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Compact Modeling of Data Using Independent
Variable Group Analysis

Esa Alhoniemi, Antti Honkela, Krista Lagus, Jeremias Seppä, Paul Wagner, and Harri Valpola

Abstract—We introduce a modeling approach called indepen-
dent variable group analysis (IVGA) which can be used for
finding an efficient structural representation for a given data set.
The basic idea is to determine such a grouping for the variables
of the data set that mutually dependent variables are grouped
together whereas mutually independent or weakly dependent
variables end up in separate groups.

Computation of an IVGA model requires a combinatorial
algorithm for grouping of the variables and a modeling algorithm
for the groups. In order to be able to compare different groupings,
a cost function which reflects the quality of a grouping is also
required. Such a cost function can be derived, for example,
using the variational Bayesian approach, which is employed in
our study. This approach is also shown to be approximately
equivalent to minimizing the mutual information between the
groups.

The modeling task is computationally demanding. We describe
an efficient heuristic grouping algorithm for the variables and
derive a computationally light nonlinear mixture model for
modeling of the dependencies within the groups. Finally, we carry
out a set of experiments which indicate that IVGA may turn out
to be beneficial in many different applications.

Index Terms—compact modeling, independent variable group
analysis, mutual information, variable grouping, variational
Bayesian learning

I. INTRODUCTION

The study of effective ways of finding compact represen-
tations for data is important for the automatic analysis and
exploration of complex data sets and natural phenomena.
Finding properties of the data that are not related can help in
discovering compact representations as it saves from having
to model the mutual interactions of the unrelated properties.

It seems evident that humans group related properties as a
means for understanding complex phenomena. An expert of a
complicated industrial process such as a paper machine may
describe the relations between different control parameters
and measured variables by groups: A affects B and C, and
so on. This grouping is of course not strictly valid as all
the variables eventually depend on each other, but it helps
in describing the most important relations, and thus makes
it possible for the human to understand the system. Such
groupings also significantly help the interaction with the
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process. Automatic discovery of such groupings would help
in designing visualizations and control interfaces that reduce
the cognitive load of the user by allowing her to concentrate
on the essential details.

Analyzing and modeling intricate and possibly nonlinear de-
pendencies between a very large number of variables (features)
is a hard problem. Learning such models from data generally
requires very much computational power and memory. If one
does not limit the problem by assuming only linear or other
restricted dependencies between the variables, essentially the
only possibility is to try to model the data set using different
model structures. One then needs a principled way to score
the structures, such as a cost function that accounts for the
model complexity as well as the accuracy of the model.

As far as we know, there does not exist a computationally
feasible algorithm for grouping of variables that is based on
dependencies between the variables. The main contribution of
this article is derivation and detailed description of all the
elements that are required for construction of such a model.
We also experimentally show that the model can indeed be
used to obtain useful results in various applications.

The remainder of the article is organized as follows. In
Section II we describe a computational modeling approach
called Independent Variable Group Analysis (IVGA) by which
one can learn a structuring of a problem from data. In short,
IVGA does this by finding a partition of the set of input
variables that minimizes the mutual information between the
groups, or equivalently the cost of the overall model including
the cost of the model structure and the representation accuracy
of the model. Its connections to related methods are discussed
in Section II-B.

The problem of modeling-based estimation of mutual in-
formation is discussed in Section III. The approximation
turns out to be equivalent to variational Bayesian learning.
Section III also describes one possible computational model
for representing a group of variables as well as the cost
function for that model. The algorithm that we use for finding
a good grouping is outlined in Section IV along with a number
of speedup techniques.

In Section V we examine how well the IVGA model works
both on an artificial toy problem and two real data sets: printed
circuit board assembly component database and ionosphere
radar measurements.

Initially, IVGA was introduced in [1], and some further
experiments were presented in [2]. In the current article we
derive the connection between mutual information and vari-
ational Bayesian learning and describe the current, improved
computational method in detail. The mixture model for mixed
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Fig. 1. An illustration of the IVGA modeling approach. The upper part
of the figure shows the actual dependencies between the observed variables.
The arrows that connect variables indicate causal dependencies. The lower part
depicts the variable groups that IVGA might find here. One actual dependency
is left unmodeled, namely the one between Z and E. Note that IVGA does
not reveal causalities, but dependencies between the variables only.

real and nominal data is presented along with derivation of the
cost function. Details of the grouping algorithm and necessary
speedups are also presented. Completely new experiments
include an application of IVGA to supervised learning.

II. MODELING USING INDEPENDENT VARIABLE GROUP
ANALYSIS

The ultimate goal of independent variable group analysis
(IVGA) is to partition a set of variables (also known as
attributes or features) into separate groups so that the statistical
dependencies of the variables within each group are strong.
These dependencies are modeled, whereas the weaker depen-
dencies between variables in different groups are disregarded.
The modeling approach is depicted in Fig. 1.

In order to determine a grouping for observed data, a
combinatorial grouping algorithm for the variables is required.
Usually this algorithm is heuristic since an exhaustive search
over all possible variable groupings is computationally infea-
sible.

The combinatorial optimization algorithm needs to be com-
plemented by a method to score different groupings or a cost
function for the groups. Suitable cost functions can be derived
in a number of ways, such as using the mutual information
between different groups or as the cost of an associated model
under a suitable framework such as minimum description
length (MDL) or variational Bayes. All of these alternatives
are actually approximately equivalent, as presented in Sec. III.

It is vital that the models of the groups are fast to compute
and that the grouping algorithm is efficient, too. In Sec. IV-A,
such a heuristic grouping algorithm is presented. Each variable
group is modeled by using a computationally relatively light
mixture model which is able to model nonlinear dependencies
between both nominal and real valued variables at the same
time. Variational Bayesian modeling is considered in Sec. III,
which also contains derivation of the mixture model.

It should be noted that the models used in the model-based
approaches need not be of any particular type. As a matter
of fact, all the models of a particular modeling problem do
not necessarily need to be of same type, but each variable
group could even be modeled using a different type of model.
Therefore, IVGA could potentially be seen as a concept, not
just as an algorithm. However, we have neither derived nor
tried any other models than the mixture model reported in
this article. Without experimental evaluation it is not possible
to comment on the general applicability of the approach using
arbitrary models.

A. Motivation for Using IVGA

The computational usefulness of IVGA relies on the fact
that if two variables are dependent on each other, representing
them together is efficient, since redundant information needs
to be stored only once. Conversely, a joint representation
of variables that do not depend on each other is inefficient.
Mathematically speaking, this means that the representation of
a joint probability distribution that can be factorized is more
compact than the representation of a full joint distribution.
In terms of a problem expressed using association rules of
the form (A = 0.3, B = 0.9 ⇒ F = 0.5, G = 0.1):
The shorter the rules that represent the regularities within a
phenomenon, the more compact the representation is and the
fewer association rules are needed. IVGA can also be given a
biologically inspired motivation. With regard to the structure
of the cortex, the difference between a large monolithic model
and a set of models produced by IVGA roughly corresponds to
the contrast between full connectivity (all cortical areas receive
inputs from all other areas) and more limited, structured
connectivity.

The IVGA modeling approach has shown to be sound. A
very simple initial method described in [1] found appropriate
variable groups from data where the features were various
real-valued properties of natural images. Recently, we have
extended the model to handle also nominal (categorical) vari-
ables, improved the variable grouping algorithm, and carried
out experiments on various different data sets.

