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Abstract— Mutual relationships of human en-
dogenous retroviruses (HERVs) and their similarities
to other DNA elements are studied in this paper. We
demonstrate that a completely data-driven grouping
is able to reflect same kinds of relationships as more
traditional biological classifications and phylogenetic
taxonomies. The clusters and their visualization were
computed with the Median Self-Organizing Map algo-
rithm of pairwise FASTA-based distances. The whole-
sequence distances are able to distinguish between the
different known types of endogenous elements, and ex-
ogenous retroviruses. The HERVs become grouped
meaningfully.

1 Introduction

Only about two percent of human DNA codes for pro-
teins. The function of the rest is unknown, and it has
been called “junk DNA.” It is, however, far from ran-
dom, and numerous studies (for a review see [10]) have
already shown that it may serve for meaningful func-
tions.

About 45 per cent of the DNA [8] is derived from
transposons, parts of genome capable of moving or
copying themselves in the genome. About eight per
cent consists of specific kinds of transposons, called hu-
man endogenous retroviruses (HERV). Human retro-
viruses such as HIV in general are viruses capable of
copying their genetic code to the DNA of humans, and
they become endogenous once they have been copied
to the germ-line. Human endogenous retroviruses, in
contrast to some other human transposons, are not ca-
pable of moving any longer but it has been suggested
that they may have functions in regulating the activity
of human genes, and may produce proteins under some
conditions [2].

The HERVs stem from several kinds of retroviruses.
Functions of HERV sequences existing in the human
genome will probably correlate with their origin, and
vary according to which kinds of functional parts are
still present in the sequences. HERV categories formed
according to sequence similarity could capture these

relationships, and hence help in studying functions of
HERVs. The problem is that it is not known exactly
which parts of HERV sequences are important. Fur-
thermore, during the time the sequences have inhab-
ited the human genome they have become mutated and
broken in crossovers and when other transposons have
moved to overlap them. Hence the sequences are noisy
and incomplete.

A traditional way of classifying HERVs is to group
them according to the similarity of the short region,
the primer binding site, from which their transcription
(activation) starts. In this grouping obviously a lot
of information is lost, and recently the HERVs have
been grouped according to phylogenetic analyses based
on one of their genes [9, 15]. Phylogenetic analysis is
a form of hierarchical clustering that produces trees
describing the descent, under the assumption that a
sufficiently representative sample set is available.

Since the samples in practice are far from extensive,
phylogenetic trees have little more justification than
being a form of clustering. On the other hand, there
exists evidence [11] for the Self-Organizing Map-based
visualizations being in a sense more trustworthy than
hierarchical clustering.

In this paper we investigate whether it is feasible to
extract taxonomic relationships based on mutual simi-
larities computed from the whole sequences of retro-
viruses. We will group the sequences and visualize
their similarity relationships. If they correlate suffi-
ciently well with the earlier findings that have focused
on specific parts of the sequences, the result suggests
that a completely data-driven analysis of retroviruses is
feasible. Noisy and incomplete sequences not amenable
to the focused analyses could be included in the more
comprehensive analysis. Tolerance to noise and incom-
pleteness will of course need to be studied further.

In this first feasibility study we group a set of known
samples of retroviruses and related sequences to find
out whether the known groups comply with similari-
ties computed from the whole sequences. We will use
the Median Self-Organizing Map [7] capable of organiz-
ing the sequences based on a priori computed pairwise



mutual distances. Here the distances are computed by
the FASTA [12] method.

2 Methods

2.1 Principle of the Median SOM

The Self-Organizing Map (SOM) can be used to or-
der nonvectorial data such as DNA sequences by a
variation of the method in which each model mi on
the map becomes the generalized median of the input
items mapped into the neighborhood of mi [5, 7]. For
this method it will be sufficient that some similarity
measure is definable between each input item x and
each model mi, as well as between all pairs of the in-
put items x. This variation of the SOM resembles the
Batch Map method [5, 6].

In the work in presentation, the above variation
has been applied to the production of similarity dia-
grams, and showing the clustering tendency of DNA se-
quences. The similarities between the DNA sequences
were computed by the FASTA method [12].

The generalized median, which is defined as the hy-
pothetical data item from which the sum of distances
to the other elements in a data set is minimized, can
in practice often be approximated by the set median.
The set median is an exact copy of one of the data
items in the data set, namely, that one from which the
sum of distances to the other elements of the data set is
minimized. Usually the set median is a good approx-
imation of the generalized median, but because it is
quantized to the values of the set elements, neighbor-
ing models on the map often become identical. These
duplicates then give rise to ties in the determination
of the best-matching models, and special measures are
necessary to break the ties (cf. [7]).

