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1 Introduction
Human preferences (the quality tags we put on things) are language terms
that can be easily translated into a numerical domain. We could assign low
values to odd things and high values to enjoyable things, i.e.; rate things
according to our experience. These ratings serve us to easily (and grossly)
classify and order our preferences from the ones we like the most to the
ones we dislike the most. Of course we are limited: we can not rate what
we do not know, however; it may be of our interest to know the possible
ratings of these unknowns.

In this project we will be working with large and sparse matrices of
movies ratings. The objective will be to recover a subset of the missing
values as accurately as possible. Recovering these missing values equal to
predicting movies ratings and, therefore; predicting movies preferences for
different users. The idea of correctly recovering movies ratings for different
users has been a hot topic during the last years motivated by the Netflix
prize.

The concept of mining users preferences to predict a preference of a third
user is called Collaborative Filtering, it involves large data sets and has
been used by stores like Amazon and iTunes.

We can start by considering that the preferences of the users are de-
termined by a number of unobserved factors (that later we will call com-
ponents). These hidden variables can be, for example, music, screenplay,
special effects, etc. These variables weight different and are rated inde-
pendently, however; they, together, sum up for the final rating, the one we
observe. Therefore; if we can factorize the original matrix (the one with
the ratings) in a set of sub-matrices that represent these hidden factors,
we may have a better chance to find the components and values to recover
the missing ratings [1]. One approach to find these matrices is to use SVD
(Single Value Decomposition), a matrix factorization method. With SVD
the objective is to find matrices U V minimizing the sum-squared distance
to the target matrix R [2].

For this project we consider matrix Y to be our only informative in-
put. Matrix Y is, usually, large and disperse, i.e.; with lots of missing val-
ues. The observable values are the ratings given to movies (rows) by users
(columns). Our objective is to recover the missing values, or a subset of
them, with a small error. We can factorize matrix Y such that Y ≈WX+m.
Matrices W X m will let us recover the missing values, of course, the qual-
ity of the recovering depends on the quality of these matrices. Sampling will
let us improve the fitness of matrices W X m to better recover matrix Y.
We can use VB-PCA (Variational Bayes PCA) for the initial decomposition
of the input matrix Y. VB-PCA is known to be less prone to over-fitting and
more accurate for lager-scale data sets with lots of missing values compared
to traditional PCA methods [3, 4]. However; VB-PCA is not compulsory for
sampling, a random initialization method is also explored in this project.
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2 Sampling PCA
Sampling can be seen as the generation of numerical values with the char-
acteristics of a given distribution. Sampling is used when other approaches
are not feasible.

For high-dimensional probabilistic models Markov chain Monte Carlo
methods are used to go over the integrals with good accuracy. Gibbs sam-
pling is a well known MCMC method [5, 6]. In Gibbs approach we sample
one variable, for example W, conditioned to the remaining variables, X m.
In the following step we sample another variable fixing the rest; we repeat
this process generating as many samples as necessary.

In our project we have matrix Y that is a joint distribution of the form
Y = WX + m+noise to predict the missing values in Y we need to solve:

P (YMIS |YOBS) =
∫

P (YMIS |W, X, m)P (W, X, m|YOBS) dW dX dm (1)

Solving the integral is complex, therefore; we make use of Gibbs sam-
pling to approximate its solution. To recover matrices W X m we need
to solve P (W|YOBS , X, m), P (X|YOBS , W, m) and P (m|YOBS , W, X) each
one following a Gaussian distribution, contrary to P (W, X, m|YOBS) that
follows an unknown and complex distribution. The mean matrices, X̄ W̄ m̄,
and covariance matrices, ΣxΣw m̃, are calculated according to the formulas
provided at [4] Appendix D; this is done as follows:

x̄j = (W̄T
j W̄j + vI)−1W̄T

j (Y̊:j − M̄j) j = 1, . . . , p

Σx,j = v(W̄T
j W̄j + vI)−1

w̄i = (Y̊i: − m̄i)T X̄T
i (X̄iX̄T

i + v diag(w−1
k )) i = 1, . . . ,m

Σw,i = v(X̄iX̄T
i + v diag(w−1

k ))

m̄i =
wm

|Oi|(wm + v/|Oi|)
∑
jεOi

[yij − w̄T
i x̄j ] i = 1, . . . ,m

m̃i =
vwm

|Oi|(wm + v/|Oi|)

