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Abstract— This work presents a method for
smooth interpolation between symbol strings. The
method is applied to the online training of the Self-
Organizing Map with symbol strings as data.

1 Introduction

The Self-Organizing Map (SOM) [4, 6] is an unsuper-
vised method for forming the representation of the
data. It consists of local data models located at the
nodes of the low-dimensional map grid. The models
are adapted via competitive learning process.

There are two approaches for constructing the SOM
for a new data set. One is to convert the data into fea-
ture vectors so that the comparison and averaging can
be done using familiar Euclidean distance and arith-
metic averaging. Another possibility is to modify the
SOM algorithm itself. This is the approach taken in
the current study, where the SOM is constructed for
symbol string data.

Symbol strings are encountered in many application
fields like speech recognition and bioinformatics. This
work describes a method which allows the construction
of the SOM for symbol strings with smooth symbol
averaging. In earlier work with the SOM of symbol
strings [7, 8, 9, 10, 16]. the data and the models in the
SOM have been considered as discrete items. Quan-
tized data and models may result that there are dupli-
cate models on the SOM [10]. The proposed method
for computing string average has no such problems. In
this work, the models in the SOM are able to inter-
polate smoothly between discrete data clusters. Only
when the soft symbol representations are converted
back to discrete symbols after the SOM training, the
duplicates may occur.

In this work the models in the SOM are vector se-
quences and the data strings are also represented in the
similar form. Each symbol element of the data string is
converted into a vector whose dimension corresponds
to the size of the alphabet. The length of the vector
sequence equals to the length of the original symbol se-
quence. Vector representation allows arithmetic aver-

aging between the symbols and guarantees smooth be-
havior of the models in the SOM. Sequences with vary-
ing lengths are compared using dynamic time warping
(DTW) [13, 14] and the average of vector sequences
with unequal lengths is also well-defined [12, 14].

The construction of the SOM for variable-length fea-
ture vector sequences has been demonstrated earlier in
[15]. The novelty in this work is the apply the method-
ology to the symbol strings. In addition, in this work
all required formulae are expressed in detail.

The paper is organized as follows: Sec. 2 explains
the background and related work to the SOM of sym-
bol strings, Sec. 3 illustrates different string averages,
Sec. 4 describes the SOM training with smooth string
averages, and Sec. 5 illustrates the method with exam-
ples.

2 Previous work related to the
SOM of symbol strings

In [7] it was for the first time shown that the SOM
can be constructed for any data set for which a simi-
larity or dissimilarity measure between its elements is
defined. This was based on the use of the batch-SOM
training and the definition of the generalized median
as the model associated with each SOM node.

The first application of this method was the con-
struction of the SOM for symbol strings [7, 8, 9]. Two
types of medians were used: the set median, which is
an existing element of the data set, and the median,
which does not have to be an exact replica of any ele-
ment in the data set. The set median is applicable to
dense data sets, while the latter kind of median may
interpolate sparse data better.

If set medians are used, the models are always copies
of some data items. The benefit of this is that one algo-
rithm can be applied without any modifications to the
new data sets. But if the type of the data is restricted,
e.g. the SOM is to be constructed for symbol strings
as in the current work, then more data-type oriented
interpolation methods can be used.



The SOMs can be trained using the online or batch
algorithm. Batch algorithm for symbol string SOM has
been used in [7, 8, 9, 10, 16] and online algorithms have
been experimented in [1, 3]. In this work a new method
is proposed for computing the string average. This
method fits naturally to the online training algorithm.

3 Examples of string averages

Two approaches for computing the string average has
been presented in [5]. One of them, the set median,
is defined to be the string which has the smallest sum
of distances to other strings in the set. The fine-tuned
median string can then be obtained by systematically
varying the symbols in the set median string. These
methods have been utilized in the construction of the
SOM of symbol strings in [7, 8, 9]. Further modifica-
tions for computing the string average has been pro-
posed in [3].