IVGA can be viewed in many different ways. First, it can be
seen as a method for finding a compact representation for data
using multiple independent models. Secondly, IVGA can be
seen as a method of clustering variables. Note, however, that
this is not equivalent to taking the transpose of the data matrix
and performing ordinary clustering, since dependent variables
need not be close to each other in the Euclidean or any other
common metric. Thirdly, IVGA can also be considered as a
variable or feature selection method.

B. Related Work

One of the basic goals of the unsupervised learning is to
obtain compact representations for observed data. The methods
reviewed in this section are related to IVGA in the sense
that they aim at finding a compact representation for a data
set using multiple independent models. Such methods include
multidimensional independent component analysis (MICA,
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Fig. 2. Schematic illustrations of IVGA and related algorithms, namely
MICA/ISA and FVQ that look for multi-dimensional feature subspaces in
effect by maximizing a statistical independence criterion. The input x is here
9-dimensional. The number of squares in FVQ and IVGA denote the number
of variables modeled in each sub-model, and the number of black arrows in
MICA is equal to the dimensionality of the subspaces. Note that with IVGA
the arrows depict all the required connections, whereas with FVQ and MICA
only a subset of the actual connections have been drawn (6 out of 27).

also known as independent subspace analysis, ISA) [3] and
factorial vector quantization (FVQ) [4], [5].

In MICA, the goal is to find independent linear feature
subspaces that can efficiently be used to reconstruct the data.
Thus, each subspace is able to model the linear dependencies
in terms of the latent directions defining the subspace. FVQ
can be seen as a nonlinear version of MICA, where the
component models are vector quantizers over all the variables.
The main difference between these and IVGA is that in IVGA,
only one model affects a given observed variable. In all the
others, all the models contribute to modeling every observed
variable. This difference, visualized in Fig. 2, makes the
computation of IVGA significantly more efficient.

There are also a few other methods for grouping the vari-
ables based on different criteria. A graph-theoretic partitioning
of a graph induced by a thresholded association matrix be-
tween variables was used in [6]. The method requires choosing
an arbitrary threshold for the associations, but the groupings
could nevertheless be used to produce smaller decision trees
with equal or better predictive performance than using the full
dataset.

A framework for grouping variables of a multivariate time
series based on possibly lagged correlations was presented
in [7]. The correlations are evaluated using Spearman’s rank
correlation that can find both linear and monotonic nonlinear
dependencies. The grouping method is based on a genetic
algorithm, although other possibilities are presented as well.
The method seems to be able to find reasonable groupings,
but it is restricted to time series data and certain types of
dependencies only.

Modular mixture model [8] is a hierarchical model with
separate mixture models for different groups of variables

and additional higher level mixtures to model residual de-
pendencies between the groups. While the model itself is
an interesting generalization of IVGA, the learning method
described in [8] considers a fixed model structure only and
cannot be used to infer a good grouping.

Module networks [9] are a very specific class of models
that is based on grouping of similar variables together. They
are used for discrete data only and all the variables of a
group are restricted to have exactly the same distribution.
The dependencies between different groups are modeled as
a Bayesian network. Sharing the same model within a group
makes the model easier to learn from scarce data, but severely
restricts its possible uses.

For certain applications, it may be beneficial to view IVGA
as a method for clustering variables. In this respect it is
related to methods such as double clustering, co-clustering,
and biclustering which also form a clustering not only for the
samples, but for the variables, too [10], [11]. The differences
between these clustering methods are illustrated in Fig. 3.
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Fig. 3. Schematic illustrations of IVGA together with regular clustering
and biclustering. In biclustering, homogeneous regions of the data matrix are
sought for. The regions usually consist of a part of the variables and a part of
the samples only. In IVGA, the variables are clustered based on their mutual
dependencies. If the individual groups are modeled using mixture models, a
secondary clustering of each group is also obtained, as marked by the dashed
lines in the rightmost subfigure.

IVGA can also be used for feature, or input variable,
selection for supervised learning as demonstrated in Sec. V-C.
In that case one needs to consider which input variable(s) are
dependent with – that is, grouped in the same group with –
the output variable(s) of interest. For extensive presentations
on variable selection with many references, see [12], [13].

III. A MODELING-BASED APPROACH TO ESTIMATING
MUTUAL INFORMATION

Learning a good grouping of variables can be seen either
as a model comparison problem or a problem of estimating
the mutual information for the groupings. Estimating mutual
information of high dimensional data is very difficult as it
requires an estimate of the probability density. If a model-
based density estimate is used, the problem of minimizing
the mutual information becomes approximately equivalent to a
problem of maximizing the marginal likelihood p(D|H) of the
model. Thus minimization of mutual information is equivalent
to finding the best model for the data. This model comparison
task can be performed efficiently using variational Bayesian
techniques.
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A. Approximating the Mutual Information

Let us assume that the data set D consists of vectors
x(t), t = 1, . . . , T . The vectors are N -dimensional with the
individual components denoted by xj , j = 1, . . . , N . Our
aim is to find a partition of {1, . . . , N} to M disjoint sets
G = {Gi|i = 1, . . . ,M} such that the mutual information

IG(x) =
∑

i

H({xj |j ∈ Gi})−H(x) (1)

between the sets is minimized. When M > 2, this is actually
a generalization of mutual information commonly known as
multi-information [14]. As the entropy H(x) of the whole data
is constant, this can be achieved by minimizing the first sum.
The component entropies in that sum can be approximated
by using the distribution p(y) of the data in the given group
y = (xj)j∈Gi

as

H(y) = −
∫

p(y) log p(y) dy ≈ − 1
T

T∑
t=1

log p(y(t))

≈ − 1
T

T∑
t=1

log p(y(t)|y(1), . . . ,y(t− 1),H)

= − 1
T

log p({Dj |j ∈ Gi}|Hi),

(2)

where Dj denotes the observations for xj and Hi is the
model for group Gi. Two approximations were made in this
derivation. First, the expectation over the data distribution was
replaced by a discrete sum using the data set as a sample
of points from the distribution. Next, the data distribution
was replaced by the posterior predictive distribution of the
data sample given the past observations. The sequential ap-
proximation is necessary to avoid the bias caused by using
the same data twice, both for sampling and for fitting the
model for the same point. A somewhat similar approximation
based on using the probability density estimate implied by a
model has been applied for evaluating mutual information also
in [15]. The relation between mutual information and Bayesian
measures of independence was noted in [16] in a discrete
setting and the corresponding relation between entropy and
marginal likelihood in the discrete case was presented in [17].

Using the result of Eq. (2), minimizing the criterion of
Eq. (1) is equivalent to maximizing

L =
∑

i

log p({Dj |j ∈ Gi}|Hi). (3)

This reduces the mutual information minimization to a stan-
dard Bayesian model selection problem.

When varying the number of groups M , the two problems
are not exactly equivalent. The mutual information cost (1) is
always minimized when all the variables are in a single group,
or multiple statistically independent groups. In the case of the
Bayesian formulation (3), the global minimum may actually
be reached for a nontrivial grouping even if the variables are
not exactly independent. This allows determining a suitable
number of groups even in realistic situations when there are
weak residual dependencies between the groups. The main
insight provided by the relation between the methods is that for
a fixed number of groups, the best model in the probabilistic

sense is also the one with the smallest mutual information for
the corresponding grouping.

