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Abstract— Linear factor models with nonnegativity constraints
have received a great deal of interest in a number of prob-
lem domains. In existing approaches, positivity has often been
associated with sparsity. In this paper we argue that sparsity
of the factors is not always a desirable option, but certainly a
technical limitation of the currently existing solutions. We then
reformulate the problem in order to relax the sparsity constraint
while retaining positivity. A variational inference procedure is
derived and this is contrasted to existing related approaches.
Both i.i.d. and first-order AR variants of the proposed model
are provided and these are experimentally demonstrated in a
real-world astrophysical application.

I. INTRODUCTION

Factor analysis is a widespread statistical technique, which
seeks to relate multivariate observations to typically smaller di-
mensional vectors of unobserved variables. These unobserved
(latent) variables, termed as factors, are hoped to explain the
systematic structure inherent in the data. In standard factor
analysis [1], the factors may contain both positive and negative
elements. However, in many applications negative values are
difficult to interpret. Hence, nonnegativity often is a desirable
constraint, that has received considerable interest in recent
years.

Positive matrix factorisation [2], nonnegative matrix factori-
sation [3] and nonnegative independent component analysis [4]
are methods that perform a factorisation into positively con-
strained components. These methods are relatively fast and
stable under reasonably mild assumptions, however, they lack
a clear probabilistic generative semantics. Bayesian formula-
tions of similar ideas have also been studied [5], [6], [7] in
order to enable a series of advantages such as a principled
model comparison and inference from previously unseen ob-
servations. In these works, positivity of the factors is achieved
by formulating a prior that has zero probability mass on the
negative axis, such as the exponential, the rectified Gaussian,
or mixtures of these. The rectified Gaussian distribution is
particularly convenient, as it is conjugate to the Gaussian
likelihood and hence it yields a rectified Gaussian posterior
distribution.

Unfortunately, all these existing solutions have a serious
technical limitation: they hard-wire the assumption that the
latent factors are sparse. This is because the likelihood for the
location parameter of the latent prior is very awkward and
makes it technically impossible to handle a hierarchical prior

over it [5]. However, while in some applications both sparsity
and positivity are desirable, in others sparsity is inappropriate.

In this paper we provide a different formulation of the
positivity constraint in linear factor analysis, which gets round
of the mentioned problems. This is achieved by employing a
rectification nonlinearity as part of the model. An ordinary
Gaussian prior is then employed for the argument of the
rectification function, which can further have hierarchical
priors for both its location and scale parameter. In this setup,
the posterior is no longer of any convenient form, consequently
the inference procedure is not as simple as with conjugate
priors. However, we show that the free-form variational ap-
proximation for the factors is still tractable.

The remainder of the paper is organised as follows: Section
II reviews existing solutions to the problem of Bayesian
positively constrained factor analysis. Section III presents the
proposed formulation and provides the associated inference
procedure. Section IV demonstrates a real-world application
of the proposed method to astrophysical data analysis. Finally
we conclude and discuss further directions.

II. POSITIVELY CONSTRAINED GENERATIVE FACTOR

ANALYSIS

Consider a set of N observed variables, each measured
across T different instances. We denote by xt ∈ R

N the t-th
instance. The N×T matrix formed by these vectors is referred
to as X and single elements of this matrix will be denoted
by xnt. Similar notational convention will also apply to other
variables.

As in linear factor analysis, the modelling hypothesis made
is that the N observations can be explained as a superposition
of K < N underlying latent components st ∈ R

K (factors or
hidden causes) through a linear mapping A ∈ R

N×K

xt = Ast + nt . (1)

The noise term nt is assumed to be zero-mean i.i.d. Gaussian,
to account for the notion that all dependencies that exist in xt

should be explained by the underlying hidden components.

A. Imposing Positivity as a Distributional Assumption

A straightforward approach to constraining the factors to be
nonnegative is to formulate a nonnegatively supported prior
distribution. In doing so, the computationally most convenient



alternative is to employ a rectified Gaussian distribution as
considered by several authors [5], [6], [7]. It is defined as

NR(sk|s̄k, s̃k) =
2

erfc(s̄k/
√

2s̃k)
u(sk)N (sk|s̄k, s̃k),

where u(·) is the standard step function. It is easy to see
that the rectified Gaussian prior is conjugate to a Gaussian
likelihood and the posterior can be computed in exactly same
manner as with an ordinary Gaussian distribution.

However, as also noted in these works, the computations
with the rectified Gaussian prior are only possible if the
location parameter s̄k is fixed to zero, effectively making the
erfc term vanish. In all other cases, computations needed to
solve the variational problem are intractable.