If the data item can be converted into feature vec-
tor, the interpolation and averaging can be computed
by arithmetic means. In [2] the symbol string data
was clustered using the SOM. The data strings which
represented protein sequences were first aligned and
then converted into fixed-dimensional feature vectors.
String alignment is a process where the strings are
shifted to the left or right in respect of other strings
so that the maximum mutual coherence between the
strings is attained. The coherence is measured by the
position-wise symbol similarity. In [2] sequences con-
sisted of amino-acid symbols. Because of the align-
ment, strings could then be converted into fixed-
dimensional feature vector sequences. Each symbol
was converted into 20-dimensional vector (there were
20 symbols in the amino-acid alphabet) and the length
of the vector sequence was the length of the global
alignment of the entire string set. Since the length
of the vector sequence was the same for all strings,
FEuclidean distance and arithmetic averaging could be
used in the SOM training.

In [12], two clustering methods of DTW-templates
were considered. The methods were applied to feature
vector sequences which represented isolated word ut-
terances. The representative sequence of the cluster,
the minimax center, was defined to be the sequence
which had the smallest maximum distances to other se-
quences in the cluster. That approach was called clus-
tering without averaging (UWA). Another method was
also presented, clustering with full averaging (UFA),
where the averaged sequence was obtained averaging
feature vectors of two sequences along their warping
path.

The current work combines the two abovementioned
approaches by utilizing the vector coding of the sym-
bols [2] and dynamic time warping when computing
the distances and averages between vector sequences
[12].

Different string averages are illustrated in Fig. 1. Set
median and median in Fig. 1 (a) and (b) are computed
according to [5]. Vector-representation based average
is shown in Fig. 1(c). Since there are seven symbols
in the alphabet: A, B, C, E, L, S, and T, each sym-
bol in the strings of Fig. 1(a) is converted into seven-
dimensional vector. The details of the computation
of the average sequence are described in Sec. 4.3. In
Fig. 1(d), vector-sequence average of Fig. 1(c) is con-
verted into quantized symbol string by selecting the
symbol in each sequence position which corresponds
to the largest vector element in that position. In this
example the result is equal to the median string of
Fig. 1(b).
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Figure 1: Examples of string averages for the data
set containing three strings: “CAT”, “CASTLE”, and
“BATTLE”. The numbers in (a) and (b) are Leven-
shtein distances between the strings. String average is
shown underlined in each subfigure.

4 Online SOM algorithm for
symbol strings

The SOM training consists of two steps which are iter-
ated [4, 6]: 1) finding the best-matching unit (BMU)
for the input and 2) adaptation of the models.

The index of the BMU to the given input X; is de-
fined as:

o(Xy) = argmkinD(Xt,Mk), (1)

where M} denotes the model of the kth map node
and D(X, My,) is the distance measure. Distance mea-
sure for variable-length vector sequences is defined in
Sec. 4.2.



In accordance with the original SOM algorithm for
vectors, the adaptation of the model My, which is now
a sequence of vectors, has the following form in the
online training:

M (t+ 1) = My(t) + h(c, k, t)[ X — My(t)], (2)

where h(c, k,t) denotes the neighborhood function
which determines the learning rates of the models, ¢
denotes the training cycle. Symmetric Gaussian neigh-
borhood function can be used whose center is located
at the BMU, ¢ = ¢(X). The details of the computation
of the weighted average between two vector sequences
are given in Sec. 4.3.

4.1 Symbol string encoding

Symbol strings are encoded into vector sequences in
the following way. Let S; = [s;18¢2 ... s¢r] denote the
tth symbol string with length L. We now define the
mapping S; — X;, where X; is the vector sequence:
X: = [xu1Xe2...%1]. Let A be the symbol alpha-
bet. |A| denotes the number of the elements in A.
Each symbol sy, ¢ = 1...L is then encoded into |A|-
dimensional vector x4 so that all elements in x4 are
zeros except one corresponding to the index of the sym-
bol sy in A.

For example, if A = {A,B,...,Z} and |A| = 26,
the symbols in the alphabet are converted into vec-
tors in the following way: A — [100...0], B —
[010...0], ..., Z —[000...1] and the converted sym-
bol string is the sequence of the corresponding vec-
tors. E.g., the string “BAD” would be converted to:
[0100...0]7[1000...0]7[0001...0]%" .