B. Variational Bayesian Learning

Unfortunately evaluating the exact marginal likelihood is
intractable for most practical models as it requires evaluating
an integral over a potentially high dimensional space of all the
model parameters θ. This can be avoided by using a variational
method to derive a lower bound of the marginal log-likelihood
using Jensen’s inequality [18]

log p(D|H) = log
∫

θ

p(D,θ|H) dθ

= log
∫

θ

p(D,θ|H)
q(θ)

q(θ) dθ ≥
∫

θ

log
p(D,θ|H)

q(θ)
q(θ) dθ,

(4)

where q(θ) is an arbitrary distribution over the parameters. If
q(θ) is chosen to be of a suitable simple factorial form, the
bound becomes tractable.

Closer inspection of the right hand side of Eq. (4) shows
that it is of the form

B =
∫

θ

log
p(D,θ|H)

q(θ)
q(θ) dθ

= log p(D|H)−DKL(q(θ)||p(θ|H,D)),
(5)

where DKL(q||p) is the Kullback–Leibler divergence be-
tween distributions q and p. The Kullback–Leibler divergence
DKL(q||p) is non-negative and zero only when q = p. Thus it
is commonly used as a distance measure between probability
distributions although it is not a proper metric [19]. For a
more through introduction to variational methods, see for
example [18].

In addition to the interpretation as a lower bound of the
marginal log-likelihood, the quantity −B may also be in-
terpreted as a code length required for describing the data
using a suitable code [20]. The code lengths can then be used
to compare different models, as suggested by the minimum
description length (MDL) principle [21]. This provides an
alternative justification for the variational method. Addition-
ally, the alternative interpretation can provide more intuitive
explanations on why some models provide higher marginal
likelihoods than others [22]. For the remainder of the paper,
the optimization criterion will be the cost function

C = −B =
∫

θ

log
q(θ)

p(D,θ|H)
q(θ) dθ

= DKL(q(θ)||p(θ|H,D))− log p(D|H)
(6)

that is to be minimized.
Using this cost as an approximation of the negative marginal

log-likelihood yields an estimate of the mutual information in
Eq. (1) as

IG(x) ≈ 1
T

∑
i

C({xj |j ∈ Gi})−H(x), (7)

where C({xj |j ∈ Gi}) is the cost of the model for group Gi.
In order to make sure that all the estimates are non-negative,
the entropy of the full data H(x) may be approximated by
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the scaled minimal value of the cost over different models,
including the model with all the variables in a single group.
The accuracy of this approximation is studied empirically us-
ing a toy example in Sec. V-A. The attained results are mostly
qualitatively correct between different groupings, although the
numerical values are not especially accurate.

C. Mixture Model for the Groups

In order to apply the variational Bayesian method described
above to solve the IVGA problem, a class of models for the
groups needs to be specified. This class of models may vary
depending on the goal of modeling, but it naturally needs to
be such that one can derive an appropriate cost function and
update equations for the parameters of the model.

In this work mixture models have been used for modeling of
the groups. Mixture models are a good choice because they are
simple while being able to model also nonlinear dependencies.
The resulting IVGA model is illustrated as a graphical model
in Fig. 4.
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Fig. 4. The IVGA model as a graphical model. The nodes represent
variables of the model with the shaded ones being observed. The left-hand
side shows the overall structure of the model with independent groups. The
right-hand side shows a more detailed representation of the mixture model of
a single group of three variables. Variable c indicates the generating mixture
component for each data point. The boxes in the detailed representation
indicate that there are T data points and in the rightmost model there are
C mixture components representing the data distribution. Rectangular and
circular nodes denote discrete and continuous variables, respectively.

As shown in Fig. 4, different variables are assumed to be
independent within a mixture component and the dependencies
only arise from the mixture. For continuous variables, the
mixture components are Gaussian and the assumed indepen-
dence implies a diagonal covariance matrix. Different mixture
components can still have different covariances [23]. The
applied mixture model closely resembles other well-known
models such as soft c-means clustering and soft vector quan-
tization [24].

For nominal variables, the mixture components are multino-
mial distributions. All parameters of the model have standard
conjugate priors. The exact definition of the model and the
approximation used for the variational Bayesian approach
are presented in Appendix A and the derivation of the cost
function can be found in Appendix B.

IV. A VARIABLE GROUPING ALGORITHM FOR IVGA

The number of possible groupings of n variables is called
the nth Bell number Bn. The values of Bn grow with n
faster than exponentially, making an exhaustive search of all
groupings infeasible. For example, B100 ≈ 4.8 · 10115. Hence,

some computationally feasible heuristic — which can naturally
be any standard combinatorial optimization algorithm — for
finding a good grouping has to be deployed.

To further complicate things, the objective function for
the combinatorial optimization, the sum of marginal log-
likelihoods of the component models, can only be evaluated
approximately and there is another intertwined algorithm to
optimize these.

In this section, we describe an adaptive heuristic grouping
algorithm which is currently used in our IVGA model. The
algorithm tries to simultaneously determine the best grouping
for the variables and compute the models for the groups. After
that, we also present three special techniques which are used
to speed up the computation.

A. The Algorithm

The goal of the algorithm is to find such a variable grouping
and such models for the groups that the total cost over all the
models is minimized. Both of these tasks are carried out at
the same time, which may seem somewhat confusing at the
first glance.

The algorithm has an initialization phase and a main loop
during which five different operations are consecutively ap-
plied to the current models of the variable groups and/or to
the grouping until the end condition is met. A flow-chart
illustration of the algorithm is shown in Fig. 5 and the phases
of the algorithm are explained in more detail below.
Initialization. Each variable is assigned into a group of its

own and an initial model for each group is computed.
Main loop. The following five operations are consecutively

used to alter the current grouping and to improve the
models of the groups. Each operation of the algorithm is
assigned a probability which is adaptively tuned during
the main loop: If an operation is efficient in minimizing
the total cost of the model, its probability is increased
and vice versa.
Model recomputation. The purpose of this operation is

twofold: (1) It tries to find an appropriate complexity
for the model for a group of variables—which is
the number of mixture components in the mixture
model; (2) It tests different model initializations in
order to avoid local minima of the cost function of
the model. As the operation is performed multiple
times for a group, an appropriate complexity and good
initialization is found for the model of the group.
A mixture model for a group is recomputed so that the
number of mixture components may decrease, remain
the same, or increase. It is slightly more probable that
the number of components grows, that is, a more com-
plex model is computed. Next, the model is initialized.
For a Gaussian mixture model this means randomly
selecting the centroids among the training data, and
rough training of the model for some iterations. If a
model for the group had been computed earlier, the
new model is compared to the old model. Of these, the
model with the smallest cost is selected as the current
model for the group.
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Fig. 5. An illustration of the variable grouping algorithm for IVGA. The solid line describes control flow, the dashed lines denote low-level subroutines
and their calls so that the arrow points to the called routine. The dotted line indicates adaptation of the probabilities of the five operations. Function rand()
produces a random number on the interval [0,1]. Adaptation of the probabilities shown in the left hand side of diagram is described in Sec. IV-B1. The
low-level functions in the right hand side of the diagram are as follows: (1) Initialization and rough training as well as fine tuning and model recomputation
operations all use the the iteration formulae described in Appendix B-C; (2) Estimate for the cost of a move – which is explained in Sec. IV-B3 – uses both
the iteration algorithm (Appendix B-C) and computation of the cost (Appendix B-A); (3) the model cost of a previously computed model can be retrieved
from a data structure which is kept in main memory during the IVGA run. If a previously computed model needs to be reconstructed (see Sec. IV-B2), it is
carried out by retrieving the model parameters from the data structure and using the iteration formulae of Appendix B-C.

