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Abstract. The Self-Organizing Map (SOM) and Learning Vector Quantization
(LVQ) algorithms are constructed in this work for variable-length and warped feature
sequences. The novelty is to associate an entire feature vector sequence, instead of
a single feature vector, as a model with each SOM node. Dynamic time warping is
used to obtain time-normalized distances between sequences with different lengths.
Starting with random initialization, ordered feature sequence maps then ensue, and
Learning Vector Quantization can be used to fine tune the prototype sequences for
optimal class separation. The resulting SOM models, the prototype sequences, can
then be used for the recognition as well as synthesis of patterns. Good results have
been obtained in speaker-independent speech recognition.
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1. Introduction

The Self-Organizing Map (SOM) consists of a regular, usually two-
dimensional grid, onto which a distribution of input items is projected
nonlinearly. The mapping tends to preserve the topologic-metric rela-
tions between input items.

The projection is made by a matching process. With each grid unit,
a generalized model is thought to be associated. For each input item,
the closest model in some metric is identified. The collection of models
is optimized to approximate all inputs.

It may be well-known that SOMs can be constructed using any
generalized distance function defined between the input items [4](pp.
118-121), and that the updates can be made in batches [4](pp. 127-128).
It has recently been pointed out in [5, 6] that once the distance function
is defined, the averages in the Batch Map method can be evaluated as
generalized “medians” over batches of samples, e.g. symbol strings.
The SOM of symbol strings gave the motivation for the present work.
Introduction and experiments of the SOM of symbol strings have been
presented in [5, 6]. For a textbook account of the SOM and the LVQ,
see [4].

The idea of using generalized medians in the Batch Map type SOM
algorithm comes from [5]. One batch round of the algorithm is shortly
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described as follows. Every input item is first listed under the corre-
sponding best-matching unit (BMU). Then for each map unit, a new
prototype is taken as the “centermost” item, e.g. the item having the
smallest sum of generalized distances to other items belonging to the
union of the lists of the neighboring nodes. In the definition of the cen-
termost member of the list, the sum of squared distances, or maximum
distance to other sequences can also be used.

In this work the models associated with the grid points were taken
as sequences of real feature vectors. For input sequences that vary in
length and rate, the closest model sequence in the SOM is found by
dynamic time warping (DTW) [11]. The DTW is also used for forming
averages of sequences. The resulting prototype sequences can be used
as reference templates in both pattern recognition (e.g. speech recogni-
tion) and synthesis (e.g. speech production). Although time signals are
here of main concern, warping can also be made in other dimensions.
As pointed out in [1], many static processes can be reinterpreted as
dynamic processes in which an artificial time coordinate is introduced.

The novelty here is to associate a feature vector sequence with each
SOM node. In addition to the generalized median, an arithmetic aver-
age can be defined for feature vector sequences with different lengths
[12]. Therefore both incremental learning and the Batch Map method
can be used.

Previous studies on the clustering of DTW templates can be found
in [10]. Work with the LVQ and DTW has been done in [8] using
the Generalized Probabilistic Descent framework. Contrasted with the
aforementioned references, the present work also takes into account the
averaging of the temporal structure of sequences.

2. Feature sequences and the SOM

In its original form, the SOM was suggested for an algorithm to con-
struct a projection of the distribution of static input vectors, and
the correlations between successive input vectors were not considered.
Later, especially in speech recognition, several approaches have been
made to take the dynamics of the input signal into account.

Several experiments have shown that if a set of feature vectors
over a time window is concatenated into a higher-dimensional pattern
vector, the recognition results are improved considerably [9]. In most
implementations, however, the context has been fixed by the predefined
number of short time feature vector frames. Therefore, e.g. in speech
recognition, the speaking rate still affects the recognition result.
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Figure 1. SOMs can be constructed for different abstraction levels of the input. This
diagram illustrates what kind of model can be associated with each SOM node.

Another straightforward way to handle sequential data is to project
a feature sequence onto the SOM by finding the best-matching unit
(BMU) for each instantaneous feature vector. Classification of the fea-
ture sequence can then be made by means of the BMU-trajectory, e.g.
the sequence of the BMU-coordinates on the map can be used as a new
feature to be classified [13]. This solves the problem of speech rate.
However, because the BMU-trajectory is a projection from the input
feature space onto the map, some information is lost. If one BMU is
replaced by several winners or by the activation image of the whole map
[2, 3], more information can be preserved. This can be considered as a
change of the basis in the feature space. Prototype vectors of map items
now constitute new basis vectors and each feature vector is represented
in this (redundant) map “base”. When the activation image of the
SOM units is integrated (leaky integration with an appropriate time
constant), the result is a short time feature histogram which can be fed
as an input to an upper layer map.