Indices j = 1, . . . , p and i = 1, . . . ,m go over the rows (people) and
columns (movies) of matrix Y. x̄j is the column j of matrix X̄, w̄i is row
i of matrix W̄, m̄i is element i of matrix m. v and wm are hyper-parameter
from PCA Full/Diag. Y̊ is the data matrix where the missing values have
been replaced with zeroes. O is the set of indices ij for which yij is observed.
Oi is the set of indices j for which yij is observed. |Oi| is the number of el-
ements in Oi. I is the identity matrix. diag is the diagonalizing of the
referred values.

Using the mean and covariance matrices we are able to sample W′ X′

and m′ using the methods presented in [6]. With the sampled and mean
matrices we recover a full matrix Y′, i.e.; including the missing values;
more of this is explained in the following subsections.
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2.1 Recovering the Missing Values
To recover the matrix Y we need to multiply matrix W by X and add the
m bias vector to it. Referring to the ideas presented by [1] matrix W rep-
resents the different and weighted factors that conform a movie. On the
other hand, matrix X represents the values assigned to each factor by the
different users. The resulting matrix Y′ has, therefore, the ratings given
to movies m by users p. The bias term, m, is used to compensate the dif-
ferences in results from the recovered matrix Y′ and the original observed
values used during the training.

To prove the quality of the ratings in the recovered matrix Y′ it is neces-
sary to have a test set different from the training set. At every step during
sampling when the values are recovered we calculate the Root Mean Square
Error, RMSE, using the test set as baseline. RMSE is a well known measure
to quantify the amount by which a predictor differs from the value being
predicted.

For this project the sampling and recovering process is as follows:

1. Start point i = 1, with matrices Wi Xi and mi.

2. Calculate mean matrix X̄ and covariance matrix Σx using Wi.

3. Recover Y′ with Wi and X̄.

4. Increase i by one.

5. Sample Xi using X̄ and Σx.

6. Calculate mean matrix W̄ and covariance matrix Σw using Xi.

7. Recover matrix Y′ with W̄ and Xi.

8. Sample Wi using W̄ and Σw.

9. Calculate bias mean m̄ and variance m̃ using Wi Xi.

10. Sample bias mi using m̄ m̃.

11. Loop from step 2.

This can be graphically visualized at Figure 1. At every loop, when calculat-
ing the mean matrices W̄ X̄ (steps 2 and 6), we use the original matrix Y,
this leads to an improvement in the recovered values (better representing
the original matrix with the observed values) and hence and improvement
in the future sampled matrices.

Every time matrix Y′ is calculated (steps 3 and 7) the missing values
are recovered. At every recovering step the missing values are averaged
with the previously recovered ones, Formula 2, where k is the step, ȳ is the
average of the previous values and y are the new recovered values. Using
the average will lead to better results than just using the single-samples
alone. Single-samples may recover well some of the values, nevertheless;
averaging them will reduce the distance to the expected values, step by
step, and at some point, even, match them.
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Figure 1: Sampling PCA process.

ȳk+1 =
kȳk + yk+1

k + 1
(2)

3 Tests and Results
The Sampling PCA method was tested with an artificial data set and the
MovieLens data set. For the MovieLens test the missing values were also
predicted randomly to observe how close a random prediction is from the
sampling approach, i.e.; to grossly measure the benefit of using sampling.
With the artificial data we will focus on recovering all missing values while
with MovieLens data only a subset of the missing values.

3.1 Artificial Data
The initial testing was done using artificially generated data. The artificial
data consists on generating matrices W[m, c] (normally distributed N (0, 1),
random values); X[c, p] (uniformly distributed [0 . . . 1], random values) and,
an additional noise matrix N[m, p] (normally distributed N (0, var) where
var is given as an input). Matrix Y[m, p] is generated as Y = WX + N.
From matrix Y a given percentage of ratings is selected at random and set
to NaN in matrix Yt, i.e.; set to be missing values1.