Model fine-tuning. When a good model for a group of
variables has been found, it is sensible to fine-tune it
further so that its cost approaches a local minimum of
the cost function. During training, the model cost is
never increased due to characteristics of the training
algorithm.
However, tuning a model of a group takes many
iterations of the learning algorithm and it is not sensible
to do that for all the models that are used.

Moving a variable. This operation improves an existing
grouping so that a single variable is moved from its
original group to a more appropriate group. First, one
variable is randomly selected among all the variables
of all groups. The variable is removed from its original
group and moving it to every other group (also to
a group of its own) is tried. For each new group
candidate, the cost of the model is roughly estimated.
If the move reduces the total cost compared to the
original one, the variable is moved to a group which

yields the highest decrease in the total cost.
Merge. The goal of the merge operation is to com-

bine two groups in which the variables are mutually
dependent. In the operation, two groups are selected
randomly among the current groups. A model for the
variables of their union is computed. If the cost of the
model of the joint group is smaller than the sum of
the costs of the two original groups, the two groups
are merged. Otherwise, the two original groups are
retained.

Split. The split operation breaks down one or two exist-
ing groups. The group(s) are chosen so that two vari-
ables are randomly selected among all the variables.
The group(s) corresponding to the variables are then
taken for the operation. Hence, the probability of a
group to be selected is proportional to the size of the
group. As a result, more likely heterogeneous large
groups are chosen more frequently than smaller ones.
The operation recursively calls the algorithm for the
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union of the selected groups. If the total cost of the
resulting models is less than the sum of the costs of
the original group(s), the original group(s) are replaced
by the new grouping. Otherwise, the original group(s)
are retained.

End condition. Iteration is stopped if the decrease of the total
cost is very small in several successive iterations.

B. Speedup Techniques Used in Computation of the Models

Computation of an IVGA model for a large set of variables
requires computation of a huge number of models (say, thou-
sands), because in order to determine the cost of an arbitrary
variable group, a unique model for it needs to be computed (or,
at least, an approximation of the cost of the model). Therefore,
fast and efficient computation of the models is crucial. We
use the following three special techniques to speed up the
computation of the models. Note that the effectiveness of the
speedups depends on the problem at hand. For each technique,
also this aspect has briefly been commented below.

1) Adaptive Tuning of Operation Probabilities: During the
main loop of the algorithm described above, five operations are
used to improve the grouping and the models. Each operation
has a probability which dictates how often the corresponding
operation is performed (see Fig. 5). As the grouping algorithm
is run for many iterations, the probabilities are slowly adapted
instead of keeping them fixed because

• it is difficult to determine probabilities which are appro-
priate for an arbitrary data set; and

• during a run of the algorithm, the efficiency of different
operations varies—for example, the split operation is
seldom beneficial in the beginning of the iteration (when
the groups are small), but it becomes more useful when
the sizes of the groups tend to grow.

The adaptation is carried out by measuring the efficiency (in
terms of reduction of the total cost of all the models) of each
operation. The probabilities of the operations are gradually
adapted so that the probability of an operation is proportional
to the efficiency of the operation. The adaptation is based on
low-pass filtered efficiency, which is defined by

efficiency = −∆C
∆t

, (8)

where ∆C is the change in the total cost and ∆t is the amount
of CPU time used for the operation.

Based on multiple tests (not shown here) using various
data sets, it has turned out that adaptation of the operation
probabilities instead of keeping them fixed significantly often
speeds up the convergence of the algorithm into a final
grouping. However, there is a risk of emphasizing exploitation
of the current grouping by fine tuning the mixture models at
the expense of ignoring exploration of new groupings and this
may lead to suboptimal results.

2) “Compression” of the Models: Once a model for a
certain variable group is computed, it is sensible to store it,
because a previously computed good model for the group may
be needed later.

Computation of many models—for example, a mixture
model—is stochastic, because often a model is initialized

randomly and trained for a number of iterations. However,
computation of such a model is actually deterministic provided
that the state of the (deterministic) pseudorandom number
generator just before initialization is known. Thus, in order to
reconstruct a model after it has been computed once, we need
to store (i) the random seed, (ii) the number of iterations that
were used to train the model, and (iii) the model structure.
Additionally, it is also sensible to store (iv) the cost of the
model. So, a mixture model can be compressed into two
floating point numbers (the random seed and the cost of the
model) and two integers (the number of training iterations and
the number of mixture components).

Note that this model compression principle is completely
general: it can be applied in any algorithm in which compres-
sion of multiple models is required.

Compression of models is clearly a trade-off between mem-
ory usage and computation time. The technique enables learn-
ing in large data sets with reasonable memory requirements,
and it can be easily ignored if memory consumption is not an
issue.

3) Fast Estimation of Model Costs When Moving a Vari-
able: When the move of a variable from one group to
all the other groups is attempted, computationally expensive
evaluation of the costs of multiple models is required. We use
a specialized speedup technique for fast approximation of the
costs of the groups: Before moving a variable to another group
for real, a quick pessimistic estimate of the total cost change
caused by the move is calculated, and only those new models
that look appealing are tested further.

A quick estimate for the change of cost when a variable is
moved from one group to another is computed as follows. The
posterior probabilities of the mixture components are fixed and
only the parameters of the components related to the moved
variable are changed. The total cost of these two groups is
then calculated for comparison with their previous cost. The
approximation can be justified by the fact that if a variable is
highly dependent on the variables in a group, then the same
mixture model should fit it as well.

Fast estimation of variable moves is algorithmically the
most controversial speedup, because the steps in the combina-
torial optimization are selected based on incomplete informa-
tion. To study the effects of the speedup, a set of experiments
was performed using different sized subsets of a data set
of features extracted from a large collection of images. The
results of selected runs using methods with and without the
speedup are illustrated in Fig. 6. The results of these and other
runs show that both methods are equally likely to yield good
results, but the fast estimates significantly speed up learning
for large problems. However, for small problems, it may in
some cases even be better not to use the fast estimates.

V. APPLICATIONS, EXPERIMENTS

The problems in which IVGA can be found to be useful
can be divided into the following categories. First, IVGA
can be used for confirmatory purposes in order to verify
human intuition of an existing grouping of variables. The first
synthetic problem presented in Sec. V-A can be seen as an
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Fig. 6. Convergence of the IVGA model with and without fast cost estimation
heuristic for a data set with 60 variables (left) and 120 variables (right).
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Fig. 7. Comparison of different two-dimensional subspaces of the data. Due
to the dependencies between the variables shown in the two leftmost figures
it is useful to model those variables together. In contrast, in the rightmost
figure no such dependency is observed and therefore no benefit is obtained
from modeling the variables together.

example of this type. Second, IVGA can be used to explore
observed data, that is, to make hypotheses or learn the structure
of the data. The discovered structure can then be used to divide
a complex modeling problem into a set of simpler ones as
illustrated in Sec. V-B. Third, we can use IVGA to reveal
the variables that are dependent with the class variable in a
classification problem. In other words, we can use IVGA also
for variable selection in supervised learning problems. This is
illustrated in Sec. V-C.