Still better recognition results can be obtained, if instead of the
BMU-trajectories, the trajectories in the original feature space can be
used. Similar model trajectories must then be used as models at the
map units, and comparison of the trajectories must be based on, e.g.,
the dynamic time warping (DTW), see Sec. 3. However, now we also
have to introduce a method to update the SOM models. This is one of
the main ideas that are introduced in this work.

In order to gain a view of different representations, levels of ab-
straction, and sequences for which a SOM can be constructed, cf.
Figure 1.
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3. Dynamic time warping

In most real-world applications, normalization of two sequences into the
same time scale (“time alignment”) is based on dynamic programming
(DP). The first ideas of DP have been presented in [1], but the basics
can also be found in [11, 15, 12].

Dynamic time warping (DTW) is a DP-based pattern matching
algorithm with a nonlinear time normalization effect [11]. In DTW,
sequences are matched against reference templates. Replacing the ref-
erence templates by chains of states leads to hidden Markov models
(HMMs) and the Viterbi algorithm [14]. Using the symbols instead of
the feature vectors in the sequence results in the Levenshtein distance
[7].

3.1. DISTANCES BETWEEN SEQUENCES

Let two feature sequences A and B consist of M and N feature vec-
tors, respectively: A = [a1,a2, . . . ,aM ] and B = [b1,b2, . . . ,bN ]. The
distance between two sequences is computed along a warping function,
which can be depicted as a path in a two-dimensional trellis. This func-
tion is computed by the dynamic-programming algorithm. After that,
the time-normalized distance between sequences A and B is defined as

D(A, B) = min
P

[

∑

i

∑

j w(i, j)d(ai,bj)
∑

i

∑

j w(i, j)

]

, (1)

where w(i, j) > 0 if trellis point (i, j) belongs to the warping path
P , and w(i, j) = 0 otherwise. Here d(ai,bj) is a distance between
instantaneous feature vectors ai and bj .

Several constraints can be added to the warping path P . Probably
the most natural constraint is to require that it must be continuous. In
discrete-time sequences continuity is understood as connectedness. The
beginning and end points of the warping path can be fixed. The number
of possible paths in variation can also be reduced by using various slope
constraints. There is some indication that the utmost minimization of
(1) does not necessarily give the best recognition results, and the use of
additional constraints to the warping path, like slope constraints, may
increase the recognition rate [11]. This is because in classification one
tries to find the correct classes by matching the observations against
the reference models, and the discrimination of the classes is more
important than the minimization of the quantization error.
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3.2. ARITHMETIC AVERAGE OF TWO SEQUENCES

The average of two sequences can be formed by computing the sequence
of weighted averages of feature vectors along the warping path [12]. Let
ai and bj be two corresponding feature vectors in the warping path.
Their weighted average is defined as

ck = qai + (1− q)bj , (2)

where q is a real number between 0 and 1. Let us denote the sampling
instants of ai and bj by ti and tj , respectively. The corresponding
sampling instant of ck is then

tk = qti + (1− q)tj . (3)

Because the DTW tolerates durational differences, accurate timing
is not too important if the prototype sequences are used in recognition.
But if they are used in a synthesis task, timing is more important.
In order to define consecutive vectors in the average sequence C =
[c1, c2, . . . , cK ] at regularly spaced sampling points, the average feature
vector corresponding to the desired time instant can be interpolated
between the nearest time instants tk and tk+1 found in the discrete
warping path. Linear interpolation was used in the current work. Figure
2 illustrates the averaging of two sequences.

It would be straightforward to expand the average of two sequences
to the average of N sequences by using an N -dimensional DP-trellis.
That would, however, require a great amount of computation for large
N . The average of several sequences can be approximated by iteratively
using pairwise averaging and letting the value of q be a function of the
number of already averaged sequences.

4. DTW-SOM and DTW-LVQ

In the present modification of the original SOM, henceforth named the
DTW-SOM, each map node does not contain a single feature vector,
but a complete feature vector sequence. The dimension of the feature
vector is fixed, but the length of the model sequence may vary during
learning. The whole feature sequence prototype is adapted towards the
input feature vector sequences. Referring to equations (1), (2) and (3),
the input sequence is denoted by A, and the prototype sequence is
denoted by B before adaptation and C after adaptation, respectively.
The best-matching unit is the node having the smallest distance to
the input sequence according to equation (1). The prototype sequences
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Figure 2. Averaging of two sequences. The two sequences A and B are cepstrum
sequences computed from spoken Finnish words “AIKA” and “AIKAA”. They are
shown on the top and on the bottom of the figure having lengths of 80 and 106
frames, respectively. Three average sequences between them are computed with
q = 0.75, 0.50, and 0.25, respectively. Notice that the length of the average sequence
is a weighted sum of the lengths of the original sequences according to the value
of q. Since the beginning parts of the original sequences in this example are almost
equal, these parts are preserved almost as such in the average sequence, and the
time-warping is mostly concentrated to the end of the sequences.

can be adapted incrementally after each input sample sequence, or as
a batch process. In the incremental learning, the arithmetic average
is used, and q in equations (2) and (3) is determined by the learning
rate and the neighborhood function. In the batch mode, either arith-
metic averages or generalized median sequences can be used as average
sequences.

