Independent Variable Group
Analysis (IVGA) [3] the task is to partition a set of in-
put variables (attributes) into groups in such a way that
the statistical dependencies of variables within a group
are stronger. These dependencies are therefore mod-
eled, whereas the weaker dependencies between different
groups are disregarded. The IVGA principle is depicted
by the Figure 1.

The computational usefulness of this principle relies
on the realization that if two variables are statistically de-
pendent of each other, representing them together is effi-
cient, since related information must be stored only once.
However, representing together variables that do not de-
pend on each other is more inefficient. Mathematically
this corresponds to the fact that joint probability distribu-
tions that can be factorized are more compact than repre-
senting a full joint distribution. In terms of a data set or
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Figure 1. An illustration of the IVGA principle. The upper
part of the figure shows the actual dependencies between
the observed variables. The arrows that connect variables
indicate causal dependencies. The lower part depicts the
variable groups that IVGA might find here. One actual
dependency is left unmodeled, namely the one between Z
and E.

a problem expressed using association rules of the form
(A=0.3, B=0.9→ F=0.5, G=0.1), the shorter the rules that
represent the regularities within a phenomenon, the more
compact the representation becomes and the fewer associ-
ation rules are needed. With regard to the structure of the
cortex this corresponds to the contrast between full con-
nectivity (all cortical areas receive inputs from all other
areas) and more limited, structured connectivity.

It turns out that this kind of structuring of a problem
can be obtained automatically based on observed data,
given that there is a way to measure both model complex-
ity and the precision of the model. Such a measure is ob-
tained e.g. using the minimum-description-length (MDL)
principle. Instead of applying MDL directly to derive
the necessary cost function, we have used a variational
Bayesian method that is equivalent to MDL under certain
assumptions.

Figure 2 illustrates the IVGA principle using an artifi-
cial example that consists of variables that describe vari-
ous properties of a person. The available data set consists
of four real-valued variables, namely Height, Weight, In-
come, and Education. Some of these observed variables
depend statistically on each other. Some dependencies
are caused by unobserved (i.e., latent) variables that af-
fect several of the variables. In this case, IVGA might
find two variable groups, namely one connecting Height
and Weight and the other with Income and Education.
By looking at the particular model learned for each dis-
covered group, detailed information regarding the depen-
dency is obtained.

Identification of the latent variables, or the causal
structure of the problem, are very hard problems, and es-
pecially so if there are complex nonlinear dependencies.
Therefore, methods attacking these problems generally
limit the problem in many other ways, such as by model-
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Figure 2. Illustration of the IVGA principle with an ar-
tificial example. The observed variables, to be grouped,
are Height, Weight, Education, and Income. IVGA might
identify here two variable groups, ignoring the weak de-
pendency between Education and Weight that may be
caused by the latent variable Y.

ing only linear dependencies, or by allowing only discrete
variables.

Moreover, there exist many applications in which al-
ready grouping the observed variables is very useful, and
such groupings are also sought for by humans who are
faced with the problem domain. In contrast, this limita-
tion to grouping observed variables allows one to model
also complex nonlinear dependencies.

The IVGA principle has been shown to be sound: a
very simple initial method [3] found appropriate variable
groups from data where the features were various real-
valued properties of natural images. Recently we have
extended the model to handle also nominal (categorical)
variables, improved the model search algorithm, and the
application to various data sets is taking place.

In this article we describe in general terms a method
that implements the IVGA principle, as well as look at
how the method works both in an artificial case and on
real-world data.

1.2. Related work

On a certain level, IVGA can be seen as a method for com-
pact representation of data using multiple independent
models. Other alternatives for the same purpose include
methods such as multidimensional independent compo-
nent analysis (MICA) [4] and independent subspace anal-
ysis (ISA) [5], as well as factorial vector quantization
(FVQ) [6, 7].

In MICA and ISA, the idea is to find independent lin-
ear feature subspaces that can be used to reconstruct the
data efficiently. Thus each subspace is able to model the
linear dependences in terms of the latent directions defin-
ing the subspace. FVQ can be seen as a nonlinear ver-

sion of MICA, where the component models are VQs over
all the variables. The main difference between these and
IVGA is that in IVGA, only one model affects a given ob-
served variable whereas in the others, in principle all mod-
els affect every observed variable. This difference makes
the computation of IVGA significantly more efficient.