The computation of the SOM using set medians as
models is carried out as the iteration of the following
two steps. At the first step, copies of the input (teach-
ing) sequences are listed under their best-matching
models, taking into account the tie breaks in matching.
At the second step, for each node in the map, a new
value for each model is determined as the set median
of those input sequences that lie in the neighborhood
of the said node, i.e., in the union of the data lists
existing in the neighborhood of that node. These two
steps, namely, listing of copies of input sequences un-
der the best-matching models, and computation of the
new models as the set medians of sequences mapped
into the neighborhood of each node, are repeated, until
the models can be regarded as stationary.

The tendency of the map to create duplicate models
at neighboring nodes depends on how densely popu-
lated the data space is. This can be observed from the
smoothness of the distance matrix.

2.2 Data

The data set used in this work contains three types of
sequences. We are mainly interested in the human en-
dogenous retroviruses (HERVs), but long interspersed
repeats (LINE) and exogenous retroviruses have been
included for reference. Both HERVs and LINEs belong
to the so-called transposable elements. They reside in
the human genome and unless they are defective they
are capable of transposing and copying them selfs to
multiple locations in the genome. The different copies
of the same sequence have diverged from each other
during the tens of millions of years they have been
in our genome. The HERVs and LINEs have been
grouped into families based on their origin. The HERV
and LINE sequences were derived from the RepBase
database [3, 4]. Libraries retrovir.lib (90 sequences)
and humlines.lib (103 sequences) contain consensus se-
quences for the known HERV and LINE families, re-
spectively.

The exogenous retrovirus sequences were derived
from the NCBI Taxonomy database [16] by searching
out all Retroviridae genomes and then fetching the se-
quences from the GenBank r©. The search performed in
April 2003 resulted in 50 complete genome sequences.

The data set contains 243 sequences in total. The
lengths of the sequences vary from about 500 to 10,000
base pairs (bp). The LINE elements are shortest
with mean length of 1550 bp. The endogenous retro-
viruses are on the average 5850 bp long and the exoge-
nous retroviruses 8430 bp long. The HERV sequences
are shorter than exogenous retroviruses because their
database entries contain only the internal sequence of
the endogenous retrovirus. The exogenous retroviruses
are represented with long terminal repeat sequences
(LTR) at each end.

The HERVs have traditionally been classified on two
different grounds. We will use these classifications in
verifying the feasibility of our data-driven grouping.
The first classification stems from the tRNA used to
prime DNA synthesis [15]. The classes are named after
the primer binding site (PBS); e.g. the viruses that
are primed by leucine (L) tRNA are called HERV-L
and those utilizing arginine (R), HERV-R. The PBS
based classification is, however, incomplete in such
cases where HERVs of different origin are primed by
the same tRNA. There exist some evidence [15] that
the traditional classification may be misleading; we will
take this into account in the interpretation of the re-
sults.

The other widely used option is to classify HERVs
to three classes according to their similarity to types
of exogenous retroviruses, from which they presumably
stem (see [2, 15]). Class I HERVs are related to gam-
maretroviruses such as Feline leukemia virus or Gibbon
ape leukemia virus and include HERV-W and HERV-
H, among many other subgroups. Class II HERVs are
related to betaretroviruses (Mouse Mammary tumor



virus) and alpharetroviruses (Rous sarcoma virus) and
include several types of HERV-K elements. Class III
HERVs are distantly related to spumaviruses (Human
foamy virus) and include HERV-L and HERV-S. Class
I also includes the MER4 group in RepBase nomencla-
ture.

2.3 Computation of SOMs

The SOM was computed in two stages. In the first
organization stage, the sequences were encoded into
vectorial representations. The computation was then
continued using FASTA-based [12] sequence similari-
ties. This two-stage training scheme has been found
useful in earlier studies [7, 14]. The first stage ensures
smooth spread of the SOM models to cover the fea-
ture space, since the vectorial representations facilitate
smooth interpolation and averaging. When the SOM
has attained a rough ordering after the first stage, the
neighborhood function need not be wide any longer
in the second stage, and the set median computation
attains the final result much faster.

