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ABSTRACT

A method is presented for speeding up the performance of
the HMM based speech recognition system where the states
are modeled by a large number of Gaussian kernels. The
emission probabilities of the states are usually dominated
by the nearest Gaussians to the input vector. The speedup
is gained without deteriorating the recognition accuracy by
concentrating on these kernels in the reduced K-best-kernel
search. In this work, the time information of the input is
encoded to the connections of the kernels. The search for
the dominating kernels is then performed along the kernel
connections which model the trajectories of the speech in
the feature space. In the experiments, speaker-dependent
speech recognizers were trained for ten speakers. The num-
ber of distance computations between feature vectors and
kernel mean vectors was reduced 75% without increasing
the average phoneme recognition error, which was 5.7% for
the baseline system.

1. INTRODUCTION

Most speech recognizers today are based on hidden Markov
models (HMMs) [6]. An HMM based approach gives, how-
ever, only a general framework and leaves many practical
modeling problems open. When aiming at real-time speech
recognition, the simplicity and speed of computation are the
criteria which guide the design of the recognizer.

The speech recognition system used in this work is
based on the HMMs using phoneme-wise Self-Organizing
Maps (SOMs) [1, 2] as the basis of the probability density
functions [4].

The SOM [1, 2] is an artificial neural network which de-
fines a nonlinear transform from the input space to the set
of nodes in the output space. Each node is associated with a
model of the input space. Through an unsupervised learning
process, the models become specially tuned and organized
according to input patterns smoothly approximating the dis-

tribution of the input data. In its basic formulation, the SOM
algorithm organizes static, separate feature vectors accord-
ing to their similarity, and no temporal dependencies of the
input items are taken into account.

Hidden Markov models (HMMs) are models of sequen-
tial data [6]. Their benefits in speech recognition are stor-
ing the temporal speech patterns compactly in a state net-
work and utilizing the time-dependency and order of acous-
tic phenomena in recognition. The HMM is defined as a
triple

λ = (A,B,π), (1)

where A = [aij ] is an N ×N matrix of the state transi-
tion probabilities, B = {bi}

N
i=1

is a set of emission proba-
bility density functions (pdfs) of N states, and π is an initial
state probability vector.

This paper concentrates on modeling the trajectories of
the speech inside HMM states and utilizing this for speed-
ing up the recognition. The recognition system is based on
modeling the pdfs by means of a large number of Gaussian
kernels. The initialization of the pdfs is done by training
a SOM for each phoneme [4]. Each model vector of the
SOM becomes then a mean vector of the Gaussian mixture.
The traditional Viterbi decoding is used in recognition for
obtaining the best state sequence [6]. The speedup results
from reducing the amount of computation when determin-
ing the emission probabilities of the states.

When modeling the pdf as a mixture of Gaussians, the
emission probability for a given input feature vector is usu-
ally dominated by the few Gaussians only [4]. The amount
of computation can thus be reduced by selecting only the
subgroup of the Gaussians of the whole mixture and then
computing the emission probability of the state by means of
these kernels.

Previous work on speeding up the search for finding the
dominating Gaussians on the SOM-codebook has been pre-
sented in [3]. In that work the reduced search was based



on the ordering of the feature vectors on the SOM without
using any time information.

In the current work, the time information of the input is
taken into account when forming the connections between
the nodes of the SOM. The connection is created between
those two nodes which are the best-matching units for two
successive input items in time [8]. The node connections
follow then the temporal trajectories of the speech in the
feature space, see Fig.1. The reduced search for K nearest
Gaussians is obtained by investigating only the nodes con-
nected from the previous best-matching unit. Depending on
the number of the connections, the savings can be consider-
able compared to the full codebook search where all kernels
have to be investigated at every speech frame.