Three data sets were generated with the following characteristics:
1Where m stands for Movies; p for People and c for Components.
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c=10 c=20 c=30
A PCA_Full 0.264886 0.264909 0.264939

Sampling 0.265208 0.265511 0.266457
B PCA_Full 0.965070 0.865517 0.992878

Sampling 0.959550 0.866838 0.989643
C PCA_Full 1.238677 1.163651 1.238233

Sampling 1.232581 1.160960 1.230279

Table 1: RMSE results on artificial data.

Set m p c Noise Variance Missing Values
A 100 125 8 0.05 50%
B 150 200 15 0.3 70%
C 300 450 18 0.5 85%

Using the VB-PCA approach, PCA_FULL function, we recover W X and
m (plus hyper-parameters) from matrix Yt. We do this using 10, 20 and
30 components. With the recovered matrices we run the Sampling PCA
algorithm; 500 samples are generated from each input.

We can observe at Table 1, how the noise, size and proportion of missing
values of the original matrix Y affect the quality of the recovered missing
values. It is also noticeable that when the problem is simple, as it is in with
data set A, PCA_FULL recovers the matrix with a small error, therefore;
no improving can be expected, or achieved, when sampling. On the other
hand, with data set C, where the missing values are many and the matrix is
noisy and large the recovering achieved from PCA_FULL is just good but it is
improved with the Sampling PCA algorithm. An important value affecting
the results is the number of components, c. Because we do not know the
original number of components we try with 10, 20 and 30, and notice that
as we get closer to the original number of components our results improve.
At Figure 2, are the sampling RMSE error progress through 500 samples
compared to the PCA_FULL RMSE error using the best results within each
data set.

From the artificial testing we can conclude, first; the number of com-
ponents used play an important role and, second; as more complex is the
problem better results can be expected when using Sampling PCA.

3.2 MovieLens Data
The MovieLens [7] data set consist of 100,000 ratings given by 943 users
to 1682 movies. Each rating is a triplet, the value of the rating, the user
giving the rating and the movie being rated. The ratings go from 1 to 5, not
all movies have been rated nor all users have given rates. Having 100,000
ratings mean that less than 10% of the total possible triplets are available.
The data set was divided into Training Yt and Probing Yp sets after empty
columns/rows were removed, i.e.; users without ratings or movies no rated.
The Training set is a matrix of 943x1674 and contains 95,000 ratings. The
Probing set is a matrix of the same size but contains, only, 4999 ratings.
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Figure 2: Sampling progress with artificial data.

c=10 c=20 c=30
PCA_FULL Y′ vs Yt 0.743154 0.743614 0.744083

Y′ vs Yp 0.892615 0.892397 0.892211
PCA_DIAG Y′ vs Yt 0.762655 0.768235 0.768326

Y′ vs Yp 0.889250 0.889069 0.888687

Table 2: RMSE results on PCA_FULL/DIAG for Training and Probing data.

The first step consists on recovering matrices W
′
X

′
and m

′
(and hyper-

parameters) from matrix Yt using the VB-PCA implementations PCA_FULL
and PCA_DIAG, using 10, 20 and 30 as number of components. The RMSE
of the recovered matrix, Y′ against Yt and Yp can be seen at Table 2.
PCA_FULL performed better with the Training matrix while PCA_DIAG was
better for the Probing values. For both approaches more components mean
worse results against the Training set but better against the Probing one.

With the recovered matrices and hyper-parameters we perform Sam-
pling PCA. Two options are explored, the first option consist in using all the
recovered data as starting point for sampling. The second option consists
on only using the hyper-parameters; W

′
X

′
and m

′
matrices are initialized

with random values.

3.2.1 Sampling From PCA Full/Diag

In this first approach sampling is performed using the recovered matrices
and hyper-parameters. For each set of variables 2000 samples are gen-
erated, the numeric results can be observed at Table 3. Results show an
improvement compared to the Y′ vs Yp RMSE values at Table 2. The use of
20 components seems to return the best results, also, the use of PCA_DIAG
shows better results. The best results (shadowed) represent a small im-
provement, less than 1% against the top result obtained using the VB-PCA
approach alone (shadowed at Table 2). However; a small improvement for
recovering missing values tasks its an important gain.
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c=10 c=20 c=30
PCA_FULL 0.888123 0.887418 0.887837
PCA_DIAG 0.884606 0.883733 0.884129

Table 3: RMSE results after sampling (2000 samples).
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Figure 3: Sampling process using PCA_FULL data.