In the first stage, we used n-gram histogram repre-
sentations of the data sequences. Each sequence was
encoded into a histogram of 4-grams of the symbol al-
phabet consisting of the four symbols A, C, G, and
T. Hence the feature vector was 256-dimensional. Be-
sides A, C, G, and T there were also symbols B, D,
H, K, L, M, N, R, S, V, W, X, and Y in the HERV
and LINE sequences. However, their total number was
less than one per cent from all nucleotide elements so
they were ignored. The largest proportion of the non-
ACGT symbols was in sequence PRIMAX-int, which
contained five per cent of these. The feature vectors
were normalized to unit length. For the 243-sequence
data set, we decided to use a 9-by-10 unit hexagonal
SOM. The 256-dimensional model vectors were initial-
ized by random values between 0 and 1. The SOM was
computed using the Batch Map algorithm for vectors
[5]. The width of the Gaussian neighborhood function
decreased linearly from 10 to 1 during the 20 iterations
of the algorithm.

The model vectors were then replaced in the second
stage by the indices of the local set medians of the data.
The set median in each node was determined from the
union of the data lists covering the neighboring map
nodes.

Ten iterations of the Median SOM algorithm were
then carried out. Details of the algorithm can be found
in [7]. A Gaussian neighborhood function was used. Its
effective width covered the nearest neighbors on the
hexagonal map grid. The distance matrix used in the
median SOM algorithm was based on the FASTA sim-
ilarity scores [12]. The FASTA scores were computed
with default parameters.

Since the lengths of the sequences varied greatly, we
normalized the effect of sequence length in the FASTA
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Figure 1: Pairwise Tanimoto distances between the
243 data sequences based on the FASTA score. The
first 90 rows correspond to HERV sequences, the next
103 rows to LINEs and the last 50 rows to exogenous
retroviruses. Black: zero distance; increasing lightness:
Larger distance.

scores by using the Tanimoto distance [13]. First, the
FASTA scores were computed for each sequence pair.
These scores were converted to Tanimoto similarities,

s(i, j) =
f(i, j)

f(i, i) + f(j, j) − f(i, j)
, (1)

where f(i, j) denotes the FASTA similarity score be-
tween sequences i and j. The Tanimoto similarities
are between 0 and 1. The similarities were finally con-
verted to the Tanimoto distance

d(i, j) = − log s(i, j). (2)

The distance matrix containing all pairwise sequence
distances (2) is shown in Figure 1.

The 9-by-10-unit Median SOM of virus sequences is
shown in Figure 2. The shade of gray represents the
distance between the models of adjacent map nodes.
Data sequences are listed at their best-matching units
(BMUs).

There are some empty nodes in the map in Figure 2.
This is because of the duplicates of the models, result-
ing from the discrete nature of the data. These do
not cause any problems in the SOM training; in case
of duplicates, BMUs can still be unambiguously deter-
mined by means of the models in the neighborhood of
the BMU candidate as explained in [7].

Besides the map shown in Figure 2, we also com-
puted several other maps with different random vector
initializations. The sizes of the maps were also slightly
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Figure 2: Median SOM of HERV, LINE, and exogenous retrovirus sequences. Every second (bordered, and dotted
if not being a best match for any sequence) hexagon denotes a SOM unit, and the rest are U-matrix entries indi-
cating distance between the units. The resulting light areas are clusters and black stripes borders between them.
Symbols of the sequences have been inserted to the locations where the sequences have been mapped. Manually
assigned names for the clusters are presented beside the map. SV=sarcoma virus, FV=foamy virus, LV=leukemia
virus, TLV=T-lymhocytic virus, CV=carcinoma virus, MuLV =murine leukemia virus, MTV=mammary tumor
virus, ASV=adenosarcoma virus, OSV=osteosarcoma virus, SRV=spumaretrovirus, AEV=arthitis-encephalitis
virus, IAV=infectious anemia virus, MCV=myelocytomatosis virus, FFV=focus forming virus.



varied. In some cases different random initializations
resulted in the exactly same Median SOMs. But even
if final model sequences were not exactly same in differ-
ent maps, similar data clusterings were generally still
observed.

As for the conventional vector SOM, the quantiza-
tion error of data can be computed also for the Median
SOM. This requires only computing the distance of the
data sequence to its best-matching unit and averag-
ing this number over all data sequences. In our stud-
ies, for fixed map sizes, different initializations yielded
very similar quantization errors. The map in Figure 2
gave the best quantization error among the 9-by-10-
unit maps with five different random initializations.

The comparison of normal SOM to the Median SOM
revealed that 4-grams are not adequate at presenting
the information in the DNA sequences of the retro-
viruses. The normal SOM, used to initialize the Me-
dian SOM, organized the data samples differently than
the Median SOM. The organization was not as mean-
ingful when compared to the known classification of
the retrovirus sequences. The LINE elements were sep-
arated from the retroviruses, but the different types of
endogenous and exogenous retroviruses were mixed on
the map.