4.2 Distance computation

DTW addresses to the problem of finding an optimal
alignment between the encoded strings. This can be
computed by dynamic programming [13; 14]. Let X,
and M} denote two vector-encoded strings and F' the
warping function which performs the alignment. F' is
a sequence of index pairs which defines the mapping
between the elements 7 of the sequence X; and elements
j of sequence My:

F=1[2(1),2(2),...,2(p),...,2(P)], (3)

where z(p) = [i(p),j(p)] and P is the number of
the points in the alignment. DTW-based distance is
computed as a sum of distances between the sequence
elements along the alignment:

P

D(Xe, M) = 3 dl=(p), (4)

p=1
where d[z(p)] is the distance between the vectors of
the sequences My and X; indexed by z(p). Euclidean

distance || X:(i(p)) — Mk (j(p))|| can be used. The cu-
mulative distance in Eq. (4) can be divided by P or
the sum of the sequence lengths.

The warping function can be computed in the two-
dimensional trellis. Let g(4, j) denote the path variable
which gives the optimal warping. The trellis is first
initialized:

(0 j=0
9(0,5) = mln{ oo j>0
. . 0 7=0
oi0) = wind O 150 5)

Dynamic programming follows:

g(iaj - 1) +d(27])
g(i—1,j —1) +d(i, j) (6)
g(i - Lj) + d(Z,]),

d(i, 7) is the distance between X, () and M (j). The
index ¢ goes from 1 to Lx, and j from 1 to Ly, Lx,
and Ly, denoting the lengths of X; and My, respec-
tively. In accordance with Eq. (4) we can now define:

g(i,j) = min

D(Xt’Mk) :g(LXmLMk)' (7)

From ¢(i,j) we can obtain the warping function
F = z(p)}_, which minimizes the sum of distances
in Eq. (4). As an initialization we set:

2(P) = (L, Lp). (8)

The rest of the warping path is obtained by back-
tracing the trellis:

z(p—1)=argmin¢ g(i—1,5—1), (9)
g9(i—1,7)

where index p goes from P — 1 to 1. Because of the
initialization of ¢(¢,0) and g(0, j), 2(1) will be (1,1).

There are several modifications to the basic scheme
described here which can be implemented, e.g., various
slope constraints and weightings can be added to the
warping function [13].

In case of symbols instead of feature vectors as the
elements of the sequences, the corresponding distance
is called Levenshtein or edit distance [11, 14]. The
purpose of using vectors in this work is that they allow
smooth symbol interpolation. This is explained in the
following.

4.3 Model adaptation

Let us first investigate two vectors m = My (j(p)) and
x = X(i(p)) from sequences My and X;. The average
of two vectors is simple to compute and we can use the
model update formula of the original SOM algorithm:

m’ = m+ h(c, k, t)(x — m). (10)



The entire sequences M) and X; are averaged by
computing the sequence of vector averages along the
alignment F' = z(p)l”, of My and X, .

Let I(p) denote the “position” of the averaged se-
quence element. It is defined as the weighted average
of the two indexes in z(p) = [i(p), j(p)]:

l(p) = (1= h)j(p) + hi(p),

where h stands for the shorthand notation of
h(c, k,t). It is desirable that the length of the average
sequence is proportional to Ly, and Lx,, the lengths
of the sequences M} and X;. Let us denote the up-
dated model M}, as M. We can determine its length
being;:

(11)

Ly = [(L = h)Ly, +hLlx, +0.5], (12)

i.e., the length of the updated model sequence is a
weighted average of its old length and the length of the
current input rounded to the nearest integer number.
A reasonable sampling interval from z(p) is that [(n +
1) — I(n) is one, and index n goes 1 to Ly — 1. The
first value of [ is set I(1) = 1.

If I(n) does not coincide with any single point of
z(p) it can be interpolated between two nearest points
in the warping path. Let us denote the indexes of these
points by p; and po. They must satisfy:

Up1) < l(n) <1(p2) (13)

The nth element of the new model sequence can
then be interpolated between two vector averages m;
and my corresponding to the warping points z(p1) and

z(p2):
() = LT G2y
q1 + g2
linear interpolation weights ¢; and ¢ are determined
as q1 = l(p2) —l(n) and g2 = I(n) —(p1), and m; and
my are computed according to Eq. (10).