Consequently, due to the use of a zero-location rectified
Gaussian prior on the latent variable, sparse positive factors are
induced. While this may be desirable in some applications, it is
clearly inappropriate in others as will be shown in Section IV.

B. Imposing Positivity Through a Rectification Nonlinearity

Let us make the following substitution in (1),

st := f(rt) , (2)

where f : R
K → R

K is the component-wise rectification func-
tion such that fk(rt) = max(rkt, 0). This guarantees that the
factors skt are positive, no matter what the distribution of rkt

is. We employ a Gaussian prior: rkt ∼ N (mrk, exp(−vrk)).
This rectification nonlinearity has previously been used

within nonlinear belief networks in [8]. A variational solution
is developed in the mentioned work by employing a fixed
form Gaussian approximation to the true posterior. By doing
so, the cost function can be written analytically [8]. However,
the stable points cannot be analytically solved, but require
numerical optimisation. Note that finding the global optimum
is not trivial due to the existence of multiple stable points.
These issues will be illustrated in the next section, where we
develop a free-form variational posterior approximation for
positively constrained factor analysis.

III. VARIATIONAL BAYESIAN RECTIFIED FACTOR

ANALYSIS

In this section we propose a linear factor model that
satisfies the positivity constraint by employing the rectifica-
tion nonlinearity. We refer to this model as Rectified Factor
Analysis (RFA).

Once the substitution (2) has been made in (1), a Gaussian
prior is then employed over r. The resulting model is still
linear w.r.t. st, it satisfies the required positivity constraint
due to f(·) and also offers flexibility regarding the location
of the probability mass in the latent space. The model can be
summarised by the following set of equations:

xt ∼ N (Af(rt), diag(exp(−vx)))

rkt ∼ N (mrk, exp(−vrk))

ank ∼ N (0, 1) .

To obtain a truly nonnegative model, the weights of the linear
mapping need to be constrained to be positive too. This can be
achieved by putting a rectified Gaussian prior on them. Vague
hierarchical priors are formulated for the rest of the variables.

To make the notation concise, we will refer to the latent
variables by θ and to the data by X. Handling the posterior
distribution p(θ|X) is intractable and hence we resort to a
variational scheme [9], [10], [11], where an approximative
distribution q(θ) is fitted to the true posterior. This is done
by constructing a lower bound of the log evidence, based on
Jensen’s inequality:

log p(X) = log

∫

p(X, θ) dθ

≥ 〈log p(X, θ)〉q(θ) − 〈log q(θ)〉q(θ) , (3)

where 〈.〉q denotes expectation w.r.t. q.
The variational approach to be tractable, the distribution q

needs to have suitably factorial form. Here a fully-factorial
posterior [12], [10], [11], [13], [14], [6] will be employed.

The model estimation algorithm consists of iteratively up-
dating each variable’s posterior approximation in turn, while
keeping all other posterior approximations fixed. It can be
shown that due to the fully-factorial posterior approximation,
all updates are local, i.e. requiring posterior statistics of the so
called Markov blanket only. That is, for updating any of the
variable nodes, the posterior statistics of its children, parents
and co-parents are needed only. This has been exploited in
the Bayes Blocks framework [13], [15], [16] which is also
used in this work. The scaling of the resulting variational
Bayesian algorithm is thus multi-linear in N , T and K, giving
the theoretical computational complexity of O(NTK) per
iteration.

A. Free-form Posterior Approximation

The fixed form approximation employed in [8] essentially
fixes q(rkt) to a Gaussian. In this subsection we show that
although the free-form approximation of the posterior has a
non-standard form, it can be handled analytically, it is more
accurate compared to the fixed form approximation and it is
also computationally more convenient.

The relevant term of the cost function when updating any
given factor rkt is

〈

log
q(rkt)

N (a|f(rkt), b)N (rkt|c, d)

〉

, (4)

where a, b, c and d are constants w.r.t. q(rkt) and can be
computed from the Markov blanket of rkt. Because of the
rectification f , the likelihood part in the denominator of (4) is
no longer Gaussian, and hence no easy conjugate update rule
for q(rkt) exists.

Before proceeding to derive the update rule for q(rkt),
it is worth noticing that once this is completed, the same
methodology will apply if a first order AR prior

rt ∼ N (Brt−1, diag[exp(−vr)])



is considered. Indeed, since the likelihood term at index t + 1
can be combined with the prior at index t − 1 (due to the
Gaussianity of the prior on rt), an expression that has exactly
the same form as (4) is obtained.