At Figure 3, we can observe the RMSE value of each sample through
the 2000 samples taken, with different number of components and using
PCA_FULL data as baseline; the values are compared against the RMSE of
VB-PCA approach. At Figure 4, a similar plot is observable but in this case
using PCA_DIAG data as baseline. For both Figures, in all sub-plots, we can
notice that the sampling algorithm is unstable for the initial samples, the
RMSE value jumps around the RMSE recovered from the VB-PCA approach.
However; for the last hundreds of samples stabilization is noticeable, show-
ing small differences after each sample.

3.2.2 Sampling Using Random Initialization

Another approach to perform Sampling PCA consist in only using the hyper-
parameters recovered from PCA_FULL/DIAG. Matrices W

′
X

′
and m

′
are

randomly initialized (uniformly distributed values[0 . . . 1]). This is possible
because the algorithms used to recalculate matrices W′ X′ and m′ and their
covariances take into account the training matrix Yt. At each iteration of
the sampling the matrices W′ X′ and m′ values are updated to better fit
Yt.

The initial samples will be highly deviated from the objective value,
therefore; they can be eliminated before the real prediction is made. In
our test we remove the initial 30 samples. Later, we generate 1000 new
samples to make the predictions of the missing values. Again 10, 20 and 30
components are used and the hyper-parameters from PCA_FULL/DIAG. The
Figure 5, shows the discarded samples and how spread they were compared
to the final RMSE. The first 10 samples are the most disperse ones, latest
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Figure 4: Sampling process using PCA_DIAG data.
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Figure 5: RMSE for discarded samples.

samples are more stable in their RMSE value, specially, when the number
of components is 20 and 30.

Figure 6, shows the RMSE value at each sample during the sampling
process. The results of the sampling process are at Table 4. The results
are similar to those obtained using the first approach, however; its worth
noticing that for PCA_FULL the results are better in all the instances and
only half the samples were generated (the same hyper-parameters were
used). This may be related on how the recovered matrices, learning Yt,
directly affect the sampling process.

3.2.3 Random Guessing

The results obtained by Sampling PCA, under the MovieLens data set, are
good. In all the runs the algorithm reduced the error of the recovered miss-
ing values compared to the VB-PCA approach. A way to compare the re-
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Figure 6: Sampling process for random initialization.

c=10 c=20 c=30
PCA_FULL 0.887070 0.887121 0.886675
PCA_DIAG 0.885025 0.884074 0.885066

Table 4: RMSE results after sampling, random initialization.

sults and the real gain obtained by the use of the algorithm is to guess all
the missing values and calculate the error of the guesses. The guessing was
done in two ways. On one hand, the missing values are generated at ran-
dom and the values are uniformly distributed [1 . . . 5]. On the other, the pro-
cess is similar to the initialization explained at 3.2.2, where matrices W X
and m are filled with uniformly distributed values [0 . . . 1], using different
number of components. The RMSE results of these random approaches are
at Table 5. We notice, in general, a large improvement in the RMSE when
using a formal methodology vs guessing.

4 Conclusions
This project lead to interesting results. The artificial tests let us know that
small matrices with small portion of missing values are not easily improved
by sampling. For the MovieLens test we observed that sampling improved
the quality of the recovered missing values over VB-PCA using the later

1st Test A Test B Test C
RMSE 1.685530 1.711611 1.698252
2nd c=10 c=20 c=30

RMSE 1.433975 2.45591410 1.454340

Table 5: RMSE random guessing. 1st; random values [1..5] 2nd; random
matrices [0..1]
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as an initial step. We also noticed that the random initialization does not
affect sampling and the results are good. The best results were obtained
using PCA_DIAG and 20 components; the worst results were obtained using
PCA_FULL and 10 components. A future improvement could be achieved
rounding the recovered values that are outside the range of the expected
ones, i.e.; values ≤ 1 to 1 and ≥ 5 to 5. A look at the recovered vector, for
the best results, shows 6 values below 1 and 32 above 5.

The project, in general, helped me to better understand the ideas behind
PCA, Sampling methods and treatment of large matrices. The topic was
challenging but interesting with lots of learning.
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