There are also a few other methods for grouping the
variables based on different criteria. A graph-theoretic
partitioning of the graph induced by a thresholded associa-
tion matrix between variables was used for variable group-
ing in [8]. The method requires choosing arbitrary thresh-
old for the associations, but the groupings could never-
theless be used to produce smaller decision trees with
equal or better predictive performance than using the full
dataset.

A framework for grouping variables of a multivariate
time series based on possibly lagged correlations was pre-
sented in [9]. The correlations are evaluated using Spear-
man’s rank correlation that can find both linear and mono-
tonic nonlinear dependencies. The grouping method is
based on a genetic algorithm, although other possibilities
are presented as well. The method seems to be able to find
reasonable groupings, but it is restricted to time series data
and only certain types of dependencies.

2. A VARIATIONAL BAYESIAN METHOD FOR
IVGA

Successful implementation of the IVGA principle requires

1. a method for modeling an individual group,

2. a model evaluation and parameter estimation frame-
work that combines the measure of model complex-
ity and the quality of representation, and

3. a combinatorial search algorithm for finding good
groupings.

In our implementation, the models of the groups are
simple mixture models such as mixtures-of-Gaussians.
The models are derived using the variational Bayesian
framework, but they can also be interpreted using the in-
formation-theoretic minimum-description-length (MDL)
principle. The grouping algorithm is a relatively simple
adaptive heuristic.

2.1. Model for a single variable group

The model we use for the individual variable groups is a
simple mixture model. The mixture components for real-
valued variables are Gaussians and the components for
categorical variables general discrete distributions. The
real-valued Gaussian mixture is closely related to well-
known vector quantization (VQ) model as well as the
model employed by the soft k-means algorithm. The
model parameters can be learned using the (variational)
expectation maximization (EM) algorithm. If we denote
component probability distributioni by pi (contains both
real and nominal dimensions if both kinds exist in the
modeled data), then the approximative data distribution



can be thought of as a weighted sum of the mixture com-
ponents;

p(X) =
∑

i

wipi(X) (1)

Adding more mixture components, or making them more
precise, increases, by itself, the cost, but may lead to im-
provement of the cost if the additional component allows
a clearly better approximation of the data distribution.

2.2. Variational Bayesian learning

Most model comparison methods are motivated by the
principle of Occam’s razor: the simplest adequate expla-
nation of natural things should be preferred. A popu-
lar method for implementing this in practice is to apply
the minimum description length (MDL) principle [10]. It
states that the best model for the data setX is the one that
provides the most compact encoding of the data, measured
by the number of bitsL(X) needed to transmit the data
set to another observer. Shannon’s coding theorem links
the code lengths intimately with probabilities. It is there-
fore not very surprising that with a suitable coding method
the MDL principle is equivalent to the popular variational
approximation to Bayesian statistics [11].

In Bayesian learning, all information provided by the
dataX is contained in the posterior probability distribu-
tion p(θ|X,H) of the model parametersθ. The varia-
tional approximation is based on using a simpler distribu-
tion q(θ) to approximate the posterior. The approximation
includes additional independence assumptions to avoid
modeling dependences between parameters, thus simpli-
fying learning and inference. The cost function used to
fit the approximation combines measures of the accuracy
of data description through the description length of data
modeling errors, and model complexity through the de-
scription length of the model parameters. This allows us-
ing the cost function directly in comparing different mod-
els of the data implied by different groupings. More de-
tails on the variational Bayesian method and its relation to
information theory can be found in [12, 13].

2.3. Grouping algorithm

The number of possible groupings ofn variables is called
thenth Bell numberBn. The values ofBn grow with n

faster than exponentially, making exhaustive search of all
groupings infeasible. For example,B100 ≈ 4.8 · 10115.
Therefore, some heuristic for finding a good grouping has
to be deployed. In principle, any standard combinatorial
optimization algorithm can be used.

