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Abstract. The problem of finding the intrinsic dimension of speech is addressed in
this paper. A structured vector quantization lattice, Self-Organizing Map (SOM),
is used as a projection space for the data. The goal is to find a hypercubical SOM
lattice where the sequences of projected speech feature vectors form continuous
trajectories. The effect of varying the dimension of the lattice is investigated using
feature vector sequences computed from the TIMIT database.
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1. Introduction

The common methodology for processing speech signals in pattern
recognition applications is to compute feature vectors from fixed-length
speech sample windows (speech frames) at constant time intervals.
Usually the feature vectors are some kind of spectral representations
of the signal. Speech dynamics can be investigated by observing their
sequential order. Local temporal information can be stored into indi-
vidual feature vectors by concatenating consecutive feature vectors or
computing their time derivatives.

Since the feature vectors are points in a feature space and consec-
utive feature vectors form trajectories in that space, the entire speech
data can be described as a graph, where the separate feature vectors
are the nodes of the graph and the edges of the graph represent the
trajectories of the speech. But each node of the graph need not represent
only one feature vector. Feature vectors can be clustered and the nodes
of the graph will then represent the prototypes of the resulting clusters.

In this work the adaptive prototypes of the feature vectors are lo-
cated at the nodes of a structured lattice, the Self-Organizing Map
(SOM) [12, 13]. The goal is to represent temporal feature sequences,
speech trajectories, by means of a low-dimensional hypercubical SOM.
The effect of varying the dimension of the SOM lattice in representing
the feature vector sequences is investigated.
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2. Experiments

TIMIT database [22] was used in the experiments. It consists of pho-
netically rich English sentences spoken by several speakers. Feature
vectors were conventional 12-dimensional mel-scaled cepstral coefficient
(MFCC) vectors weighted by a liftered sine. The mean vectors were
subtracted from each sentence.

The goal of the work was to find a meaningful low-dimensional rep-
resentation for sequences of speech feature vectors. Nevertheless, some
methods for determining the intrinsic dimensionality of the data were
applied also to separate feature vectors. These were the determination
of the fractal dimension of the data set in Sec. 2.1 and data dimen-
sionality reduction using multi-dimensional scaling in Sec. 2.2. When
evaluating the quality of the SOMs in Sec. 2.3, the quantization error of
data was first computed for separate feature vectors (as usually done)
but then also when taking the temporal order of the feature vectors
into account.

2.1. FRACTAL DIMENSION OF DATA SET

In order to roughly investigate the dimensionality of the data mani-
fold, a subset of speech data was investigated by means of the fractal
dimension measure proposed by Grassberger and Procaccia [9]. This
measure, Correlation Dimension, is based on the pairwise distances of
data points. Let K(r) denote the correlation integral which measures
the number of data pairs whose distance is smaller than a threshold r:

K(r) =
1

N(N − 1)
#{(xi,xj) : ||xi − xj || < r}, (1)

where # denotes the cardinality of a set and N(N−1) is the number
of all data pairs (xi,xj). If log K(r) is plotted as a function of log r,
the fractal dimension of the data set can be read from the slope of the
linear part of the curve.

Scaling of feature vector components affects the pairwise distances.
This effect was removed from the data set by subtracting the mean of
the data vectors and then scaling the variance of the vector components
to unity. The Correlation Dimension was 5.4 for the data set which con-
sisted of 25 randomly chosen TIMIT utterances (7770 12-dimensional
feature vectors). The results were similar even when using different
preprocessing methods. For 26-dimensional logarithmic mel-spectrum
vectors, 12-dimensional cepstrum vectors with and without mean sub-
traction and with and without sine-liftering, the Correlation Dimension
varied between 5.0 and 5.7. For comparison, 7770 12-dimensional ran-
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dom vectors were picked from the uniform distribution and the normal
distribution. For these data sets the Correlation Dimensions were 10.5
and 10.7. The higher the true fractal dimension of the data set is,
the greater the size of the data sample should be in order to get an
accurate value. Nevertheless, it can be quite safely assumed that the
effective dimension of the current data set is not higher than six. It is
worth noting that when determining the Correlation Dimension, the
distances are computed in the entire feature space, not along the data
manifold. Therefore, if the data set is folded, the true dimension of the
data manifold may be actually smaller than suggested by this measure.