We now proceed to deriving the required inference proce-
dure for our model. Tractability of the variational posterior
means that analytical expressions can be derived for the
following: (i) the cost function:1

C = Cq + Cp = 〈log q(r)〉 − 〈log p(r|mr , vr)〉 ,

(ii) the posterior mean 〈r〉 and the variance Var{r} and
(iii) the mean 〈f(r)〉 and the variance Var{f(r)}. Here and
throughout, 〈·〉 denote expectations over q(r).

1) The Form of the Posterior: From (4), an invocation of
Gibbs’ inequality immediately gives us the free form solution:

q(r) =
1

Z
N (a|f(r), b)N (r|c, d) , (5)

where Z is the scaling constant, that will be computed shortly.
After some manipulations, (5) can be written as

q(r) = qp(r) + qn(r) =
wp

Z
N (r|mp, vp) u(r)

+
wn

Z
N (r|mn, vn) u(−r),

where

wp = N (a|c, b + d) , wn = N (a|0, b) ,

vp =
(

b−1 + d−1
)

−1
, mp = vp (a/b + c/d) ,

vn = d and mn = c .

Thus, it turns out that the free form posterior approximation
is a mixture of two rectified Gaussians. One of these has all
its probability mass on the positive real axis whereas the other
on the negative axis. The normalisation constant Z of the
posterior is then the following:

Z =

∫

N (a|f(r), b)N (r|c, d) dr

=
wn

2
erfc[mn/

√
2vn] +

wp

2
erfc[−mp/

√

2vp].

2) Relating the Free-Form Approximation to the Fixed-
Form Gaussian Approximation: Now, consider fitting the
fixed form Gaussian posterior to the true one, e.g. when the
quantities in (4) are a = 1.1, b = 0.17, c = −1.5 and d = 1.2.
The free-form posterior is shown in Figure 1. Looking at its
form it should not be surprising that the cost function (which
essentially measures the misfit between the approximate and
the true posterior) has two stable points. These are shown in
Figure 1 in dashed and dot-dashed lines. The dot-dashed line
represents the global minimum whereas the dashed line is just
a local minimum. The cost function is shown in Figure 2,
where the crosses mark the stable points. It is thus clear, that
an inference procedure that is able to handle the free-form
posterior is preferable to an inference based on the fixed-form
Gaussian approximation.

1The sub-indexes of r are dropped at this point for convenience.
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Fig. 2. The cost as a function of the mean m and the log-variance log v of
the Gaussian approximation.

3) Posterior Statistics: Before proceeding to derive the
required variational posterior statistics and the cost function, a
set of moments are computed. Using these, the expectations as
well as the Cq term of the cost function can be easily expressed.

We define the positive and negative ith order moments as

M i
p =

∫

ri qp(r) dr and M i
n =

∫

ri qn(r) dr . (6)

It turns out, that we can express the required expectations
and the cost function using the moments of order 0, 1, and 2.
The evaluation of these can be cast back to evaluation of the
equivalent moments of the rectified Gaussian distribution. The
derivations are lengthy and are omitted.

The required posterior statistics are now easily obtained



using these moments

〈r〉 =

∫

r q(r) dr =

∫

r qp(r) dr +

∫

r qn(r) dr

= M1
p + M1

n

〈

r2
〉

=

∫

r2 q(r) dr =

∫

r2 qp(r) dr +

∫

r2 qn(r) dr

= M2
p + M2

n

〈f(r)〉 =

∫

f(r)q(r) dr =

∫

r qp(r) dr = M1
p

〈

f2(r)
〉

=

∫

f2(r)q(r) dr =

∫

r2 qp(r) dr = M2
p .

The variances are computed using the familiar formula
Var{x} =

〈

x2
〉

− 〈x〉2.
4) Cost Function: The cost function, which is the negative

of the log evidence bound (3), can be used both for monitoring
the convergence of the algorithm and more importantly, for
comparing different solutions and models.

The term Cp of the cost function is computed as in the case
of ordinary Gaussian variable, see [16] for details. The Cq term
in turn is completely different due to the complex form of the
posterior:

Cq = 〈log q(r)〉q(r) =

∫

q(r) log q(r) dr

=

∫

qp(r) log q(r) dr +

∫

qn(r) log q(r) dr

=

∫

qp(r) log qp(r) dr +

∫

qn(r) log qn(r) dr . (7)

The two terms in (7) can be expressed using the moments
derived above. The first term yields
∫

qp(r) log qp(r) dr

=

∫

qp(r) log

{

wp

Z

1
√

2πvp

exp

[

− 1

2vp

(r − mp)
2

]

}

dr

=

∫

qp(r)

{

log
wp

Z
√

2πvp

− m2
p

2vp

+
mp

vp

r − 1

2vp

r2

}

dr

=

(

log
wp

Z
√

2πvp

− m2
p

2vp

)

M0
p +

mp

vp

M1
p − 1

2vp

M2
p .