We have used a rather simple heuristic algorithm for
the grouping, which is described below. Note that any
grouping algorithm is computationally feasible only if the
cost of an arbitrary group of variables can be computed
very fast. Therefore, for instance, when a mixture model
for a group is computed, a somewhat inaccurate model is
initially trained and fine-tuned during the run of the group-
ing algorithm. The algorithm is as follows:

1. Each variable is placed into a group of its own. The
cost of the model is calculated.

2. In order to decrease the total cost the following op-
erations are repeated until the stopping criterion is
met:

• Move. A randomly chosen variable is tenta-
tively moved into each of the other groups and
also to a new, singleton group. The grouping
with the lowest cost is chosen; if all the possi-
ble moves increase the cost the variable is kept
in the original group.

• Merge.Two randomly chosen groups are ten-
tatively merged together, and the cost is calcu-
lated. If the cost is decreased, the groups are
merged.

• Split. A group is selected randomly and this
algorithm is then run recursively for the vari-
ables within the selected group. If the cost
of the obtained grouping is greater than the
cost of the original group, the original group
is kept; otherwise the group is split according
to the obtained grouping.

3. Every now and then the stopping condition for the
algorithm is checked. If the stopping condition is
not yet fulfilled, the above described operations are
continued. As a stopping criterion one can use, for
example, some criterion based on the speed of con-
vergence, i.e., the reduction speed of the cost.

It is also possible to assign different probabilities to
move, merge, and split operations, and randomly choose
one operation at a time for decreasing the cost. Further,
the probabilities can be slowly adapted so that the most
beneficial operations (i.e., the ones that most efficiently
decrease the cost) are chosen more frequently.

The algorithm is stochastic and converges to a local
minimum of the cost function. In order to obtain a good
grouping, the algorithm should be run many times and
the grouping with the smallest cost should be selected as
the final grouping. Also, by looking at several resulting
groupings (and models of the groups) one can often ob-
tain a good insight into the data.

3. EXPERIMENTS AND RESULTS

We first describe an experiment on an artificial data set
designed to illustrate the IVGA principle and to verify the
method. Next, we present experimental results on three
different types of real-world data sets, namely an electro-
cardiography data used for machine identification of car-
diac arrhythmias, a data set used in the design of new cir-
cuit boards, and a text document collection.

3.1. Proof of concept: Artificial data set

A data set consisting of one thousand points in a four-
dimensional space was synthesized. The dimensions of
the data are callededucation, income, height, and
weight. All the variables are real and the units are arbi-
trary. The data was generated from a distribution in which
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Figure 3. Comparison of different two-dimensional sub-
spaces of the data. Due to the strong dependencies be-
tween the variables shown in the first two pictures it is
useful to model those variables together. In contrast, in
the last picture no such dependency is observed and there-
fore no benefit is obtained from modeling the variables
together.

both education and income are statistically independent of
height and weight.

Figure 3 shows plots of education versus income,
height vs. weight, and for comparison a plot of education
vs. height. One may observe, that in the subspaces of the
first two plots of Figure 3 the data points lie in few, more
concentrated clusters and thus can generally be described

(modeled) with a lower cost when compared to the third
plot. As expected, when the data was given to our imple-
mentation of the IVGA, the resulting grouping was

{{education, income}, {height, weight}}.

Table 1 compares the costs of some possible groupings.

Grouping Total Cost Model Parameters
{e,i,h,w} 12233.4 288
{e,i}{h,w} 12081.0 80
{e}{i}{h}{w} 12736.7 24
{e,h}{i}{w} 12739.9 24
{e,i}{h}{w} 12523.9 40
{e}{i}{h,w} 12304.0 56

Table 1. A comparison of the total costs of some vari-
able groupings of the synthetic data. The variables edu-
cation, income, height, and weight are denoted here by
their initial letters. Also shown is the number of model
parameters, i.e. real numbers, used to represent the Gaus-
sian mixture component distributions. The total costs are
for mixture models optimized carefully using the IVGA
implementation. The model search of our IVGA imple-
mentation was able to discover the best grouping, i.e., the
one with the smallest cost.

3.2. Arrhythmia data set

The identification of different types of heart problems,
namely cardiac arrhythmias, is carried out based on elec-
trocardiography measurings from a large number of elec-
trodes. We used a freely available electrocardiography
data set arrhythmia [14] used for machine identification of
cardiac arrhythmias. It consists of 280 variables collected
from 452 patients. The data set includes 74 real-valued
variables such as the age and weight of the patient and
wave amplitudes and durations of different parts of the
signal recorded from each of the 12 electrodes. The 206
nominal variables code, for example, the gender of the pa-
tient and the existence of various anomalies in each elec-
trode. One variable describes a human cardiologist’s clas-
sification of the patient into one of 16 arrhythmia types.

