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Abstract

Time information of the input data is used for evalu-

ating the goodness of the Self-Organizing Map to store

and represent temporal feature vector sequences. A new

node neighborhood is defined for the map which takes

the temporal order of the input samples into account.

A connection is created between those two map nodes

which are the best-matching units for two successive in-

put samples in time. This results in the time-topology

preserving network.

1. Introduction

The Self-Organizing Map (SOM) [3, 5] is an unsuper-
vised artificial neural network which defines a nonlin-
ear transform from the input space to the set of nodes
in the output space. Each node is associated with a
model in the input space. Through an unsupervised
learning process, these models become specially tuned
and organized according to input patterns. The learn-
ing algorithm which leads to self-organization can be
simplified into two steps [3, 5]: for each input sample,
1) the best-matching unit of the map is found by using
the chosen similarity measure, and 2) the model of this
unit as well as the models of its topological neighbors
are adapted towards the input sample. Updating of the
reference models can be done incrementally after each
input sample or in a batch process [5].

In this work the time information of the input samples
is taken into account when constructing the connec-
tions between map nodes. The reference models as-
sociated with the SOM nodes are first trained in the
usual way, treating the input samples as static, sep-
arate vectors and defining the node neighborhood on
the regular map grid. Once the map has been trained,
old node connections are removed and new connections
are created according to the best-matching unit tra-
jectories corresponding to the temporal input sample
sequences. SOM training can then be continued by us-

ing the new node connections as a neighborhood when
adapting the reference models. Node connections repre-
sent signal paths in the input space and two input items
which occur close to each other in time are mapped to
neighboring map nodes. This time-topology preserving
network is able to store and preserve temporal relations
of the input items.

2. Map lattice

Neighborhood is an essential part of the SOM. It can
be defined as a closeness of the map units in the out-
put space. If that is a vector space, each map unit is
provided with a position there. Depending on these
positions, the lattice is then either regular or irregular.
Although the word lattice may imply some kind of reg-
ularity, in this paper it is used to denote any kind of
node arrangement.

Instead of defining the output space in the vector space,
another possibility is to consider only connections be-
tween the map units. The SOM network can be de-
scribed as a graph, where vertices denote the map units
and edges denote the adjacency between them. In this
case the familiar Euclidean distance, like any other
vector-space distance, cannot be used for measuring the
relative positions of the nodes in the network. Then
the graph distance can be used, which also satisfies the
properties of a true metric.

The choice of the node connections, and thus the neigh-
borhood, affects highly the capability of the SOM to
preserve the topology of the input in the mapping. Per-
fect topology preservation requires that adjacent input
items are mapped to adjacent (or identical) map nodes.
Since the map can be divided into nodes and their con-
nections, and one node is associated with a reference
model representing the local input space only, topology
preservation is a demand for the network as an entity.
The node connections play the key role at this.



Figure 1: Input data for the first time topology exper-
iment. Sequences of two-dimensional feature vectors
proceed from the origo to the unit circle. Input sam-
ples are depicted by dots and successive input samples
in time are connected by lines.

3. Time topology

Usually the map lattice is a regular grid where a sym-
metric neighborhood function is defined. Other map
topologies which have been experimented include the
minimum spanning tree [1] and the Neural Gas network
[7]. The main idea in the current work is to consider the
time information of the input when forming the node
connections and defining the neighborhood. A straight-
forward way to do this is to connect those two nodes
which are the best-matching units for two consecutive
input samples in time. Since any two nodes can be con-
nected independently of their Euclidean distance on the
regular map lattice, the new connections may provide
“worm-holes” to the original map lattice space.

Different types of node connections are illustrated in
Figure 2.

4. Experiments with speech data

The SOM with the time topology was experimented
with speech data. 15 male speakers and 5 female speak-
ers had each uttered four times the vocabulary of 22
Finnish command words. Feature sequences were com-
puted from these 1760 utterances. They consisted of
10-dimensional cepstrum vectors which were computed
from 16 ms time windows with 8 ms time spans.