2.2. MULTI-DIMENSIONAL SCALING

Multi-dimensional scaling (MDS) methods, e.g. Sammon’s mapping
[20] or Curvilinear Component Analysis (CCA) [7] can also be used
for finding the dimension of the data manifold. Different mappings can
be compared by computing the mismatch s between the distances of
data pairs in the original data space and in the projection space:

s =

√

∑

i,j(d
o
ij − d

p
ij)

2

∑

i,j(d
o
ij)

2
, (2)

where do
ij and d

p
ij denote the distances between items i and j in the

original input space and in the projection space.
CCA was applied to the set of 1000 speech feature vectors. The

dimension of the CCA projection space varied between 1 and 12 (the
dimension of the feature vector). The mappings were initialized using
the first M components of the data vectors when M was the dimension
of the desired projection space. Alternatively, PCA could have been
used by projecting the data vectors to the linear subspace spanned by
the M largest principal components of the data set. After initialization,
the mappings were adapted with 2000 iterations of the CCA algorithm
[7]:

∆yj = α(t)F (dp
ij , λ)

(do
ij − d

p
ij)

d
p
ij

(yj − yi), (3)

where yj is the position vector of data item j in the projection space,
α(t) is a gradient step, and F (, ) is a weighting function. Gradient step
α(t) decreased linearly from 0.5 to zero during the iterations and F was
a Gaussian (with value close to unity in the entire projection space in
order to minimize the cost function in Equation 2).

The differences between the distances in the original feature space
and in the CCA-projection space are shown in Figure 1. There is no
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Figure 1. Data projections of 12-dimensional MFCC-feature vectors using Curvi-
linear Component Analysis. Error bars represent differences between data pair
distances in the original feature space and in the projection space using Equation 2.
Vertical axis represents the dimension of the projection space.

sharp change or plateau in the representation error which would indi-
cate a good value for the low-dimensional projection of the data set.
Instead, the representation error decreases smoothly as the dimension
of the projection space increases. However, since the cost function in-
cludes the data pair distances in the original feature space, the noise
of the feature vectors is also involved. The dimension of the effective
data manifold may thus be smaller than the dimension of the projection
space which most accurately preserves all distances between the original
noisy data samples.

The current experiment was done using euclidean distances in the
data space. Different results could be obtained by using curvilinear (or
geodesic) distances, see e.g. [15].

2.3. SELF-ORGANIZING MAP

The Self-Organizing Map (SOM) [12, 13] is an adaptive, elastic grid
which is fitted to the data by means of an unsupervised learning pro-
cess. Each node of the grid contains a model representing the data.
The structure of the grid can be freely chosen, but usually it is a
regular, low-dimensional lattice. The main interest in this work was
to investigate the effect of varying the dimension of the hypercubical
lattice in representing the feature vector sequences.

Usually the models associated with the nodes of the SOM are dis-
crete feature vectors which become representative prototypes of the
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Table I. Sizes of hypercubical SOM lattices used in the
experiments.

lattice dimension number of the nodes in the lattice

2 32 × 31

3 10 × 10 × 10

4 8 × 5 × 5 × 5

5 4 × 4 × 4 × 4 × 4

6 4 × 3 × 3 × 3 × 3 × 3

data set during learning. In its basic formulation, the SOM algorithm
organizes a VQ-codebook according to the similarity of separate fea-
ture vectors taking no temporal dependencies between the feature vec-
tors into account. The batch training algorithm of the SOM can be
expressed as [13]

mi =

∑

j hc(xj),i(t)xj
∑

j hc(xj),i(t)
, (4)

where mi is the model vector associated with the map unit i, hc(xj),i(t)
is the neighborhood function, c(xj) is the index of the best-matching
unit (BMU) for data vector xj , and t is the time index. The neighbor-
hood function controls the learning rates of the models on the map. Its
shape determines the plasticity of the map and the degree of smooth-
ness how the model vectors approximate the distribution of the data.
In case of a Kronecker delta as a neighborhood function Equation 4
reduces to the LBG-algorithm [16].