A. Toy Example

In order to illustrate the IVGA algorithm using a simple and
easily understandable example, a data set consisting of one
thousand points in a four-dimensional space was synthesized.
The dimensions of the data are called “education”, “income”,
“height”, and “weight”. All the variables are real-valued and
the units are arbitrary. The data was generated from a distri-
bution in which both education and income are statistically
independent of height and weight.

Fig. 7 shows plots of education versus income, height vs.
weight, and for comparison a plot of education vs. height.
One may observe that in the subspaces of the first two plots
of Fig. 7 the data points lie in few, more concentrated clusters
and thus can generally be described (modeled) with a lower
cost in comparison to the third plot. As expected, when the
data was modeled, the resulting grouping was

{{education, income}, {height, weight}} .

Tab. I compares the costs of some possible groupings. It also
shows the corresponding estimates of the mutual information
of Eq. (7) together with the true mutual information of the
generative model, both evaluated in nats. While the numerical

estimates are not especially accurate, the ordering is mostly
correct and the ratios of the values are mostly very close to
the true ratios.

Grouping Total Cost Parameters MI Estimate True MI
{e,i,h,w} 12233.4 288 0.15 0.00
{e,i}{h,w} 12081.0 80 0.00 0.00
{e}{i}{h}{w} 12736.7 24 0.66 0.86
{e,h}{i}{w} 12739.9 24 0.66 0.86
{e,i}{h}{w} 12523.9 40 0.44 0.55
{e}{i}{h,w} 12304.0 56 0.22 0.31

TABLE I
A COMPARISON OF THE TOTAL COSTS OF SOME VARIABLE GROUPINGS OF

THE SYNTHETIC DATA. THE VARIABLES EDUCATION, INCOME, HEIGHT,
AND WEIGHT ARE DENOTED HERE BY THEIR INITIAL LETTERS. ALSO THE

NUMBER OF PARAMETERS OF THE LEARNED OPTIMAL GAUSSIAN
MIXTURE COMPONENT DISTRIBUTIONS ARE SHOWN. THE TWO LAST

COLUMNS INDICATE THE VALUE OF THE ESTIMATED AND TRUE MUTUAL
INFORMATION (MI), RESPECTIVELY. THE TOTAL COSTS ARE FOR

MIXTURE MODELS OPTIMIZED CAREFULLY USING OUR IVGA
ALGORITHM. THE MODEL SEARCH OF OUR IVGA ALGORITHM WAS ABLE

TO DISCOVER THE BEST GROUPING, THAT IS, THE ONE WITH THE
SMALLEST COST.

B. Printed Circuit Board Assembly

In the second experiment, we constructed predictive models
to aid user input of component data of a printed circuit board
assembly robot. When a robot is used in the assembly of a
new product which contains components that have not been
previously used, the data of the new components need to be
manually determined and added to the existing component
database of the robot by a human operator. The component
data can be seen as a matrix. Each row of the matrix contains
attribute values of one component and the columns of the
matrix depict component attributes, which are not mutually
independent. Building an input support system by modeling of
the dependencies of the existing data using association rules
has been considered in [25]. A major problem of the approach
is that extraction of the rules is computationally heavy and
memory consumption of the predictive model which contains
the rules (in our case, a trie) is very high.

We divided the component data of an operational assembly
robot (5 016 components, 22 nominal attributes) into a training
set (80 % of the whole data) and a testing set (the rest 20 %).
The IVGA algorithm was run 200 times for the training set.
In the first 100 runs (avg. cost 113 003), all the attributes were
always assigned into one group. During the last 100 runs (avg.
cost 113 138) we disabled the adaptation of the probabilities
(see Sec. IV-A) to see if this would have an effect on the
resulting groupings. In these runs, we obtained 75 groupings
with 1 group and 25 groupings with 2–4 groups. Because we
were looking for a good grouping with more than one group,
we chose a grouping with 2 groups (7 and 15 attributes). The
cost of this grouping was 112 387 which was not the best
among all the results over 200 runs (111 791), but not very far
from it.

Next, the dependencies of (1) the whole data and (2)
the 2 variable groups were modeled using association rules.
The large sets required for computation of the rules were
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computed using a freely available software implementation1

of the Eclat algorithm [26]. Computation of the rules requires
two parameters: minimum support (“generality” of the large
sets that the rules are based on) and minimum confidence
(“accuracy” of the rules). The minimum support dictates the
number of large sets, which is in our case equal to the size of
the model. For the whole data set, the minimum support was
5 %, which was the smallest computationally feasible value
in terms of memory consumption. For the models of the two
groups it was set to 0.1 %, which was the smallest possible
value so that the combined size of the two models did not
exceed the size of the model for the whole data. The minimum
confidence was set to 90 %, which is a typical value for the
parameter in many applications.

The rules were used for one-step prediction of the attribute
values of the testing data. The data consisted of values selected
and verified by human operators, but it is possible that these
are not the only valid values. Nevertheless, predictions were
ruled incorrect if they differed from these values. Computation
times, memory consumption, and prediction accuracy for the
whole data and the grouped data are shown in Tab. II.
Grouping of the data both accelerated computation of the
rules and improved the prediction accuracy. Also note that
the combined size of the models of the two groups is only
about 1/4 of the corresponding model for the whole data.

Whole Grouped
data data

Computation time (s) 48 9.1
Size of trie (nodes) 9 863 698 2 707 168
Correct predictions (%) 57.5 63.8
Incorrect predictions (%) 3.7 2.9
Missing predictions (%) 38.8 33.3

TABLE II
SUMMARY OF THE RESULTS OF THE COMPONENT DATA EXPERIMENT. ALL

THE QUANTITIES OF THE GROUPED DATA ARE SUMS OVER THE TWO
GROUPS. ALSO NOTE THAT IN THIS PARTICULAR APPLICATION THE SIZE

OF TRIE IS EQUAL TO THE NUMBER OF ASSOCIATION RULES.

The potential benefits of IVGA in an application of this type
are as follows. (1) It is possible to compute rules which yield
better prediction results, because the rules are based on small
amounts of data, i.e, it is possible to use smaller minimum
support for the grouped data. (2) Discretization of continu-
ous variables—which is often a problem in applications of
association rules—is automatically carried out by the mixture
model. (3) Computation of the association rules may even be
completely ignored by using the mixture models of the groups
as a basis for the predictions. Of these, (1) was demonstrated
in the experiment whereas (2) and (3) remain a topic for future
research.

C. Feature Selection for Supervised Learning: Ionosphere
Data

In this experiment, we investigated whether the variable
grouping ability of IVGA could be used for feature selection in
classification. An obvious way to apply IVGA in this manner

1See http://www.adrem.ua.ac.be/∼goethals/software/index.html

is to find out which variables are grouped in the same group
together with the class variable and to use only these in the
actual classifier.

In the experiment, we used the Ionosphere data set [27]
which contains 351 instances of radar measurements consist-
ing of 34 attributes and a binary class variable. One attribute
was constant in the data, so it did not have any effect on the
classification result and was removed from the data.