One experiment consisted of training the SOM and cre-
ating the time topology. The average quantization error
and the word recognition error was then computed us-
ing a separate test set. Different types of node connec-
tions were used for the comparison of the time-topology
network. In each experiment, the test set consisted of
88 feature sequences from one speaker and the training
set consisted of 1672 feature sequences from the rest of
the speakers. The tests were repeated 20 times, each

(a) Regular map grid. 1D SOM on the left, 2D SOM on the right

(b) Neural Gas -type node connections

(c) Time topology

Figure 2: Three types of map node connections. In-
put data consist of sequences of two-dimensional fea-
ture vectors proceeding from the origo to the unit cir-
cle as shown in Figure 1. One- and two-dimensional
SOMs with 100 nodes were constructed using this data
(a). The prototype vectors are depicted by dots and
the neighborhood connections are depicted by line seg-
ments. Figure (b) shows the connections created be-
tween the nodes which are the two best-matching units
for each single input sample. Reference models of the
map nodes were taken from the SOMs in (a). Figures
on the bottom row (c) represent the connections cre-
ated between the best-matching units of two successive
input items in time. This gives a representation of tem-
poral signal paths in the feature space. The reference
models were the same as in the upper maps. Networks
in (c) resemble clearly best the original input data.



time having a different speaker in the test set. All re-
sults are thus averages of 20 test runs and altogether
1760 test sequences.

When computing the quantization error and the word
recognition error, test sequences were encoded into map
node sequences so that each feature vector sequence was
projected on the map as an entity. The map node tra-
jectory corresponding to the input sequence was com-
puted using dynamic time-warping [9]. The node se-
quence which had the minimum cumulative sum of the
squared vector distances between the model vector of
the node and the feature vector of the input sequence
and which formed a connected path in the network was
the resulting sequence. In every node transition in the
sequence, one feature vector of the input sequence was
expended and a transition from one node to another
was allowed only if there existed a connection between
them. This approach resembles the Viterbi search [8],
the only difference was that instead of state and transi-
tion probabilities, a quantization error between the ref-
erence vectors and the input feature vectors was used.

Distances along the map lattice have earlier been used
for evaluating the goodness of the map in [6] and [2].
But in those works, the path on the map has been com-
puted between two best-matching units for one input
vector, not for the whole input vector sequence.

4.1. SOM training with the regular map lattice

Reference models of the SOM were 10-dimensional fea-
ture vectors. Eight different initial map lattices were
experimented. These were 1-, 2-, 3-, and 4-dimensional
hypercubes, and for each of them, two different map
sizes were experimented. Initialization of the reference
vectors was done according to the principal components
of the feature vectors in the training set. The largest
eigenvalues of the covariance matrix of the training set
determined the ratio of the side lengths of the map lat-
tice. The reference vectors were initialized according to
the lattice coordinates of the map nodes so that each
component of the lattice coordinate vector referred to
one eigenvector of the covariance matrix. These eigen-
vectors corresponded to the largest eigenvalues. The
mean of the training vectors was then added to the ref-
erence vectors in order to move the center of the initial
map to the data mean. The side lengths of the map lat-
tice had to be integer numbers and the total number of
the nodes was limited to be either 120 or 420. Since the
largest eigenvalues of all 20 different training sets were
almost equal, the sizes of the map lattices used in the
experiments were fixed. These are shown in Table 1.