IVGA was run several times on the data. It grouped
the variables into 90-110 groups with about 1-10 variables
in each group. The individual IVGA runs took from one
to eight hours. The grouping with the lowest cost was
obtained in a run that used adaptively changing operation
probabilites and lasted for seven hours1. IVGA was run
on one CPU in a Linux server with 2.2 GHz Opteron pro-
cessors and 4 GB of memory.

A specific finding regarding the discovered groups was
that often the variable that contained the cardiologist’s di-
agnosis was grouped with two variables, namely the dura-
tion and amplitude of a certain wave (R’-wave) in the elec-
trode V1. Looking at the mixture components inside the

1The method can be speeded up roughly by an order of magnitude
if one uses a C implementation of the mixture modeler instead of the
current Matlab implementation, but in these experiments such speedups
were not utilized.



model it appeared that this particular grouping emerged
because the patients with a particular, common arrhyth-
mia type differed from the others with respect to these
recordings from the electrode V1. This finding suggests
a possible use of our approach as a tool for searching for
good features for a supervised learning task.

3.3. Printed Circuit Board Assembly

In the electronics industry of today, mounting of compo-
nents on a printed circuit board is usually carried out by an
assembly robot. Typically, one robot is used in manufac-
turing of many products each of which consists of com-
ponents of different type. Before assembly, the specifica-
tions of all the required components (values of component
attributes) need to be input in an electronic component li-
brary which the robot then utilizes. The determination of
the values for dozens of attributes is carried out by hand
and requires experience of the human operators, manual
browsing through the specification documents and even
testing using trial and error.

The component library can be seen as a data matrix.
The columns of the matrix depict component attributes
and each row contains attribute values of one component.
The attributes are not mutually independent. By modeling
the dependencies of the existing library data, it is possi-
ble to construct a support system to assist input of data
of new components. So far, modeling of the dependen-
cies has been carried out using association rules [15]. Un-
fortunately, extraction of the rules from the data is com-
putationally heavy, and memory consumption of the data
structure (for example, a trie) for the rules is very high.

In this experiment, we used IVGA to split the data
into separate groups, and dependencies within each group
were modeled using association rules. The data was ob-
tained from the component library of an operational as-
sembly robot, and it consisted of attribute values of 1 000
components. After preprocessing – for example, removal
of constant valued attributes – there were 24 attributes (17
nominal, 7 real-valued) which were modeled. The IVGA
was run 20 times for the data set. One run of IVGA imple-
mented on Matlab 6.5.1 took an average of 510 seconds of
CPU time on a Linux server with 2.2 GHz Opteron pro-
cessors and 4 GB of memory. In the grouping with the
lowest cost the variables were divided into three groups;
the sizes of the groups were 15, 6, and 3 attributes.

Association rules were then used for modeling of the
dependencies of (1) the whole data and (2) the three vari-
able groups separately. In both cases, the extracted rules
were used for one-step prediction of the attribute values
for a previously unseen data set of 1 000 components. The
data consist of values selected and verified by human op-
erators, but it is possible, that these are not the only valid
values. Nevertheless, predictions were ruled incorrect if
they differed from these values.

Computation times, memory consumption, and pre-
diction accuracy are shown in both cases in Table 2. Split-
ting of the data using IVGA lead to significant improve-
ments in the efficiency of the obtained model: it accel-

erated computation of the rules, dramatically reduced the
size of the data structure, and decreased the number of the
incorrect predictions. On the other hand, the number of
missing predictions was clearly larger for the grouped data
than for the whole data, because for the first attribute value
of every group, no prediction could be made whereas for
the whole data, only the prediction for the first attribute
could not be obtained.

Whole Grouped
data data

Computation time (s) 194 < 1
Size of trie (nodes) 1 054 512 3 914
Correct predictions (%) 38.05 32.45
Incorrect predictions (%) 1.61 0.68
Missing predictions (%) 60.43 66.88

Table 2. Summary of the results of the component data
experiment. All the quantities for the grouped data are
sums over the three groups. Also note that the size of trie
is the same as the number of association rules.

