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Abstract

Content-based image retrieval (CBIR) addresses the
problem of finding images relevant to the users’ informa-
tion needs, based principally on low-level visual features
for which automatic extraction methods are available. For
the development of CBIR applications, an important issue
is to have efficient and objective performance assessment
methods for different features and techniques. In this paper,
we study the efficiency of clustering methods for image in-
dexing with entropy-based measures. Furthermore, the Self-
Organizing Map (SOM) as an indexing method is discussed
further and an analysis method which takes into account
also the spatial configuration of the data on the SOM is pre-
sented. The proposed methods enable computationally light
measurement of indexing and retrieval performance for in-
dividual image features.

1. Introduction

Indexing image databases is a different and in many
ways more complex problem than indexing traditional
databases. The main difficulties arise from the high dimen-
sionality of the used feature vectors, the large sizes of the
image databases, and that many feature spaces may have to
be used simultaneously. Due to these factors, using basic
linear search easily leads to poor performance and special-
ized techniques are needed so that the most similar images
can be determined quickly enough.

In general, there are two broad categories of index struc-
tures for high-dimensional spaces. First, one can transform
the original feature space into a new space where the needed
operations are less demanding. This usually means reduc-
ing the dimensionality of the feature space. Alternatively,
one can apply a divide-and-conquer type strategy: the data
or the feature space is divided into clusters or subspaces
with the intention that only one or a few of these have to be
processed in one given query. After clustering, each cluster
is represented by its centroid or representative data item.

The Self-Organizing Map (SOM) [2] can be considered
a method for both clustering and dimensionality reduction.
The mapping of feature vectors and their associated images
to their best-matching units (BMUs) can be interpreted as
clustering. This, however, ignores the topology of the SOM,
so a portion of the provided data organization is dismissed.

In this paper, we study how clustered image class distri-
butions can be interpreted in terms of probability densities
and how the effectiveness of a clustering method can be as-
sessed with entropy-based methods. Indexing feature vec-
tors with the SOM is then discussed further and a method
which takes into account also the spatial configuration of
the data on the SOM surfaces is presented.

2. Feature-wise evaluation

Objective performance measures of CBIR are needed for
further development in the research field. This includes
benchmarking entire CBIR systems with simulated retrieval
tasks designed to resemble the actual usage of the system as
well as possible. Usually, these evaluations are conducted
by defining a number of example queries and corresponding
sets or classes of relevant images �, and then measuring the
ability of the system to retrieve the images belonging to �.

In addition, individual features and indexing methods
need to be studied separately. Evaluations of this type are
essential in feature extraction method development. In these
evaluations, it is often unnecessary to do a time-consuming
simulation of the actual retrieval system with an extensive
set-up. Instead, a direct measure based on the ability of
the feature extraction to discriminate images belonging to a
certain set of semantic similarity or relevancy may suffice.

3. Class distributions

The shape of the distribution of a set of high-dimensional
feature vectors mapped on a set of � clusters depends on
several factors including: (a) The distribution of the origi-
nal data in the very-high-dimensional pattern space, which
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is generally given and cannot be controlled. (b) The feature
extraction technique in use affects the formation and thus
the distribution of all the generated feature vectors. (c) The
overall shape of the training set, after it has been mapped
from the original data space to the feature vector space, de-
termines the overall organization of the clustering. (d) The
class distribution of the studied object set or class, relative
to the overall shape of the feature vector distribution, spec-
ifies the configuration of the class within the clustering.

In the very-high-dimensional pattern space the distribu-
tion of any non-trivial object class is most certainly sparse.
As a consequence, in most cases it is meaningless to talk
about the uni- or multimodality of class distributions in the
pattern space. On the other hand, if the feature extraction
stage is working properly, semantically similar patterns will
be mapped in the feature space nearer to each other than se-
mantically dissimilar ones. In the most advantageous situ-
ation, the pattern classes might even match clusters in the
feature space, ie. there would exist a one-to-one correspon-
dence between feature vector clusters and pattern classes.