In all tests, we used k-nearest neighbor (k-NN) classifier
(see for example [28]). Unless stated otherwise, one k-NN
run was always carried out in the following manner. The data
set was randomly divided into three nonoverlapping parts:
a training set with 250 samples, a validation set with 50
samples, and a test set with 51 samples. The training data
was normalized to zero mean and unit variance and the same
normalization was applied to the validation and test sets. The
validation set was always used to select the optimal value for
k. The feature vectors of the test set were classified by using
the samples of the training set and the number of correct
classifications was counted and stored. This procedure was
repeated 100 times.

We tried four different approaches to feature selection: no
selection at all, IVGA, Mann-Whitney (M-W) test (which is
equivalent to Wilcoxon rank sum test) [29], and sequential
floating forward selection (SFFS) method [30]. IVGA and M-
W test are so-called filtering selection methods, since they
both are a kind of preprocessing step before – and totally
independent of – the classifier whereas SFFS was used as a so-
called wrapper method which used the classifier itself for the
selection of the features. For more information on the filtering
and wrapper approaches, see for example [12]. Use of the
three selection methods is described in detail below; note that
of these, we used IVGA and M-W test in an identical way
after ranking of the variables using the methods.

a) IVGA: For each partition of data to training, vali-
dation, and test sets, we repeated the following: (1) We ran
the IVGA algorithm 100 times for the training data set; (2)
The variables were ranked in descending order so that the
variables which were most frequently in the same group with
the class variable became first; (3) We used d = 1, . . . , 33
first variables of the ranked variables. The optimal number of
variables and the optimal value for k were selected jointly
using the validation data set and the classification error was
computed using the test set.

b) M-W test: The M-W test is a statistical test which can
be used to accept or reject the hypothesis that the medians
of two samples are equal. For each partition of the data to
training, validation, and test sets, we repeated the following:
(1) We compared the distributions of the two classes for each
variable in the test set and obtained the corresponding p-value
for the variable; (2) The variables were sorted in ascending
order according to the p-values; (3) We determined the optimal
set of variables, the optimal value for k as well as the test error
in a way that was identical to variable selection using IVGA.

c) SFFS: SFFS is principally a different approach from
the two previous ones, because it requires a multivariate
criterion for assessing the performance of a feature set; we
measured the accuracy using a k-NN classifier. For each
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partition of the data set to training, validation, and test sets,
the algorithm was run in the following way: (1) The training
data was given to the SFFS algorithm. Because SFFS used
the k-NN classifier, it always internally divided the 250
training vectors to a training data set of 170 samples and two
validation data sets of 40 samples each. At each step of the
SFFS algorithm, this division was performed 10 times, the
first validation set was used to optimize k, and the second
validation set for evaluation of the classification error. (2)
Using the variables determined by the SFFS algorithm, the
optimal value for k was determined using the validation set
of 50 samples and the classification error was computed using
the test set.

The results of our experiments are shown in Tab. III. Note
that the test was run 100 times so that on each run randomly
selected training, validation, and data sets were used in order
to benchmark the feature selection methods. Therefore, it is
not possible to indicate the variables selected by the methods,
because the set of variables varied between different runs.

The performance of the three feature selection methods
were quite similar using the k-NN classifier. Of these, IVGA
was somewhat more accurate than M-W and SFFS – which
both gave weaker results than using no variable selection
at all! In addition, we also tried both linear and nonlinear
SVMs2. Without feature selection and selection using M-
W, the classification accuracy of the linear SVM was better
than k-NN. The nonlinear SVMs could clearly improve the
results except for the case when no feature selection was used.
The best result (90.4 %) of the whole test was obtained by
using nonlinear SVM with features selected using SFFS. In

Selection Avg. no. of Avg. k-NN Linear Nonlinear
method variables time (s) (%) SVM (%) SVM (%)
None 33 0.1 86.3 87.1 65.4
IVGA 5.7 906.4 87.1 81.0 87.0
M-W 5.5 1.9 85.4 86.4 87.6
SFFS 6.8 2568.2 85.4 84.6 90.4

TABLE III
COMPARISON OF THE FEATURE SELECTION METHODS: CLASSIFICATION
ACCURACIES (IN PERCENT) USING k-NN AND SVM CLASSIFIERS. FOR
EACH METHOD, ALSO THE AVERAGE NUMBER OF SELECTED VARIABLES

IN ONE SELECTION ROUND AND THE CORRESPONDING AVERAGE
COMPUTATION TIME (IN CPU SECONDS) IS REPORTED. NOTE THAT IN
ORDER TO GUARANTEE A FAIR COMPARISON BETWEEN THE SVM AND

THE k-NN CLASSIFIERS IN THE CASE WHERE SFFS WAS USED FOR
VARIABLE SELECTION, THE SFFS SHOULD HAVE BEEN RUN USING SVM

FOR THE FEATURE SELECTION. HOWEVER, SUCH A TEST WAS NOT
CARRIED OUT, BECAUSE IT WOULD HAVE BEEN COMPUTATIONALLY VERY
DEMANDING AND, MORE IMPORTANTLY, OUR PRIMARY GOAL WAS NOT TO

COMPARE DIFFERENT CLASSIFIERS BUT FEATURE SELECTION METHODS.

IVGA, the class variable was handled simply as a part of the
data, whose joint distribution was modeled using IVGA in an
unsupervised manner. Based on this, it seems that IVGA is
indeed able to reveal useful dependencies and structure in the
data. On the other hand, the feature selection using IVGA is in
a sense in harmony with the k-NN classifier, because mixture
models used by IVGA are mostly local models of data, and

2We used a freely available software package [31] with default settings;
see also http://svmlight.joachims.org/. The package was used
in a similar manner in [32] for training of SVMs.

also k-NN is totally dependent on local characteristics of the
data.

In [32], dimension reduction by random projection and
principal component analysis were extensively tested by using
different classifiers using the ionosphere data set. However, in
that study a separate validation set for determination of the best
k or the number of features d was not used. Instead, they used
a training set with 300 samples and a testing set of 51 samples
so that the samples of the test set were always classified using
the samples of the training set. The classification error was
computed using values k = 1 and k = 5 and the results
were averaged over 100 runs for each k. We also carried
out an additional test in an identical manner using IVGA by
running IVGA on the training set to obtain a ranking of the
features and classifying the test set using the two values of k
and different values of d. The results of that experiment are
shown in Tab. IV, where the classification accuracies using
PCA and RP are adopted from [32]. Using IVGA, a slightly
better classification accuracy was obtained – which may be
due to the fact that in our experiment the class information
was utilized whereas in [32] it was not.