(a) (b)

(c) (d)

Figure 1: An illustrative experiment of different codebook vector
connections. Input data consist of sequences of two-dimensional
feature vectors proceeding from the origo to the unit circle (a). In-
put items are depicted by dots and successive input items in time
are connected by lines. A one-dimensional SOM with 100 nodes
was constructed using this data (b). The model vectors are de-
picted by dots and the neighborhood connections are depicted by
line segments. Fig. (c) shows the connections created between two
nearest nodes in the input space for each input item. Model vectors
are the same as in (b). Fig. (d) represents the connections created
between the best-matching units of two successive input items in
time. The model vectors are the same as in (b) and (c). The origi-
nal input data does not consist of separate feature vectors only, but
sequences of them with time information. Network (d) resembles
thus clearly best the original input data (a).

2. METHOD

The recognition system is based on phoneme-wise HMMs.
Each phoneme is modeled by a three-state left-to-right
HMM. A separate SOM is trained for each phoneme and
a spherical Gaussian kernel is attached to each SOM node
[4]. A fixed kernel width is used as a smoothing parame-
ter of the final pdf. After initializing the state codebooks
by the SOMs, the HMMs are trained by the segmental k-
means algorithm [6]. Only state transition probabilities in-
side phoneme models are re-estimated. The probabilities
for phoneme transitions have been estimated from the larger
Finnish text corpus.

The use of temporal context of the short-time feature
vectors has been found to improve the robustness of the
recognizer and the discrimination of phoneme classes [5].
The feature vectors used in this work were concatenations
of three sine-liftered 12-dimensional mel-cepstrum vectors
concatenated at 50 ms time intervals [7]. These context vec-
tors were computed every 10 ms.

Spherical Gaussians with fixed kernel widths have given
good results in speech recognition earlier [4]. The limited
amount of training data makes it difficult to get robust es-
timates for full covariance matrices, and furthermore, in
speech recognition the error rate is more important than the
likelihood of the model. The single variable for the width of
the Gaussian is easier to tune than the full covariance ma-
trix. The effect of the kernel width and the number of the
Gaussians used in the computation of the emission proba-
bilities of the states were experimented using 12-by-8-unit
SOM codebooks for phonemes, see Fig. 2. It is interesting
that the best results were obtained using as few as two or
three dominating Gaussians of the whole mixture in each
state for each input vector.

The time information of the speech is encoded to the
connections of the kernels. The connection is created be-
tween those two kernels which are the best-matching units
for two successive input vectors in time. The strength of the
connection between kernels i and j is

a′ij =

∑T

t=2
δ(i− c(xt−1))δ(j − c(xt))

∑T

t=2

∑

j′ δ(i− c(xt−1))δ(j′ − c(xt))
, (2)

where

δ(l) =

{

1 if l = 0,
0 otherwise

, (3)

xt is the input vector at time t, and c(xt−1) and c(xt)
are the best-matching units, i.e., the nearest kernels, for suc-
cessive input items xt−1 and xt, respectively:

c(xt) = arg min
k
||xt −mk||

2, (4)
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Figure 2: Average phoneme error rates of ten speaker-dependent
speech recognizers with different values for the width of the Gaus-
sians (horizontal axis) and the number of kernels K used in the
state emission probability computation (separate error plots from
bottom to top with K = 2,3,5,10,96, and 1). The number of Gaus-
sians in each phoneme-wise codebook was 96. Three concatenated
12-dimensional cepstrum vectors were used as feature vectors.

where mk denotes the centroid of the kth kernel, i.e., a
model vector of the SOM.

Each node is provided by the list of nodes sorted accord-
ing to equation (2). This is utilized in the reduced search of
K-best Gaussians in the recognition phase. If node i has
been the best-matching unit for input item xt−1, the K-best
Gaussians for input item xt can be searched using the whole
list or only the first few elements in the sorted list of that
node.

3. EXPERIMENTS

The speech data for phoneme recognition experiments was
collected from six male speakers and four female speak-
ers. Each speaker had uttered four times the vocabulary
of 350 Finnish words. The speaker-dependent speech rec-
ognizers described in the previous section were trained us-
ing three speech sets. Each phoneme model consisted of
three states which shared the kernels of the 12-by-8-unit
SOM codebook with different weights. The phoneme-wise
SOM codebooks were trained separately before the final
HMM training which consisted of five cycles of segmen-
tal k-means algorithm. The phoneme recognition error was
then computed using the fourth speech set. For the baseline
system the average error was 5.7%.