4. Cluster entropy and perplexity

Given a set of cluster centroids, one can in theory calcu-
late the a priori probability of each cluster for being the
best-matching one for any vector � of the feature space.
This is possible if the probability density function (pdf) ����
is known. When the cluster is denoted by � and its surround-
ing Voronoi region by ��, one may calculate the unit’s a
priori probability �� as

�� � � �� � ��� �

�
��

���� �� � (1)

With discrete data, one needs to replace the continuous
pdf with a discrete probability histogram. Without danger
of confusion, the probability can still be denoted as ��:

�� � � �� � ��� �
�� � � �� � �� �

�
� (2)

where ���� stands for the cardinality of a set, and � is
the size of the training data set, whose members are �� ,
� � �� �� � � � � � � �. Considering only an image class �
instead of all images, the probability histogram will be

� �
� � � �� � �� � � � �� �

�� � � �� � ����� � � �

��
�

(3)
A simple and commonly used measure for the random-

ness of a symbol distribution is its entropy. In our case,
the cluster indices for the vectors of the training set play
the role of symbols. The entropy � of a distribution � �
���� ��� � � � � ����� is calculated as:

��� � � �

����
���

�� ����� � (4)

where � is the number symbols in the alphabet of the
stochastic information source. �� is the probability of clus-
ter � being the correct one for an input vector, as defined
before. Usually logarithm base of two is used.

If one assumes that every cluster is equally probable as
the correct one for an input vector, one can easily calculate
a theoretical maximum for the entropy of the clustering:

���� � 	
�
����

�
�

����
���

�� �����

�
� ��� � � (5)

In the discrete case, the above definition for ���� to hold
exactly assumes that � is divisible by �. In general this
is not the case but the produced error is insignificant with
sufficient amount of data, ie. if � � �. This can gener-
ally be assumed when studying the whole database since
the overall aim of the clustering is to reduce computational
requirements of the retrieval algorithm.

Instead of using entropy directly, perhaps a more illus-
trative measure is perplexity ��� � �� , which is com-
monly utilized in text-based information processing, espe-
cially speech recognition. Perplexity can be considered as
the weighted number of equal choices for a random vari-
able; ie. in this setting, the average number of equivalent
clusters that have to be considered. Thus, if entropy has the
maximum value, perplexity of a clustering equals the total
number of clusters, ������ � �. A suitable performance
measure for feature extraction and the associated clustering
methods can be formed by the ratio of perplexity and the
total number of clusters, denoted here as normalized per-
plexity ��� � ��	�, which is non-negative and 	 � in all
cases. The normalized perplexity of an image class � can
simply be calculated by replacing ��s in Eq. (4) with � �

� s.
In general it can be assumed that the clustering dis-

tributes the input vectors roughly evenly to all clusters and
the normalized perplexity of the whole data should thus be
near unity. On the other hand, images with semantic simi-
larity should be mapped to a small cluster subset, provided
that the feature extraction and clustering methods have been
favorable to that specific class. In this case, normalized per-
plexity should be 
 �. However, it should be noted that
with small image classes and large values of �, ��� will
be biased toward smaller values since the perplexity value
cannot exceed the size of the class. If this is the case, ��

instead of � can be a more suitable scaling factor for ���.

5. SOM entropy

The above measure is general and suited for any cluster-
ing method. The SOM algorithm is, however, by nature a
trade-off between clustering and topological ordering. This
trade-off depends on the size of the SOM; the clustering
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property is dominant with relatively small SOMs (� � � )
whereas the topology of the map becomes more significant
as the size of the SOM is increased. With larger SOMs, the
measure is thus less informative as the number of images
sharing a BMU becomes overly small and the perplexity
value mostly reflects just the size of the image class. In this
setting, the spatial configuration of the data on the SOM
grid should be taken into account. In the extreme case of
� and � being of the same order of magnitude, the unit-
wise clustering performed by the SOM is negligible and the
organization of the data lies in the topology of the map.