(14)

4.3.1 Note on the learning rate

In the model adaptation, there are two averages to be
made. One is the average between the vectors and an-
other is for the sequence lengths. The feature vectors of
the sequences will get adapted even when small learn-
ing rate values h are used. But the length of the up-
dated model sequence is rounded to the nearest integer
according to Eq. (12). The length adaptation does not
have any effect if the learning rate is too small. There-
fore, in order to get representative model sequences on
the map, the learning rate should be sufficiently large
in the beginning of the training, especially if the ran-
dom model initialization is used.

This concludes the SOM training for variable-length
sequences. The model sequence updating is performed
as a weighted average of the input sequence and the

model sequence according to Eq. (2) computing the
vector averages along the warping path.

5 Examples

The first example shows the capability of the SOM for
interpolating the data. The following five strings were
in the dataset: “CAT”, “CATTLE”, “BAT”, “BAT-
TLE”, and “BATTLEFIELD”. Hexagonal SOM with
92 map units was used. The models were initialized by
26-dimensional random vectors, values were between
one and zero. Each vector element corresponded to
one symbol in alphabet A...Z. The initial models corre-
sponded to the symbol sequences with only one symbol
position in them. The map was trained in two stages
with 1000 training cycles in each. The Gaussian neigh-
borhood function was used in Eq. (2):

h(c(t),4) = a(t) exp[0.5d(c(t),i)*/o?], (15)

where d(c(t), ) is the Euclidean distance between the
coordinates of the nodes ¢(t) and i on the map grid.
In the first 1000 training cycles the effective width of
the Gaussian neighborhood function o decreased lin-
early from 10 to 3, and « decreased linearly from 0.5
to 0.01. In the second stage the neighborhood width
was kept fixed, o was 3, and another 1000 training cy-
cles were performed. The resulting SOM is shown in
Fig. 2. Because the lengths of the model sequences are
adapted in addition to the vector elements, the mod-
els on the trained SOM correspond to the data strings
despite their initialization.

Soft symbol vector sequences can be quantized into
discrete symbol strings by extracting the symbol in
each position which has the largest vector element.
This is shown in Fig. 2(b).

Several larger SOMs were also constructed using a
100.000 word dictionary as the input data, one example
is shown in Fig. 3. Random initialization was used
and no problems were encountered during the training
process.

6 Discussion

In case of discrete symbol strings, the Levenshtein
distance computes the number of symbol changes be-
tween two strings. Some applications favor the use of
weighted Levenshtein distance, where different symbol
substitutions, deletions and insertions may have differ-
ent weightings [17]. Similar approach can be embedded
also in the vectorial representations of the symbols. In-
stead of the plain Euclidean distance, we can compute
the weighted distance between two symbol represent-
ing vectors a and b:

d(a,b) = [a— b]"W[a — b, (16)
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Figure 3: 128-unit SOM has been trained with the

100.000-word English dictionary as input data. Vec-
tor sequences of the trained models have been converted
into discrete symbols by selecting the symbol with the
largest value in each wvector position. Font size repre-
sents the dominance of the symbol in each vector.

where W denotes the weighting matrix.

The soft symbol representation used in the present
work allows probabilistic interpretation of the data.
For visualization purposes, this can be utilized e.g. by
choosing the font size of the symbol according to its
value in the vector as shown in Fig. 2(b) and 3.

7 Conclusions

This work presented an online algorithm for the SOM
with symbol strings as data. Symbol strings were con-
verted into vector sequences which enabled the com-
putation of smooth averages. Dynamic time warping
was used for comparing the input strings against the
model sequences and arithmetic averaging was used for
updating the models.

The main advantage of the proposed method over
the previous algorithms for constructing the SOM for
symbol strings is the smooth interpolation ability due
to the vectorial representation of the symbols. The
soft symbol representation enables also probabilistic
interpretation of the data.
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(b) Quantized symbol sequence models

Figure 2: 92-unit hexagonal SOM for symbol sequences. Input data consisted of five strings: “CAT”, “CATTLE”,
“BAT”, “BATTLE”, and “BATTLEFIELD”. Fig. (a) contains 26-dimensional vector sequences, each vector
element corresponding to one symbol in the alphabet A...Z. These sequences have been converted into discrete
symbol strings in Fig. (b) by selecting the symbol with the largest value in each vector. The size of the font
indicates the value of the symbol in the vector representation; large size corresponds to large value.