Five different map lattices with approximately 1000 nodes in each
were trained using the batch SOM algorithm, see Table 2.3. The hy-
percubical maps were initialized according to principal components of
the training data. The Gaussian neighborhood function was used whose
width (standard deviation) was half of the length of the largest lattice
side in the beginning of training and it decreased linearly to 0.5 in the
end of training. The training data consisted of 100 TIMIT sentences
and the test data consisted of a different set of 100 TIMIT sentences.

2.3.1. Normalization of the stiffness of the map lattice

Since the number of the map nodes inside a fixed neighborhood radius
increases as the map lattice dimension increases, a high-dimensional
map lattice is more stiff (resulting in a higher quantization error) than
a low-dimensional map. In order to compensate this effect, the value
of the neighborhood function can be scaled according to the number of
nodes belonging to the effective updating neighborhood. In case of a
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hypercubical map lattice, in the end of the training when the effective
width of the neighborhood contains only the nearest map neighbors,
the data vectors belonging to the Voronoi regions of the nearest map
neighbors of the given node can first be multiplied by the value of
the original neighborhood function and then divided by the number of
the nodes in the effective neighborhood (which is two times the lattice
dimension in case of a hypercubical map). The effect of this is shown
in Figure 2 (the plot with filled dots), the quantization error of the
test data using maps with different lattice dimensions but the same
number of nodes are very similar. Different map lattices with the same
number of nodes yield mutually similar quantization errors also when
the training is continued using the Kronecker delta as a neighborhood
function, however, this may severely deteriorate the ordering of the
map.

2.3.2. Comparing different SOM lattices

Quantization error measures the accuracy of the SOM in representing
separate data vectors. In Figure 2, the quantization error was computed
between data vectors and their BMUs without taking the temporal
order of the data into account:

Q =
1

N

N
∑

j=1

||xj − mc(xj)||
2. (5)

Another way to compare different lattices is to measure the distance
between the consecutive BMUs on the map. For topology-preserving
maps two consecutive BMUs should be close each other (if the input
sequence does not contain abrupt changes). This kind of measure has
been earlier applied to static data [11]. Now instead of using those
two nodes which are the best and second-best units for a single data
vector, the two nodes are the BMUs for two consecutive data vectors
in a time series. First the BMUs are found for data vectors and the
standard quantization error (Equation 5) is computed. The shortest
paths between each consecutive BMUs are then found and their lengths
are added to this measure resulting in the following measure:

Q′ =
1

N

N
∑

t=1

(

||xt − mc(xt)||
2 + min

∑

i∈P

||mP (i) − mP (i+1)||
2

)

, (6)

where P (i) is the ith map node index in the continuous path P

from node c(xt) to node c(xt+1). The shortest path between each node
pair needs to be computed only once, and the result can be stored
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Figure 2. Quantization error of test data using hypercubical SOMs with lattice
dimensions from 2 to 6. Different map lattices with the same number of nodes yield
the same quantization error after the lattice stiffness normalization, see Sec. 2.3.1,
h denotes the neighborhood function.

in a lookup table. Here Floyd’s algorithm [1] was used for comput-
ing the shortest paths between all map nodes. The error measure Q′

applied to different map lattices is shown in Figure 3. The quanti-
zation error decreases as the dimension of the map lattice increases
since the higher-dimensional lattice has more node connections than a
lower-dimensional one. The most distinguishable difference is observed
between the two-dimensional map lattice and other maps. It can be
also observed that the error measure increases as the map training is
continued with a small value of neighborhood function. This is because
the prototype vectors of the map are then spread more in the feature
space and although the first term in the right hand side of Equation 6
decreases, the second term increases more.