Map training was done using the Batch-Map algorithm

Table 1: Map lattice sizes and Batch-Map parameters
used in the experiments. Lattices are 1-, 2-, 3-, and
4-dimensional hypercubes with 120 and 420 nodes.

number of nodes kernel width of batch
in map lattice Gaussian neighborhood rounds

120 60 . . . 1 60
12×10 = 120 6 . . . 1 20
6×5×4 = 120 3 . . . 1 20

5×4×3×2 = 120 2 . . . 1 20

420 100 . . . 1 100
28×15 = 420 10 . . . 1 20

10×7×6 = 420 5 . . . 1 20
7×5×4×3 = 420 3 . . . 1 20

[5]. In this phase of the experiment the neighborhood
of the nodes was defined on the regular map grid. A
Gaussian neighborhood function was used with slowly
decreasing kernel width in order to preserve the map
orderliness as well as possible. The initial map was
ordered due to the initialization procedure described
above.

After map training, old node connections were removed
and new connections were created. Four different meth-
ods were now experimented:

1. Node connections according to the regular map
lattice. In the N -dimensional hypercube each
node which is not on the edge of the lattice has
2N neighboring units inside the radius of one grid
unit length; two neighbors for each lattice dimen-
sion.

2. Neural Gas -type connections. Those two nodes
are connected which are the best- and second-
best-matching units to one input sample. This
gives the node topology approximating the data
manifold of the static input items.

3. Time topology. A connection is created between
two nodes which are the best-matching units for
two successive input samples in time.

4. All nodes are connected to each other. This net-
work forms a complete graph.

The number of the node connections in the network us-
ing the four different methods described above is shown
in Table 2. One connection is a directed one, and there-
fore all symmetric connections are counted as two. Only



Table 2: Average number of node connections in the
network. Row “time2” corresponds to the experiment
where the time topology was used as a node neighbor-
hood when adapting the reference vectors. Other rows
correspond to experiments where the SOM was trained
using the regular map lattice and node connections were
recreated only for encoding the input sequence to the
map node sequence.

SOM with 120 nodes
node

connections 1D 2D 3D 4D
radius 1 358 556 692 772

radius
√

2 952
Neural Gas 2229 1779 1799 1856

time1 5968 5952 6140 6055
all 14400 14400 14400 14400

time2 5353 5411 5420 5443

SOM with 420 nodes
node

connections 1D 2D 3D 4D
radius 1 1258 2014 2596 3002

radius
√

2 3526
Neural Gas 7441 6836 7447 7729

time1 23944 23606 23374 22765
all 176400 176400 176400 176400

time2 21504 21574 21502 21510

in time-topology networks, the connections were not
symmetric. In all types of the node connection, there
was a self-connection from each node to itself. This en-
ables the time-warping of the input sequence when it is
encoded to the node sequence.

Quantization errors of the test sequences were used to
investigate the goodness of different map topologies.
Each sum of the squared vector distances was divided
by the length of the input sequence and these quantiza-
tion errors were then averaged over all test sequences.
The results are shown in Table 3. Since the prototype
vectors were fixed before changing the node connections
in each experiment, the results using different topolo-
gies can be easily compared. Some comparisons can also
be made between different map lattices. The width of
the Gaussian neighborhood kernel was 1.0 at the end of
the training for all map lattices in the experiments. It
can be expected that the quantization error increases as
a function of the lattice dimension if the number of the
map nodes is kept the same and transitions from one
node to all others are allowed. This is because the map
becomes more stiff when the lattice dimension grows;
the number of the map nodes inside a constant neigh-

Table 3: Average quantization error of test sequences
computed along the node connections.

SOM with 120 nodes
node

connections 1D 2D 3D 4D
radius 1 1165.2 547.1 488.7 536.4

radius
√

2 495.4
Neural Gas 418.7 437.3 471.2 525.3

time1 412.6 427.4 459.8 515.8
all 412.4 427.1 459.5 515.5

time2 330.6 332.2 332.0 331.9

SOM with 420 nodes
node

connections 1D 2D 3D 4D
radius 1 1196.6 724.2 424.9 424.7

radius
√

2 628.8
Neural Gas 319.3 353.1 374.0 403.5

time1 305.0 337.3 353.8 385.8
all 303.3 335.5 351.9 383.8

time2 264.5 264.8 265.5 266.6

borhood radius increases. But if the quantization error
is computed along the node connections on the regular
map lattice and if the lattice dimension is too low for
the input, although the map is flexible, the quantiza-
tion error of the input sequence may be large if there are
rapid transitions between successive input vectors. In
a higher-dimensional map, the number of connections
between any two nodes on the map lattice is smaller
which increases the tolerance to the rapid changes in
the input sequence, but the reference vectors are then
not necessarily spread to the whole input space due to
the stiffness of the map.

