
Introduction

Many interesting phenomena occur as dynamic re-

sponses to the experimental conditions. Short time se-

ries with less than 10 time points are typical in gene 

expression studies.

Clustering short time series data

Short time series can be represented as vectorial 

data, where different time points are represented by 

the elements of the vector. Clustering can reveal typical 

dynamic gene expression profiles in the data. We have 

used [1] an algorithm for short time series clustering 

presented in [2] and extended the algorithm. Fig. 1 il-

lustrates the data representation and the clustering so-

lution using the approach. The stages of the clustering 

algorithm are outlined in the blue box on the right.
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Clustering short 
time series [2]

1. Enumerate all cluster pro-

totypes (expression profiles) 

of a certain (discrete) kind

2. From that set, select a 

number of prototypes

3. Assign each gene to a 

cluster

4. Assess statistical signifi-

cance of clusters

5. (Optionally) divide clusters 

into groups

Improvements

• Remove zero profile 

to solve issue with cor-

relation

• Remove redundant 

profiles before profile 

selection

• Fix profile selection 

with randomized algo-

rithm (Fig. 2)

New!
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Fig. 1: Time series is formed from gene expression 
measurements (left), the clustering solution (right)

Fig. 2: Ambiguity in greedy profile selection. (a) The 
first two profiles (b) Some equally good choices when 
choosing the third profile (randomization can be used)

(a) (b)

before profile selection, or the profile selection algorithm will fail. The number
of profiles remaining in P is (2c + 1)n−1

− 1.
In addition to removing the zero profile, we introduce a procedure to further

reduce the amount of profiles in P . The procedure is based on the fact that
some profiles are equal with respect to distance measure (2). From a set of equal
profiles, only one profile is needed. We choose to keep the “basic” profile and
remove its multiples. This is done in Alg. 2. The removal of redundant profiles
takes time, but also speeds up profile selection. The procedure also has a cosmetic
side: the “simplest” possible profile always represents each equivalence class of
profiles.

Algorithm 2 RemoveRedundant A simple algorithm for removing redundant
model profiles

RemoveRedundant(P, c, n)

1 R ← {}
2 let Primes be the set of all prime numbers up to and including c

3 while |P | > 0
4 do let p be any profile in P

5 P ← P \ {p}
6 nonredundant ← true

7 let pi, i ∈ 1, . . . , n, be the values at each time point of p

8 for each prime in Primes

9 do if each pi is divisible by prime

10 then nonredundant ← false

11 break

12 if nonredundant

13 then R ← R ∪ {p}
14 return R

Algorithm 1 is greedy in the sense that it selects one locally optimal profile at
a time. However, this approach fails at times. Figure 1 represents profile selection
with parameters n = 6, c = 3, when the redundant profiles have been removed
with Alg. 2. The two first selected profiles are in Fig. 1a. When choosing the
third profile, there are 180 profiles that are equally good optimal choices in the
greedy sense. Six of these are shown in Fig. 1b.

Our updated profile selection procedure is a randomized algorithm [4] that
simply chooses one of the “equally good” profiles by random. The algorithm
(Alg. 3) also has a user-specifiable parameter repeats, that adjusts the level of
compromise between running time and the quality of the approximative solu-
tion to (1). Preliminary experiments with our extended algorithm indicate an
improvement in the minimum distance between selected model profiles. With a
large number of repeats it pays off to reduce the search space by removing the
redundant profiles with Alg. 2.

(a) The two first profiles (b) Six of the equally good options
when choosing the third profile

Fig. 1: Ambiguity in greedy profile selection (n = 6, c = 3). Algorithm 1 fails when
there is no single best choice.

Algorithm 3 SelectVectorsMaxMinDistRandom A randomized greedy
algorithm for choosing m distinct profiles

SelectVectorsMaxMinDistRandom(d, P, m, repeats)

1 distbest ← −∞
2 for i ← 1 to repeats

3 do Rt ← SelectHelper(d, P, m)
4 disttemp ← min(p1,p2)∈Rt×Rt

d(p1, p2)
5 if disttemp > distbest
6 then distbest ← disttemp

7 R ← Rt

8 return R

SelectHelper(d, P, m)

1 let p1 ∈ P be the profile that always goes down one unit between time points
2 R ← {p1}
3 L ← P \ {p1}
4 for i ← 2 to m

5 do let p ∈ L randomly be one of the profiles that maximize minp1∈Rd(p, p1)
6 R ← R ∪ {p}
7 L ← L \ {p}
8 return R

2.1 The Original Profile Selection Algorithm

The purpose of the profile selection phase is to select m distinct model profiles
from a set of candidate profiles P . The set P is constructed by fixing the value
at the first time point to zero, and allowing the change between values at consec-
utive time points to be anything in the range of −c, . . . ,+c discrete units. That
is, the change can be at most c units either way, up or down. When the number
of time points is n, the set P contains (2c + 1)n−1 profiles. The set of distinct
profiles R is selected with Alg. 1. The algorithm is a greedy approximation to
the problem of finding the set R that satisfies

arg max
R:R⊂P,|R|=m

min
p1,p2∈R

d(p1, p2) . (1)

The distance measure used in (1) is

d(x, y) = 1 − ρ(x, y) , (2)

where x and y are vectors representing model profiles, and ρ(x, y) is the corre-
lation coefficient (Pearson’s correlation) between the vectors. [3]

Algorithm 1 SelectVectorsMaxMinDist A greedy algorithm for choosing
m distinct profiles (appeared in [3])

SelectVectorsMaxMinDist(d, P, m)

1 let p1 ∈ P be the profile that always goes down one unit between time points
2 R ← {p1}
3 L ← P \ {p1}
4 for i ← 2 to m

5 do let p ∈ L be the profile that maximizes minp1∈Rd(p, p1)
6 R ← R ∪ {p}
7 L ← L \ {p}
8 return R

2.2 Extensions

While implementing the clustering algorithm, some aspects about the profile
selection phase aroused our attention. As can be seen from the definition of the
correlation coefficient ρ,

ρ(x, y) =

∑n
i=1

aibi
√

∑n
i=1

a2
i

√

∑n
i=1

b2
i

, ai = xi − x, bi = yi − y , (3)

it is not defined when x or y is the constant zero profile, where the value at each
time point is zero. Therefore, the zero profile must be removed from the set P
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Parameters

Type of n 5 6 5 6 3

algorithm c 2 2 3 3 6

m 50 50 50 50 16

Deterministic 0.1548 0.2572 0.1784 0.2843 0.0695

Randomized 0.1708 0.2929 0.1982 0.2960 0.0695

Table 1: Minimum distance between selected profiles 
(larger is better). Randomized algorithm (Algorithm 3) 
provides improved results. Results were achieved with 
100 (in the “n=6, c=3” case) or 1000 repeats (parameter 
in Algorithm 3).  Parameters: n = length of profiles, c =  
maximum change between time points (affects total 
number of profiles), m = number of profiles selected.

Improvements to the algorithm

Our corrections and extensions to the clustering algo-

rithm (stages 1 and 2) are listed in the green box on the 

right. The main change is the revised profile selection al-

gorithm (Algorithm 3) that addresses the problem shown 

in Fig. 2. Table 1 is an example of the improvements at-

tainable with randomization as used in Algorithm 3.