In the following experiment, the effect of the interval
of the full codebook search in the recognition was inves-
tigated. Two best Gaussians were used for computing the
state emission probabilities in each state for each input vec-
tor. All parameters were kept the same as they were in

the baseline system, only the connections between the ker-
nels were added according to equation (2) using the train-
ing data. The connections were not restricted to be inside
the phoneme-wise codebooks. It was found important to
follow the speech trajectories along the whole training ut-
terance and create the connections also for phoneme transi-
tions from one phoneme-wise codebook to another. Other-
wise the interval of the full codebook search could not have
exceeded the duration of a phoneme without deteriorating
the recognition accuracy. The recognition results for the
test data are shown in Fig. 3. The number of corresponding
distance computations are shown in Fig. 4.
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Figure 3: Average phoneme errors using the reduced two-best-
kernel search for different intervals of the full codebook search.
The rightmost error rate (*) is for the case where the full codebook
search was performed only once in the beginning of each word
utterance. The average length of a word utterance was 103 frames.
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Figure 4: The number of distance computations between feature
vectors and kernels. The values are scaled by the baseline system
where the full search was performed at every speech frame (full
codebook search interval 1).



On an average there were eight connections leaving
from each node. This rather small number of connections
can be explained by the use of context vectors as features.
The connections became more specific than randomly scat-
tered because the context vectors already carry information
of the trajectory of the speech. However, if the number of
the connections would become too large, the number of ran-
domly scattered connections can be decreased by following
only those connections whose strength computed according
to equation (2) exceeds a given threshold.

75% reduction in the distance computations was achieved
when the error rate remained below the error rate of the
baseline system using the full codebook search at every
speech frame. The lowest error rate, 5.6%, was achieved
when the interval of the full codebook search was three
frames.

For comparison, the speech recognition was experi-
mented after reducing the size of the SOM from 96 units
to 48 units. Full codebook search was performed at ev-
ery speech frame. Using 8-by-6-unit SOMs, the average
phoneme error was 7.8% the computational savings of dis-
tance computations being only 50% compared to the 96-unit
SOMs. The recognition results were thus inferior compared
to those of using the large SOMs but less distance compu-
tations. Because the larger SOM gave better results than
the smaller SOM, the reason for the good recognition ac-
curacy after reducing the number of distance computations
was not that the large SOM contained unused codebook vec-
tors which were constantly ignored in the reduced two-best-
kernel search. The reason for the good performance was
that the node connections modeled the temporal trajectories
of the speech which were followed during recognition.

Kernel smoothing along the speech trajectories was also
experimented, but this did not lead to any improvements in
the recognition accuracy. Therefore, the best training proce-
dure consisted of first initializing the phoneme-wise code-
books by the SOM, then training the HMMs by segmental k-
means algorithm, and then creating the kernel connections.

4. SUMMARY

The emission probabilities of the HMM states for a given
input vector are usually dominated by the nearest kernels
of the whole mixture density. This gave the motivation to
model speech trajectories inside the states and speed up the
recognition phase of the already trained speech recognizer.
Model vectors of the Self-Organizing Map were used as the
kernel centroids of the mixture density and the speech tra-
jectories were modeled by means of the kernel connections.

A connection was created between those two kernels
which were the best-matching units for two successive in-
put vectors in time. The reduced search for the two near-
est Gaussians was obtained by investigating only the nodes

which were connected from the previous best-matching unit
in each phoneme-wise codebook.

In speech recognition experiments, the average phoneme
recognition error did not increase from the baseline error,
5.7%, when the amount of distance computations between
feature vectors and kernels was reduced 75%. In the base-
line system the full codebook search was performed at ev-
ery speech frame. Even when the reduction in the number
of distance computations was over 90%, the error rate in-
creased only to 6.1%. In that case the full codebook search
was performed only in the beginning of each word utter-
ance.

Modeling the trajectories of the speech by means of a
large number of temporally connected kernels and follow-
ing these trajectories during the recognition was demon-
strated to be computationally efficient and to give very good
results.
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