The arithmetic averaging takes everything into account what is in
the warping path, and every input sample sequence has an effect on
the prototype sequence. One bad warping can thus collapse the whole
previous prototype sequence. But if the generalized median is used
as an average sequence instead, outliers have less effect. A two-stage
approach is possible in which the generalized median sequence is found
first and then fine tuned by incremental averaging.
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The DTW-LVQ proceeds almost similarly as the DTW-SOM (al-
though the neighborhood is not used). In the BMU search, DTW is
used in the usual way, but when the average sequence is formed, the
class information is taken into account. If arithmetic averaging is used,
q in equation (2) is provided with the minus sign if the class label of
the input sequence A does not agree with the class label of the best-
matching unit, otherwise the plus sign is used. If the median sequences
are used, the corresponding plus and minus signs are used when the
sequence distances are summed as in [5, 6].

5. Experiments

Figure 3 illustrates a DTW-SOM obtained in the first experiment. It is
a demonstration of unsupervised clustering where the temporal struc-
ture of input samples is taken into account. Input feature sequences
were computed from natural Finnish speech. 10-dimensional cepstrum
vectors were used as feature vectors and input data consisted of one
hundred utterances of numbers from zero to nine. The SOM was initial-
ized by 10-dimensional white noise vector sequences and it was trained
by using incremental arithmetic averaging. After training the map was
labeled according to majority voting. Phonetically similar words are
located near each other on the SOM.

In the second experiment, speaker-independent recognition was im-
plemented using one reference template for each word in the vocabulary.
5 female speakers and 15 male speakers had each uttered four times the
22 Finnish command words in the vocabulary. There were thus alto-
gether 1760 utterances in the data set. Recognition tests were repeated
20 times, each time having a different speaker in the test set and the
remaining 19 speakers in the training set. 10-dimensional cepstrum
vectors were used as features. The purpose of this experiment was
not to compare different recognition methods but instead to compare
three different methods for obtaining the reference sequences once the
recognition method is fixed.

Basic DTW was used with no slope constraints. The slope constraint
introduced in [11] would have limited the slope of the warping path
between 0.5 and 2. This implies that the length of the longer sequence
may not exceed the length of the shorter sequence by a factor that is
over 2, if the start and end points of the sequences are fixed in the
matching. For some words in our data set the duration of the longest
utterance was three times the duration of the shortest utterance.

The average recognition error of 20 independent test runs (alto-
gether 1760 input sequences) is given in Table I. Using randomly picked
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Figure 3. Prototype sequences of a DTW-SOM for 10-dimensional input feature
vector sequences. The map size is 4×5 units. The initial map is shown on the
top and the organized map after training is shown on the bottom. Dark shades
of gray indicate low values and light shades of gray indicate high values of feature
vector components, respectively. In phone /s/, the first cepstrum coefficient is a large
negative number. This is shown as a black spot in the first feature vector component
in the prototype sequences of the organized map.
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Table I. Speaker-independent word-recognition experiment with 1760
utterances from the vocabulary of 22 Finnish command words.

Reference templates Error, per cent

one randomly picked sequence from each class 18.5

one median sequence from each class 3.1

one DTW-LVQ sequence for each class 1.5

reference templates (from the correct class, however), the average recog-
nition error for the test set was 18.5 per cent. Using median templates
of the training set, the test set error was 3.1 per cent. After 3000 rounds
(two times the number of the sequences in the training set) incremental
DTW-LVQ fine tuning of the aforementioned median templates, the
test set error was 1.5 per cent.

6. Conclusion

In this work the Self-Organizing Map and Learning Vector Quantiza-
tion algorithms were constructed for data items that consisted of com-
plete feature sequences. These sequences could have variable lengths
and rates. Dynamic time warping was used to compute the distances
between sequences. Due to the DTW, both durational differences in
the input sequences as well as spatial variances in the feature vectors
can be tolerated. The DTW-SOM can be used for unsupervised clus-
tering of sequential input items whose temporal structure is of interest.
Application areas may include speech processing, natural handwrit-
ing processing, and process monitoring. The DTW-LVQ was used in
speaker-independent isolated-word recognition, where a test-set error
rate of 1.5 per cent was achieved.
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