In Figure 4, the quantization error is again computed between the
data vectors and their BMUs, but now the BMUs are restricted to
form continuous paths in the map. This means that the BMUs of
two consecutive data vectors of the input sequence must be nearest
neighbors in the map lattice. The best BMU sequence is found using
dynamic programming.

Since the path of the BMUs must be continuous along the map
lattice, the sampling rate of the data sequence must be sufficiently high
so that if two ensuing phones in speech are represented at the opposite
sides of a map lattice, the BMU trajectory is still able to reach both
areas of the map. In this work the time resolution of the feature vectors
was 1 ms.
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Figure 3. Quantization error of test data using hypercubical SOMs with lattice
dimensions from 2 to 6 when the distances between the consecutive BMUs measured
along the map lattice have been taken into account according to Equation 6.

When the quantization error was the same for all maps (after lattice
stiffness normalization), the map lattices with the dimensions five and
six gave the lowest quantization errors (the plot with filled dots in
Figure 4). Since the five-dimensional lattice performs as well as the
six-dimensional lattice but has less node connections, it can be con-
cluded that the additional node connections in the higher-dimensional
lattice are not used and thus the speech trajectories can be adequately
represented by means of the five-dimensional hypercubical SOM.

2.3.3. Experiments with growing SOMs and topographic product

The Growing SOM (GSOM) algorithm [3] was also experimented for
determining the proper dimensionality of the hypercubical SOM lat-
tice. GSOM training begins using the map with only two nodes. The
training proceeds then by repeating the conventional SOM training and
the addition of new nodes in the lattice so that the dimension of the
lattice may increase but its structure will always remain hypercubical.
The results with GSOM were not very satisfactory, since the final di-
mension of the map lattice seemed to depend on the effective width
of the neighborhood function. The expansion of the lattice dimension
was more conservative if the neighborhood function was wide, but if it
decreased during the training so that in the end it effectively contained
only the nearest map neighbors, for some experimented data sets the
final dimension of the map lattice could even exceed the dimension of
the feature space. This happened despite a wide neighborhood function
was used after each map lattice expansion.
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Figure 4. Quantization error of test data using hypercubical SOMs with lattice
dimensions from 2 to 6 when the consecutive BMUs have been constrained to be
nearest neighbors in the map lattice.

Topographic product [2] has been suggested for determining the
proper dimensionality of the SOM. In this measure, data samples are
not utilized at all. This means that temporal order of the feature vectors
is not taken into account either. Main purpose of using this measure
is to examine the folding of the map in the feature space. Topographic
product Φ is defined as [2]:

Φ =
1

N(N − 1)

N
∑

i=1

N−1
∑

j=i

log

(

j
∏

k=1

do(mi,mno
k
(i))

do(mi,mnp

k
(i))

dp(mi,mnp

k
(i))

dp(mi,mno
k
(i))

)1/2j

,

(7)
where do(, ) and dp(, ) denote the distances in the original feature

space and the projection space, and no
k(i) and n

p
k(i) denote the indices

of the kth nearest neighbor of i in the original feature space and the
projection space, respectively. Euclidean distances are used in both
domains. In the map space, the distance between two nodes is the
distance between the node coordinate vectors of the lattice. Values
different from zero indicate mismatch between the original feature space
and projection space; a negative value suggests a too low-dimensional
map lattice and a positive value a too high-dimensional map.

Maps with lattice dimensions five and six gave values close to zero,
see Figure 5. Also the four-dimensional map with larger value of neigh-
borhood function gave a value close to zero. For all maps Φ became
smaller as the neighborhood function was decreased (since the maps
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Figure 5. Topographic Product of hypercubical SOM lattices with dimensions 2 to
6.

became more flexible in the feature space). Although in theory the
topographic product close to zero indicates a good match between the
dimensions of the map lattice and feature space, in practice it is difficult
to distinguish whether the map folding is a result from a too small
lattice dimension or the true folding of the data manifold in the feature
space.