The best lattice of the regular hypercubes seems to
be three-dimensional, see the row “radius 1” in Ta-
ble 3. However, although almost all phonemes of
Finnish were represented in the current speech mate-
rial, only a fraction of the phoneme transitions were
represented. Therefore, for a larger speech material, a
higher-dimensional map lattice could be better.

The quantization error of the input sequences computed
along the map topology gives information about the
capability of the map to represent temporal data se-
quences. But if the prototype vectors are kept fixed,
and only the node connections are recreated, it is clear
that the lowest quantization error is achieved when each
node has connections to all other nodes in the network.
However, this does not give information about the sig-
nal paths or the topology of the input data sequences.



If the ability of the map to represent signal paths is of
interest, the same node connections which were used
in the SOM training should be used when computing
the quantization error. Then the time topology is the
best choice. Neural Gas -type connections do not nec-
essarily give continuous connections to the whole input
sequence because they give the topology only for the
static input data manifold.

4.2. Network for speech recognition

Aforementioned quantization error of the sequences
does not necessarily give easily the information of the
capability of the network to store and represent se-
quences. This is because those results can be compared
only relatively. Therefore the performance of the net-
work was investigated in the speech recognition task.
The prototype vectors of the aforementioned node se-
quences were matched against the reference templates
of spoken words. Dynamic time-warping was used to
compute the distance between sequences [9]. From the
speech-recognition point of view, the original unquan-
tized input sequences could have been used now, but
the main idea in this test was to investigate the capa-
bility of the network to store and represent sequences.

One reference template was used for each word class.
It was a classwise median sequence of the training set.
A median sequence is a sequence with the smallest sum
of distances to other sequences in the set [4].

Recognition results using the prototype vectors of the
node sequences are shown in Table 4. For compari-
son, the unquantized test sequences were also matched
against the reference templates. Then the average
recognition rate was 96.2 per cent.

Another experiment was carried out in parallel with
the previous test. After Batch-Map training, the map
nodes were labeled using phonetically pre-segmented
training data. Each map node received a probabilistic
label vector. The dimension of the label vector was 19
since there were altogether 19 different phonemes in the
words of the vocabulary. The value of each label vector
component of one node was determined by the number
of the times that node was the best-matching unit to
the data vector from the corresponding phoneme class.
All vectors were then normalized to be unit vectors.

Encoding of the input feature sequence to the node se-
quence was done as before, i.e., finding the map node
trajectory in the feature space along the node connec-
tions, but after that the probability label vectors of the
nodes were used in matching the map node sequence
against the reference templates. Again, one reference
template was used for each word class. That reference

Table 4: Speech recognition with 10-dimensional proto-
type vectors as features. Number of correct words per
cent.

SOM with 120 nodes
node

connections 1D 2D 3D 4D
radius 1 33.5 87.3 91.1 86.5

radius
√

2 89.7
Neural Gas 94.2 91.4 91.5 86.6

time1 94.7 91.2 91.2 86.8
all 94.7 91.2 91.2 86.7

time2 95.9 95.7 95.9 95.8

SOM with 420 nodes
node

connections 1D 2D 3D 4D
radius 1 29.3 78.5 93.6 91.5

radius
√

2 85.9
Neural Gas 95.8 95.0 94.1 91.8

time1 96.1 95.2 94.4 91.8
all 96.0 95.2 94.3 91.8

time2 96.0 96.1 96.1 96.4

template represented ideal phoneme sequence, i.e., in
each vector of the reference sequence there was only
one nonzero component corresponding to the correct
phoneme in the sequence and the rest of the compo-
nents were zeros. The lengths of the phoneme segments
in the reference templates were average lengths of the
phoneme segments in the training set. The recognition
results of this test are shown in Table 5.