No. of PCA PCA RP RP IVGA IVGA
features d k = 1 k = 5 k = 1 k = 5 k = 1 k = 5

5 87.6 88.7 85.9 84.5 89.4 88.8
10 88.5 86.5 86.4 83.7 89.4 88.1
15 88.7 84.5 86.5 83.9 89.1 86.4
20 88.4 84.2 86.7 83.8 88.7 85.8
25 87.9 84.3 87.1 83.3 87.2 85.1
30 87.2 84.2 86.4 84.1 86.1 84.6

34 (all) 86.6 84.7

TABLE IV
COMPARISON OF THE ACCURACY OF THE k-NN CLASSIFIER USING

VALUES k = 1 AND k = 5 WHEN DIFFERENT NUMBER d OF FEATURES ARE
USED. THE FEATURES ARE COMPUTED EITHER USING PRINCIPAL

COMPONENT ANALYSIS (PCA), RANDOM PROJECTION (RP), OR IVGA.
THE ACCURACIES OF PCA AND RP ARE ADOPTED FROM [32]; THE

RESULTS OF IVGA ARE COMPUTED USING AN IDENTICAL PROCEDURE
THAT WAS USED TO PRODUCE THEM.

VI. DISCUSSION

Many real-world problems and data sets can be divided
into smaller relatively independent subproblems or subsets.
Automatic discovery of such divisions can significantly help
in applying different machine learning techniques to the data
by reducing computational and memory requirements of pro-
cessing. Modeling using IVGA calls for finding the divisions
by partitioning the observed variables into separate groups so
that the mutual dependencies between variables within a group
are strong whereas mutual dependencies between variables in
different groups are weaker.

In this paper, IVGA has been used to find a single grouping
of the variables of the given data set to supposedly independent
groups. In many cases, there may still exist interesting weak
residual dependencies between the different variable groups.
One avenue for future research is to extend the grouping model
into a hierarchical IVGA that is able to model the residual
dependencies between the groups of variables as in modular
mixture models [8].
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Biclustering – clustering of both variables and samples –
is very popular technique for solving certain problems in
bioinformatics. In such applications it could be useful to ease
the strict grouping of the variables using IVGA. This could
be accomplished by allowing different partitions in different
parts of the data set using, for instance, a mixture-of-IVGAs
type of model.

From the perspective of considering IVGA as a general
concept it might be useful to implement models of different
type including also linear models. This would allow mod-
eling of each variable group with the best model type for
that particular subproblem, and depending on the types of
dependencies within the problem. Such extensions naturally
require the derivation of a cost function for each additional
model family, but there are simple tools for automating this
process [33], [34].

The stochastic nature of the grouping algorithm makes
its computational complexity difficult to analyze. Empirically
the time required for convergence to a neighborhood of a
locally optimal grouping seems to have a roughly quadratic
dependence on both the number of variables and the number
of data samples. The latter characteristics is due to the fact
that in practise the data does not exactly follow the mixture
model and thus multiple mixture components are used when
there are many samples. Convergence to the exact local
optimum typically takes significantly longer, but it is usually
not necessary as even nearly optimal results are often good
enough in practice.

Although the presented IVGA model appears quite simple,
several computational speedup techniques are needed for it to
work efficiently enough. Some of these may be of interest by
themselves, irrespective of the context of this work. In par-
ticular worth mentioning are the adaptive tuning of operation
probabilities in the grouping algorithm (Sec. IV-B1) as well
as the model compression principle (Sec. IV-B2).

By providing the source code of the method for public use
we invite others both to use IVGA and to contribute to ex-
tending it. A MATLAB package of our IVGA implementation
is available at http://www.cis.hut.fi/projects/ivga/.3

VII. CONCLUSION

In this paper, we have presented independent variable group
analysis (IVGA), which is a method for modeling data through
mutually independent groups of variables. The approach has
been shown to be useful in real-world problems: It decreases
computational burden of other machine learning methods and
also increases their accuracy by letting them concentrate on
the essential dependencies of the data. The general nature of
IVGA allows many potential practical applications. It can be
viewed as a tool for compact modeling of data, an algorithm
for clustering variables, or as a means for feature selection.

APPENDIX A
SPECIFICATION OF THE MIXTURE MODEL

A mixture model for the random variable x(t) can be written
with the help of an auxiliary variable c(t) denoting the index

3Also the MATLAB scripts for the synthetic data and the ionosphere data
experiments can be found in the same location.

of the active mixture component as illustrated in the right part
of Fig. 4 (in Sec. III-C). In our IVGA model, the mixture
model for the variable groups is chosen to be as simple as
possible for computational reasons. This is done by restricting
the components p(x(t)|θi,H) of the mixture to be such that
different variables are assumed independent. This yields

p(x(t)|H) =
∑

i

p(x(t)|θi,H)p(c(t) = i)

=
∑

i

p(c(t) = i)
∏
j

p(xj(t)|θi,j ,H),
(9)

where θi,j are the parameters of the ith mixture component
for the jth variable. Dependencies between the variables
are modeled only through the mixture. The variable c has
a multinomial distribution with parameters πc that have a
Dirichlet prior with parameters uc:

p(c(t)|πc,H) = Multinom(c(t); πc) (10)
p(πc|uc,H) = Dirichlet(πc; uc). (11)

The use of a mixture model allows for both categorical
and continuous variables. For continuous variables the mixture
is a heteroscedastic Gaussian mixture, that is, all mixture
components have their own precisions. Thus

p(xj(t)|θi,j ,H) = N(xj(t); µi,j , ρi,j), (12)

where µi,j is the mean and ρi,j is the precision of the
Gaussian. The parameters µi,j and ρi,j have hierarchical priors

p(µi,j |µµj , ρµj ,H) = N(µi,j ; µµj , ρµj ) (13)
p(ρi,j |αρj , βρj ,H) = Gamma(ρi,j ; αρj , βρj ). (14)

For categorical variables, the mixture is a simple mixture
of multinomial distributions so that

p(xj(t)|θi,j ,H) = Multinom(xj(t); πi,j). (15)

The probabilities πi,j have a Dirichlet prior

p(πi,j |uj ,H) = Dirichlet(πi,j ; uj). (16)

Combining these yields the joint probability of all parame-
ters (here c = [c(1), . . . , c(T )]T ):

p(D, c,πc,π,µ,ρ) =∏
t

[
p(c(t)|πc)

]
p(πc|uc)

∏
i

[ ∏
j:xj categorical

[
p(πi,j |uj)

]
∏

j:xj continuous

[
p(µi,j |µµj

, ρµj
)p(ρi,j |αρj

, βρj
)
]]

∏
t

[ ∏
j:xj categorical

p(xj(t)|c(t),π·,j)

∏
j:xj continuous

p(xj(t)|c(t), µ·,j , ρ·,j)

]
. (17)

All the component distributions of this expression have been
introduced above in Eqs. (12)-(16).
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The corresponding variational approximation is

q(c,πc,π,µ,ρ) = q(c)q(πc)q(π)q(µ)q(ρ) =∏
t

[
q(c(t)|w(t))

]
q(πc|ûc)

∏
i

[ ∏
j:xj categorical

[
q(πi,j |ûi,j)

]
∏

j:xj continuous

[
q(µi,j |µ̂µi,j

, ρ̂µi,j
)q(ρi,j |α̂ρi,j

, β̂ρi,j
)
]]

, (18)

where the newly introduced parameters are the variational
parameters of the factors

q(c(t)) = Multinom(c(t); w(t)) (19)
q(πc) = Dirichlet(πc; ûc) (20)

q(πi,j) = Dirichlet(πi,j ; ûi,j) (21)
q(µi,j) = N(µi,j ; µ̂µi,j

, ρ̂µi,j
) (22)

q(ρi,j) = Gamma(ρi,j ; α̂ρi,j
, β̂ρi,j

). (23)

Because of the conjugacy of the model, these are optimal
forms for the components of the approximation, given the
factorization. Specification of the approximation allows the
evaluation of the cost of Eq. (6) and the derivation of update
rules for the parameters as shown below in Appendix B. The
hyperparameters µµj

, ρµj
, αρj

, βρj
are updated using type II

maximum likelihood estimation. The parameters of the fixed
Dirichlet priors are set to values corresponding to the Jeffreys
prior.