In devising a topology-supporting entropy measure, we
begin by recognizing the analogy of a greyscale image and
the SOM. Map units of the SOM correspond to image pixels
when the intensity values of map units are determined by
the data histogram of the SOM. Let �� denote the grey-
level value of pixel � in an image with � pixels. In this
setting, entropy of an image pixel can be written as

����� � �
����

���

� ��� ���� ��� � (6)

where	 is the number of distinct grey levels and � ��� is the
probability of the �th grey level, usually estimated by the �th
value on the normalized histogram of the image. With the
logarithm base of 2, ����� can be interpreted as the mini-
mum number of bits needed to code the grey-level value of
a pixel if we know the histogram of the image.

The entropy of Eq. (6) is clearly insufficient as a
measure of a pixel’s uncertainty on natural images as it
completely neglects any spatial properties. To incorpo-
rate the local neighborhood context of a pixel, a com-
mon method is to apply Markov Random Fields (MRFs)
[1]. Following MRF terminology, let �� denote a neigh-
borhood of pixel (site) �. �� consists of pixels 


so that � ��� ���� � � � � ����� ����� � � � � �� � depends on
�� . However, it is often assumed that �� only consists of
pixels spatially close to �. In addition, the neighborhood
�� is in a certain configuration �� � ��� � � � ���. The
spatial entropy of a pixel can now be defined as

������� � �
�

��

����

���

� ��� ��� ���� �� ���� � (7)

Spatial entropy has been used eg. as a measure of satellite
image redundancy [8] and in texture discrimination [7].

Due to the large number of possible configurations ��,
considering all of them requires a lot of data. The number
of configurations can be reduced eg. by considering only the
number of pixels with the same grey-level value as �� [8].
Here, a natural choice is to examine only the number of data
points � that have been mapped to the neighborhood of �.
�� thus now equals the number of data points mapped to

� and � �
�

����

��. Conditional entropy of map unit �
given that the neighborhood contains � data points is then

������ � ���� � �
����

���

� �� � ���� ���� �� � ����

(8)
and the spatial entropy is now given by

������� � �
�

�

����

���

� ��� ���� ���� ������� � (9)

A normalized performance measure can now be obtained by

� � ��
�������

�����
� (10)

The � measure is zero for a completely random distribution
since the neighborhood does not provide any information
about the number of data points mapped to a map unit. Re-
spectively, � is near one for a highly localized distribution.

6. Experiments

In the following experiments, we study two clustering
methods, viz. �-means and the SOM. As image data we
use a Corel database of 59 995 images and as features three
MPEG-7 [6] descriptors and a keyword (KW) feature com-
puted from related textual data [4]. The used MPEG-7 de-
scriptors were Color Structure (CS), Edge Histogram (EH),
and Homogenous Texture (HT). As semantic image classes,
we used three manually picked subsets of the images: faces
(1115 images), cars (864 images), and sunsets (663 im-
ages). A separate set of SOMs was trained for each fea-
ture by using the Tree Structured SOM algorithm [3]. The
sizes of the SOM layers were �� � � ��, ��� �� � 	
�,
�� � �� � ����, and 	
�� 	
� � �

� map units. For
�-means, the studied values of � were ��, 	
�, and ����.

Table 1 shows the resulting perplexity values for both
methods. It can be observed that �-means performs better
than the SOM as a clustering method, which was to be ex-
pected due to the SOM’s aforementioned tradeoff between
clustering and preserving topology. This result was affirmed
also with actual retrieval experiments in [5]. Due to the
semantic gap between low-level features and semantic im-
age classes, the results with the visual features remain quite
modest. With sunsets, the perplexity values of visual fea-
tures are the lowest. Correspondingly, it has been previ-
ously determined that of these classes, sunsets is the “easi-
est” one for retrieval [4]. With the keyword feature, all per-
plexities are the lowest, indicating that the feature is able to
cluster all three classes. Again, this agrees with previous
experiments, in which the superior retrieval performance of
keywords was perceived [4]. It can also be noted that with
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Table 1. Perplexities and normalized perplexities (in parentheses) of �-means and SOM clustering.
� faces (1115) cars (864) sunsets (663) SOM size faces (1115) cars (864) sunsets (663)