Some advantages of the IVGA model were not yet uti-
lized in the experiment. First, automatic discretization of
continuous variables is often a problem in applications of
association rules, but it is automatically carried out by
the mixture model (note that for simplicity, we treated
the continuous values as nominal in the computation of
the association rules). Second, division of the variables
into groups makes it computationally possible to find rules
which are based on smaller proportions of the data. Us-
ing data mining terminology: it is possible to use smaller
minimum support. Third, it may be possible to even com-
pletely ignore computation of the association rules, and
instead use the mixture models of the IVGA directly for
obtaining the predictions. All the issues deserve to be
studied in more depth in future research.

3.4. Text document data

Due to the large numbers of possible words, obtaining
structured representations for textual data can be of gen-
eral interest. For example, the modeling of very large text
document collections using methods such as the WEB-
SOM [16] requires storage of vectors with a dimension-
ality of tens of thousands of variables, if no dimension
reduction methods are used.

In this initial experiment, the document set consisted
of 529 patent abstracts from three distinct topical cate-
gories, namely A21: Foodstuffs; Tobacco, A61: Health;
Amusement and F41: Weapons; Blasting. While the task
was to find an efficient representation for the set of doc-
uments, we were interested in the kinds of groupings that
this method might obtain for the words. Although the
currently implemented model families are not particularly
well suited for very sparse occurrence data, such as text
documents, we wished to look at this problem due to the
ease of interpreting the word groupings.

As the features (variables) we picked 100 out of the
400 most frequent words. To encode a document, we



Group Words in the group
1 speed
2 tobacco, smoke
3 walter
4 top, roll
5 target, system, signal, sight, shoot, set, sen-

sor
6 water, value, upper, up, treatment, thus,

then, temperature, sugar, subject, solution,
side, separate, salt, result

7 vehicle, under, strike, spring, slide, sleeve,
safety, round, return, retain

8 vessel, small, ring
9 suitable, strip, shell
10 section
11 without, with, who, which, when, weapon,

way, wall, use, type, to, time, through,
three, this, they, there, the, that, than, sup-
ply, such, substance, step, so, ski, simple,
shot, say, rifle

12 via
13 two
14 weight, valve, tube, together, tip, suction,

space, seal, screw, roller
15 rod
16 unit
17 while, wheel, vertical, surface, support,

shape, shaft, second, same, rotation, rotate

Table 3. The 17 word groups found in the IVGA run
with lowest cost. The results seem to exhibit some topical
grouping: see, e.g., in group 6 the words water and tem-
perature, as well as sugar and salt. In addition, group 11
contains a concentration of non-content words, although
with several content words as well.

recorded the presence or absence of each word as a nomi-
nal variable. IVGA was then run 20 times; on the average,
22.5 groups of words were obtained. One run of IVGA
implemented on Matlab 6.5.1 took an average of 1155 sec-
onds of CPU time on a Linux server with 2.2 GHz Opteron
processors and 4 GB of memory. The grouping with the
lowest cost contained 17 word groups and was selected for
closer inspection in Table 3.

In many of the groupings some patterns were typi-
cal. For example, topically related words, such as tobacco
and smoke, were often found together. Many groupings
also included one group with a high concentration of non-
content words (group 11 in Table 3). These very prelim-
inary results are promising in that the method does seem
to find some relevant structure in the problem. However,
more work is needed in order to identify the best way of
applying IVGA for this type of data.

4. DISCUSSION

One may regard the IVGA principle as one attempt to
specify in mathematical and computational terms how a
structured conceptual representation, such as is discussed

by Gärdenfors in [2], might emerge from the statistical
properties of data. As one possible model of a single do-
main he considers the Self-Organizing Map (SOM) [17],
which forms an ordered representation of its input data.
Although in our implementation of IVGA we have applied
a mixture of Gaussians (which is very similar to VQ) as
the corresponding model of a variable group, a SOM-like
ordered model could be utilized as well for a single vari-
able group, once the grouping is first obtained using the
current IVGA implementation2.

A similar two-phase approach was utilized with the
Circuit Board experiment, where after the grouping was
obtained, another method was utilized to discover associ-
ation rules. An advantage of such a two-phase approach
is that even if the latter method is computationally much
more demanding, it can now be applied since the maximal
dimensionality of the data at any given time is now con-
siderably lower (the dimensionality at any point equals the
number of variables in the group being modeled).