The motivation for this experiment was to test how well
the network is able to produce quasiphoneme sequences.
Since the network allows decoding of arbitrary feature
sequences, word recognition with unlimited vocabulary
can be performed in such phonetic languages as Finnish.
The conversion from the node sequence to the symbol
sequence can utilize similar techniques as has been used
in [10].

4.3. SOM training using the time topology

In the previous experiments, the prototype vectors as-
sociated with the SOM nodes were trained by using the
neighborhood on the regular map lattice after which
the prototype vectors were fixed. Now their training
was continued so that in each batch round the up-
dating neighborhood was newly defined according to
the time topology. The Batch-Map algorithm was per-
formed five rounds with the constant neighborhood ra-
dius. The neighborhood function which was 1 to the



Table 5: Speech recognition with 19-dimensional prob-
abilistic class vectors as features. Number of correct
words per cent.

SOM with 120 nodes
node

connections 1D 2D 3D 4D
radius 1 31.9 70.3 76.2 75.9

radius
√

2 74.9
Neural Gas 78.2 78.3 80.1 76.8

time1 79.1 78.9 79.8 77.3
all 79.0 78.8 79.8 77.3

time2 84.2 83.1 83.8 83.6

SOM with 420 nodes
node

connections 1D 2D 3D 4D
radius 1 28.2 55.3 82.0 81.2

radius
√

2 64.9
Neural Gas 85.2 83.9 85.5 82.6

time1 86.3 84.3 86.6 82.8
all 85.7 84.3 86.8 83.4

time2 88.7 89.5 88.6 88.6

best-matching unit itself, e
−1/2 to its time-topological

neighbor, and zero otherwise, was weighted according
to the strength of the node connection. This was de-
termined by the number of the input sample pairs cor-
responding to each node connection. The final neigh-
borhood function of each node was then normalized so
that it summed to one.

The number of the node connections, quantization er-
ror, and recognition results are shown in Tables 2, 3, 4,
and 5, corresponding to the row “time2”.

The results using the time-topological node neighbor-
hoods when adapting the reference vectors of the SOM
are mutually very similar for different initial map lat-
tices (1D, 2D, 3D, and 4D-hypercubes). Quantization
error of the test sequences decreased considerably com-
pared to the results of the previous experiments. This
is very satisfactory and shows the effect of the proposed
method. It is interesting to find also that the number of
the node connections decreased in the network during
training. This can be seen by investigating the rows
“time1” and “time2” in Table 2. This concentration of
the node connections and represented signal paths is an
interesting emergent feature of the network.

When comparing the results of the speech recognition
experiments it should be noted that the network was
trained for representing the sequences, not for discrimi-
nating different classes. However, the results are better

than those of the previous experiments and very close to
the results of using unquantized input sequences. Nev-
ertheless, supervised discriminative training could also
be applied to the network with the time topology.

5. Conclusions

In this work, the Self-Organizing Map was provided
with the time topology. Construction of such a map was
here done in two steps, first training the SOM in the
usual way, considering the input samples as static vec-
tors and defining the node neighborhood on the regular
map lattice. In the second phase old node connections
were removed and new connections were created accord-
ing to the time information of the input samples. The
learning was then continued with the new node topol-
ogy and neighborhood. Creating the time topology re-
quires to seek the best-matching unit for each input
sample. The two nodes which are the best-matching
units for two successive input samples in time are con-
nected. The resulting network gives a representation of
temporal signal paths in the input space. This was ex-
perimented with the feature vector sequences computed
from speech.
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