3 Interpretation of the biologi-

cal results

The different types of reference sequences have be-
come grouped into different clusters (Fig. 2). The
LINE-elements (L1 in the figure) form one large clus-
ter with two subparts. Different types of exoge-
nous retroviruses form compact and clear clusters:
lentiviruses1 (e.g. immunodeficiency viruses, IV),
deltaretroviruses (T-lymphotropic viruses, TLV), al-
pharetroviruses (sarcoma viruses, SV), gammaretro-
viruses (leukemia viruses, LV), and spumaviruses
(foamy viruses, FV).

The human endogenous retroviruses form clusters as
well. The class II HERVs (HERV-K) are nicely clus-
tered all together. In addition, the Mouse mammary
tumor virus (Mouse MTV) and other betaretroviruses,
are clustered with them, clearly in accordance with
the traditional classification. The alpharetroviruses are
further away on the map, but closer inspection revealed
that the map node in which Rous sarcoma virus re-
sides is actually rather close to the HERV-K cluster
(see Fig. 3).

The human endogenous retroviruses HERV-3,
HERV-R and HERV-S71 have been clustered together
with gammaretroviruses which supports the classifica-
tion of these HERVs to class I. The similarity of the
other class I retroviruses (all sequences on the left side

1See [16] and [17] for clarifications on the different types of
viruses.

Rous
SV

Figure 3: Tanimoto distance from the map node
marked as Rous sarcoma virus to all the other map
nodes (the circles). It can be seen that the alpharetro-
virus cluster at the bottom of the map is not so far from
the HERV-K cluster at the center of the map (compare
to Fig. 2). The SOM has in effect folded to be able to
visualize the many-sided similarities in 2D. Black: zero
distance; increasing lightness: Larger distance.

of the map which are not exogenous retroviruses) to
gammaretroviruses is more vague.

Most of the class III HERVs (HERV-L) are clus-
tered together on the map. The traditional view is
that they bear similarity to spumaviruses, which how-
ever are at the other side of the map. The similarity
between HERV-L and spumaviruses has been reported
on the pol gene region, but in this study whole genome
length samples have been used. The similarity of the
other regions of HERV-L and spumaviruses needs fur-
ther studying.

The class I HERVs form multiple neighboring clus-
ters which span the whole left side of the map. In this
clustering families primed by the same tRNA are not
necessarily grouped together. This is in accordance
with the current view that they are families with in-
dependent origin even though they share the PBS. See
for example the sequences HERV-H and HERV-H48.
The HERV-H48 seems to be more similar with HERV-
E and HERV-15 (primed by isoleucine (I) tRNA) than
HERV-H.

The class III HERVs (HERV-L) are more focused
than class I HERVs, but a few sequences have diverged
from the HERV-L cluster. The sequences LTR57-int
and MER68-int (at the top left node) are HERV-L-
type sequences but are clustered together with class I
HERVs. In contrast, the sequence MER89-int is a class
I HERV clustered together with HERV-Ls. These plac-
ings reflect the uncertainty of the classification of these



three sequences which is also stated at their entries in
RepBase [3, 4].

The Rauscher murine leukemia virus is an unclas-
sified retrovirus [16]. Its current position on the map
suggests that it could belong to gammaretroviruses.
This should of course be verified with thorough se-
quence alignments to protein and DNA sequences from
other gammaretroviruses.

4 Concluding comments

We have explored mutual similarities of human endoge-
nous retrovirus sequences by grouping them together
with other endogenous DNA elements and related ex-
ogenous retroviruses. The grouping and visualization
was done based on whole-sequence similarity with the
new Median Self-Organizing Map algorithm, and re-
sulted in findings consistent with earlier classifications.

A potential technical problem in using set medians
as models arises if there are small data clusters which
look like outliers for the rest of the data. In case there
are no model sequences on the map for representing
these small clusters, their best-matching units have to
be chosen from among sequences which have no simi-
larity between them. This results in determining their
best-matching units based on noisy elements in the dis-
tance matrix, which may scatter the members of the
small cluster to random places on the map. However,
if the distance matrix is smooth and there are no small
isolated data groups, this problem does not occur.

The method groups similar sequences together, and
in a sense carries out unsupervised “class discovery.”
In this first work we grouped clean consensus sequences
to verify that the FASTA-based distance computed
from whole sequences gives meaningful groupings. The
next question is whether the whole-sequence similar-
ity is sufficiently tolerant to noise and incompleteness
of sequences extracted automatically from the human
genome. Methods for the detection are currently being
intensively studied by e.g. Blomberg et al. [1].
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