Moreover, from this two-phase approach one might
draw a gross analogy to the development of the brain,
if one assumes that some general structure of the brain
is determined by evolution. The evolutionary develop-
ment would thus correspond to the grouping of related
input variables by IVGA. Later, individual development
might be viewed as attempting to discover the best pos-
sible model for each sub-structure based on the data en-
countered by the individual, which corresponds to the later
learning of the best model for a single variable group. The
individual learning might employ even a considerably dif-
ferent (a much more intricate) model family than was uti-
lized during early stages of the evolutionary phase.

When considered as a means for solving real-world
data analysis problems using automatic methods, IVGA
shows marked potential. The experiment on a simple ar-
tificial data set confirms that the method does find the in-
dependent groups in the example. Of particular interest
raises the Circuit Board example, in which already the
initial experiments lead to considerable savings in the ef-
ficiency of the model. These, in turn, may later lead to
improvements in quality, since the freed computational re-
sources can be re-allocated, and since less data is required
for accurate estimation of the structured model.

An interesting question is whether the IVGA approach
might be useful for feature selection for supervised learn-
ing, as suggested by the experiment with the Arrhythmia
data set in Section 3.2. Another possibility worth consid-
ering is whether the structuring of the set of input features
might also be of use for systems that must weigh their in-
put features based on some relevance feedback: instead
of calculating changes for individual feature weights, the
collective weight of a feature group might be adjusted.

An important benefit of the IVGA was highlighted by

2The mathematically correct way would be to use a probabilisticvari-
ant of the SOM such as the Generative Topographic Mapping (GTM)
[18] as the model for a single group during IVGA. Nevertheless, rea-
sonably good results might of course be obtained utilizing the described
practical two-phase shortcut, in cases when the two methods tend to dis-
cover similar dependencies.



the circuit board experiment, in which we saw a drastic
reduction in computation time, model storage space and
required learning data. In this example IVGA produced a
model that required about 200 times less model param-
eters and learning time, even when using the complete
data set. Moreover, with a reduced number of parame-
ters one can use less data for estimating the model with
good precision. IVGA can thus be initially applied once to
learn the independence structure of the modeled domain.
In further runs, a much smaller set of data is sufficient
for evaluating the model parameters in a particular case.
These two phases are analogous to evolutionary adapta-
tion of brain structure, and specific learning within the
given brain structure during a life time of an individual.

In conclusion, the presented approach shows clear po-
tential for finding models for large and complex real-
world phenomena. Due to discovering some essential in-
dependence structure of the data set, the models become
more efficient and can lead to better quality in systems that
have limited representational resources.
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Pyykkö, and Pekka Honkavaara, “Generating deci-
sion trees from otoneurological data with a variable
grouping method,”Journal of Medical Systems, vol.
26, no. 5, pp. 415–425, 2002.

[9] Allan Tucker, Stephen Swift, and Xiaohui Liu,
“Variable grouping in multivariate time series via
correlation,” IEEE Transactions on Systems, Man
and Cybernetics, Part B, vol. 31, no. 2, pp. 235–245,
2001.

[10] Jorma Rissanen, “Modeling by shortest data descrip-
tion,” Automatica, vol. 14, no. 5, pp. 465–471, 1978.

[11] Geoffrey E. Hinton and Drew van Camp, “Keeping
neural networks simple by minimizing the descrip-
tion length of the weights,” inProceedings of the
COLT’93, Santa Cruz, California, USA, July 26–28,
1993, pp. 5–13.

[12] Harri Lappalainen and James W. Miskin, “Ensemble
learning,” in Advances in Independent Component
Analysis, Mark Girolami, Ed., pp. 76–92. Springer-
Verlag, Berlin, 2000.

[13] Antti Honkela and Harri Valpola, “Variational learn-
ing and bits-back coding: an information-theoretic
view to Bayesian learning,”IEEE Transactions on
Neural Networks, vol. 15, no. 4, pp. 800–810, 2004.

[14] C. L. Blake and C. J. Merz, “UCI repository
of machine learning databases,” 1998, URL:
http://www.ics.uci.edu/˜mlearn/
MLRepository.html .

[15] Esa Alhoniemi, Timo Knuutila, Mika Johnsson,
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