2.3.4. SOM training with continuous BMU trajectories

The SOMs were also trained by forcing the BMUs of consecutive feature
vectors to be nearest neighbors in the map lattice. This constraint
was only applied in the BMU search. The updating of the prototypes
was performed according to Equation 4. The quantization errors of the
data sequences using these maps were very close to those of the maps
trained without the continuous-BMU-trajectory constraint (Figures 3
and 4). The reason for this may be the symmetric neighborhood func-
tion which was used. Although the trajectory of the constrained BMUs
is forced to match better the structure of the map lattice, the symmetric
neighborhood function blurs different speech trajectories.

3. Discussion and related work

Some related work is listed and briefly discussed in this section. Self-
Organizing Maps with the node connections representing feature se-
quence trajectories have been earlier considered in [14] and [21]. Topol-
ogy Representing Network (TRN) [17] is an algorithm for representing
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the data set as a graph where nodes are prototypes of data based on
vector quantization and the connections between the nodes represent
topological relationships between the prototypes. Compared to the
SOM, TRN does not have a predefined node structure. It has been used
for finding the intrinsic dimension of the static data set by investigating
the number of the node connections in the resulting graph [8]. However,
at least with limited number of data samples (and codebook vectors)
it seems that TRN based approach underestimates the true intrinsic
dimension of the data [6]. Multi-layer perceptron (MLP) networks have
also been used for finding the intrinsic dimension of data. MLPs can
be used in an auto-associative mode converting the data to the latent
variables and then trying to reconstruct the original data in the output
layer [10]. The number of the units in the middle layer corresponds to
the dimension of the hidden variable space and when the approach is
successful, the intrinsic dimension of the data. An interesting approach
to reveal the intrinsic dimension of speech and get a meaningful repre-
sentation is to convert acoustic feature vectors to the movements of the
articulatory system, i.e., to find an inverse mapping from the acoustic
observations to the speech production system. Hidden Markov models
with the topological structure of the states have been considered for
this purpose in [19], see also [18]. Generative Topographic Mapping
(GTM [5], a probabilistic generalization of the SOM) with transition
probabilities between the hidden states has been investigated in [4].

4. Conclusions

The theme of this work was to find a low-dimensional representation
space for speech data. A structured vector quantization codebook, the
Self-Organizing Map, was used as a main tool. The SOM algorithm is
usually applied to separate feature vectors without taking the temporal
order of data into account. However, the temporal order of feature
vectors is an important aspect of dynamic signals such as speech. The
goal was to find a SOM lattice which is sufficiently low-dimensional,
but which is able to represent the projections of the original feature
vectors as continuous paths in the map lattice.

Fractal dimension of mel-scaled cepstral coefficient vectors computed
from TIMIT sentences was determined using Grassberger-Procaccia’s
approach. This suggested the maximum dimension of six for the hy-
percubical SOM lattice. Multi-dimensional scaling based Curvilinear
Component Analysis was also applied for the data but no clear con-
clusions could be made from these results. The representation error
decreased smoothly as the dimension of the projection space increased.
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Different SOM lattices were then experimented. The dimensions of
the hypercubical SOMs varied between two and six. The quality of the
maps was evaluated based on the quantization error and the continuity
of the BMU trajectories in the map lattice. The quantization error of
separate feature vectors was normalized by scaling the neighborhood
function by the number of the nodes in the effective neighborhood,
which depends on the dimension of the map lattice. When the feature
vector sequences were fitted against the map lattices so that the ensuing
BMUs were constrained to be contiguous map nodes, two-dimensional
maps performed clearly worse compared to higher-dimensional maps.
Differences between other maps were not as remarkable.
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