CS �� 10.7 (0.67) 13.5 (0.85) 6.66 (0.42) � � � 11.5 (0.72) 14.3 (0.90) 5.44 (0.34)
��� 109 (0.43) 157 (0.61) 43.4 (0.17) ��� �� 129 (0.51) 172 (0.67) 51.3 (0.20)
���� 553 (0.14) 569 (0.14) 188 (0.046) ��� �� 633 (0.15) 673 (0.16) 253 (0.062)

���� ��� 1050 (0.016) 840 (0.013) 569 (0.0087)
EH �� 11.2 (0.70) 11.9 (0.75) 4.46 (0.28) � � � 11.7 (0.73) 13.0 (0.81) 4.71 (0.29)

��� 99.3 (0.39) 98.8 (0.39) 42.6 (0.17) ��� �� 107 (0.42) 107 (0.42) 47.0 (0.18)
���� 505 (0.12) 503 (0.12) 222 (0.054) ��� �� 554 (0.14) 523 (0.13) 301 (0.073)

���� ��� 1010 (0.015) 818 (0.012) 567 (0.0087)
HT �� 10.1 (0.63) 11.6 (0.73) 9.62 (0.60) � � � 12.6 (0.79) 13.9 (0.87) 7.18 (0.45)

��� 122 (0.48) 146 (0.57) 86.9 (0.34) ��� �� 120 (0.47) 161 (0.63) 85.1 (0.33)
���� 609 (0.15) 627 (0.15) 352 (0.086) ��� �� 674 (0.16) 659 (0.16) 399 (0.097)

���� ��� 1040 (0.016) 838 (0.013) 623 (0.0095)
KW �� 4.62 (0.29) 3.91 (0.24) 3.82 (0.24) � � � 3.04 (0.19) 4.08 (0.26) 5.30 (0.33)

��� 18.5 (0.072) 6.04 (0.023) 18.6 (0.073) �� � �� 15.9 (0.062) 8.41 (0.033) 31.3 (0.12)
���� 139 (0.034) 62.8 (0.015) 74.9 (0.018) �� � �� 71.3 (0.017) 44.3 (0.011) 91.6 (0.022)

���� ��� 253 (0.0039) 157 (0.0024) 252 (0.0038)

the largest SOMs, the perplexity values of the visual fea-
tures are close to image class sizes. Most of the map units
that contain images in the class thus contain only one of
them. This is understandable as the SOM actually has more
map units (65536) than there are images in the database.

In order to properly investigate the organization provided
by the largest SOMs, we must take the spatial configuration
into account. Table 2 shows values of the � measure (10)
for the largest SOMs. The used neighborhood consists of
map units within an �� distance of 8 units from the unit in
question. In Table 2, these values are compared to the so
called � measure [5] which is an averaged rank-based mea-
sure of retrieval performance (larger is better with �, smaller
is better with � ). The comparison shows that similar results
are obtained with both measures, ie. a feature-class pair that
works well according to one measure, does so also accord-
ing to the other. Calculating the � measure requires ��

full queries with the actual retrieval system, so it is compu-
tationally considerably more demanding as the � measure
which can be obtained directly from the SOM index.

7. Conclusions

In this paper, we examined how distributions of image
feature vectors can be studied with a clustering or on a SOM
surface. Entropy and perplexity of the distribution charac-
terize quantitatively the compactness of the class, which is
in turn an indicator of the success of the feature extrac-
tion and indexing methods for that particular class. Also,
more informative results for the SOM were obtained with a
proposed entropy measure taking the map topology into ac-
count. The feature-wise assessments agreed well with pre-
vious experiments obtained with an actual retrieval system.

Table 2. Values of � (left) and � (right) for dif-
ferent features and image classes.

faces cars sunsets faces cars sunsets
CS 0.12 0.029 0.27 0.35 0.40 0.25
EH 0.17 0.14 0.24 0.27 0.31 0.075
HT 0.11 0.044 0.17 0.24 0.38 0.24

KW 0.38 0.47 0.32 0.17 0.070 0.084
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