APPENDIX B
DERIVATION OF THE COST FUNCTION AND THE UPDATE

RULES

The cost function of Eq. (6) can be expressed, using 〈·〉 to
denote expectation over q, as〈

log
q(θ)

p(D,θ|H)

〉
=
〈
log q(θ)− log p(θ)

〉
−
〈
log p(D|θ)

〉
(24)

Now, being expected logarithms of products of probability
distributions over the factorial posterior approximation q, the
terms easily split further. The terms of the cost function are
presented as the costs of the different parameters and the
likelihood term. Some of the notation used in the formulae
is introduced in Tab. V.

Symbol Explanation
C Number of mixture components
T Number of data points
Dcont Number of continuous dimensions
Sj The number of categories in nominal dimension j
Ik(x) An indicator for x being of category k
Γ The gamma function (not the distribution pdf)
Ψ The digamma function, that is Ψ(x) = d

dx
ln(Γ(x))

wi(t) The multinomial probability/weight of the ith mixture
component in the w(t) of data point t

TABLE V
NOTATION

A. Terms of the Cost Function

〈
log q(c|w)− log p(c|πc)

〉
=

T∑
t=1

C∑
i=1

wi(t)
[
log wi(t)− [Ψ(ûci)−Ψ(

C∑
i′=1

ûci′ )]
]

(25)

〈
log q(πc|ûc)− log p(πc|uc)

〉
=

C∑
i=1

[
(ûci
− uci

)[Ψ(ûci
)−Ψ(

C∑
i′=1

ûci′ )]

− log Γ(ûci
) + log Γ(uci

)
]

+ log Γ(
C∑

i′=1

ûci′ )− log Γ(
C∑

i′=1

uci′ ) (26)

〈
log q(π|û)− log p(π|u)

〉
=∑

j:xj categorical

[
C∑

i=1

Sj∑
k=1

[
(ûi,j,k − uj,k)

[Ψ(ûi,j,k)−Ψ(
Sj∑

k′=1

ûi,j,k′)]
]

+
C∑

i=1

[
log Γ

( Sj∑
k′=1

ûi,j,k′
)
−

Sj∑
k=1

log Γ
(
ûi,j,k

)]
+ C

[
− log Γ(

Sj∑
k′=1

uj,k′) +
Sj∑

k=1

log Γ(uj,k)
]]

(27)

〈
log q(µ|µ̂µ, ρ̂µ)− log p(µ|µµ,ρµ)

〉
=

− CDcont

2

+
∑

j:xj continuous

C∑
i=1

[
log

ρ̂µi,j

2ρµj

+
ρµj

2
[
ρ̂−1

µi,j
+(µ̂µi,j

−µµj
)2
]]
(28)

〈
log q(ρ|α̂ρ, β̂ρ)− log p(ρ|αρ,βρ)

〉
=∑

j:xj continuous

C∑
i=1

[
log Γ(αρj

)− log Γ(α̂ρi,j
) + α̂ρi,j

log β̂ρi,j

− αρj log βρj + (α̂ρi,j − αρj )
(
Ψ(α̂ρi,j )− log β̂ρi,j

)
+

α̂ρi,j

β̂ρi,j

(βρj
− β̂ρi,j

)
]

(29)
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〈
− log p(D|c,πc,π,µ,ρ)

〉
=

T log(2π)Dcont

2

+
T∑

t=1

C∑
i=1

{
wi(t)

[
−

∑
j:xj categorical

[
Ψ(ûi,j,xj(t))

−Ψ(
Sj∑

k′=1

ûi,j,k′)
]

+
1
2

∑
j:xj continuous

[ α̂ρi,j

β̂ρi,j

(
ρ̂−1

µi,j
+ (xj(t)− µ̂µi,j

)2
)

−
(
Ψ(α̂ρi,j

)− log β̂ρi,j

)]]}
(30)

B. On the Iteration Formulae and Initialization

The iteration formulae for one full iteration of mix-
ture model adaptation consist of simple coordinate-wise
re-estimations of the parameters. This is like variational
expectation-maximization (EM) iteration. The update rules of
the hyperparameters µµj

, ρµj
, αρj

and βρj
are based on

type II maximum likelihood estimation, that is, maximizing
p(D|H, µµj , ρµj , αρj , βρj ).

Before the iteration the mixture components are initialized
using the dataset and a pseudorandom seed number that is used
to make the initialization stochastic but reproducible using the
same random seed. The mixture components are initialized as
equiprobable.

C. The Iteration Formulae

One full iteration cycle:
1) Update w

w∗
i (t)← exp

(
Ψ(ûci

)

+
∑

j:xj categorical

[
Ψ(ûi,j,xj(t))−Ψ(

Sj∑
k′=1

ûi,j,k′)
]

− 1
2

∑
j:xj continuous

[ α̂ρi,j

β̂ρi,j

(
ρ̂−1

µi,j

+ (xj(t)− µ̂µi,j
)2
)

−
(
Ψ(α̂ρi,j

)− log β̂ρi,j

)])

wi(t)←
w∗

i (t)∑C
i′=1 w∗

i′(t)
(31)

2) Update ûc

ûci ← uci +
T∑

t=1

wi(t) (32)

3) Update categorical dimensions of the mixture compo-
nents

ûi,j,k ← uj,k +
T∑

t=1

wi(t)Ik(xj(t)), (33)

where Ik(xj(t)) = 1 if xj(t) = k and zero otherwise.
4) Update continuous dimensions of the mixture compo-

nents

µ̂µi,j
←

ρµj µµj +
α̂ρi,j

β̂ρi,j

∑T
t=1 wi(t)xj(t)

ρµj
+

α̂ρi,j

β̂ρi,j

∑T
t=1 wi(t)

(34)

ρ̂µi,j ← ρµj +
α̂ρi,j

β̂ρi,j

T∑
t=1

wi(t) (35)

α̂ρi,j
← αρj

+
1
2

T∑
t=1

wi(t) (36)

β̂ρi,j
← βρj

+
1
2

T∑
t=1

wi(t)
[
ρ̂−1

µi,j
+ (µ̂µi,j

− xj(t))2
]

(37)

5) Update the hyperparameters

µµj
← 1

C

C∑
i=1

µ̂µi,j
(38)

ρµj
←C

[
C∑

i=1

(
ρ̂−1

µi,j
+ (µ̂µi,j

− µµj
)2
)]−1

(39)

αρj
←αρj

+
1
2
(
Ψ(αρj )− log(αρj )

)−1

+
1
2

(
1
C

C∑
i=1

(
log(β̂ρi,j )−Ψ(α̂ρi,j )

)

− log

 C∑C
i=1

α̂ρi,j

β̂ρi,j

)−1

(40)

βρj ←αρj

C∑C
i=1

α̂ρi,j

β̂ρi,j

(41)

The derivation of the fixed point update for the Gamma
hyperparameters is presented in detail in [35].
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