Similarly
∫

qn(r) log qn(r) dr

=

(

log
wn

Z
√

2πvn

− m2
n

2vn

)

M0
n +

mn

vn

M1
n − 1

2vn

M2
n.

IV. EXPERIMENTS

In this section we present an application of the proposed
model to astrophysical data analysis. Experiments have been
conducted on both real and synthetic stellar population spec-
tra of elliptical galaxies, addressing both the physical inter-
pretability of the representations created and the predictive

capabilities of the models. Ellipticals are the oldest galactic
systems in the local Universe and are relatively well un-
derstood in physics. The hypothesis that some of these old
galactic systems may actually contain young components is
relatively new [17]. It is therefore interesting to investigate
whether a set of stellar population spectra can be decomposed
and explained in terms of a small set of unobserved spectral
prototypes in a data driven manner. The positivity constraint
is important here, as negative values of flux would not be
physically interpretable. The mixing proportions also need to
be positive, hence standard rectified Gaussians are employed
for the weights s.t. ank ∼ NR(ank|0, 1).

A. Missing Values and Measurements Errors

Classical non-probabilistic approaches do not offer the
flexibility for taking known measurement errors into account.
It is an important practical advantage of the probabilistic
framework adopted, that it allows us to handle them in a
principled manner. This is achieved simply by making the
’clean’ vectors xt become hidden variables of the additional
error model below

ynt = xnt + ent .

Here ent is a zero-mean Gaussian noise term with variance
vynt fixed to values that are known from the properties of
the physical instrument, for each individual measurement n =
1 : N, t = 1 : T . Missing values can also be handled in this
framework by setting vynt to a very large value.

B. Results on Real Data

A number of N = 21 real stellar population spectra will
be analysed in this subsection. The data [18] was collected
from real elliptical galaxies, along with known measurement
uncertainties, given as individual standard deviations on each
spectrum & wavelength pair. The data also contains missing
entries.

Each of these 21 spectra is characterised by flux values
(measured in arbitrary units [18]) given at a number of T =
339 different wavelength bins, ranging between 2005-8000
Angstroms. A part of this data set is shown in Figure 3.

In this section we demonstrate three models in terms of the
interpretability of their factor representation created. Positive
Factor Analysis (PFA) will refer to the method reviewed in
Section II-A. Rectified Factor Analysis (RFA) and Dynamic
Rectified Factor Analysis (DRFA) refer to the model proposed
in this paper and its AR variant respectively. We have fixed the
number of factors to two, as inferring subsequent components
turns out to have no physical interpretation. We repeated
each run ten times with random initialisations drawn from
NR(0, 1). The model with smallest cost function value was
then selected. The two components2 for each of the models
are shown in Figure 4. The shape of the first component is
very similar for all three methods considered. This component
can visually be recognised to correspond to an old and high

2The order of the components is of course arbitrary, we have manually
grouped them for the ease of visual inspection.
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Fig. 3. A sample from the real data of spectral measurements. The dashed
lines show the standard deviations of the errors in the data. The blank entries
denote missing values.

metallicity stellar population. This kind of component in
elliptical stellar populations has been known to physicists for
a long time. In turn, the existence of a second component is
a relatively recent finding in astrophysics [18].

Interestingly, the second component inferred from the data
differs more across the models considered. However, the RFA
second component turned out to be physically interpretable,
as it exhibits many of the characteristic features of a young
and low metallicity stellar population spectrum. The second
component from DRFA is similar in its main shape, providing
an indication for the age of this stellar population component,
however it lacks some of the wiggles that encode metallicity
characteristics of the stellar population.

From astrophysical point of view, the second component
of PFA has no clear physical interpretation, as its distribution
is biased toward zero. This is most likely due the fact that
the location parameter for the rectified Gaussian distribution
is required to be zero and hence small values are favoured.
This results in a poor match with any known physical model.
The sparsity constraint of PFA is clearly inappropriate in this
application.

The values of the cost function at K = 2 are detailed in
Figure 5. The contributions of the various individual terms of
the overall cost associated to these methods are also shown in
this figure. DRFA provides the lowest overall cost, since it is
able to code the factors most compactly [19]. However, as we
can also read from the figure, the error term corresponding to
the data reconstruction accuracy is a little larger (compared to
the other two methods considered here). RFA has the smallest
cost for the data reconstruction term as well, implying an
accurate reconstruction of the data details.

C. Prediction Results on Synthetic Data

Here we employ synthetic spectra in order to assess the
predictive performance of the proposed methods in an ob-
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Fig. 4. The first (above) and second (below) components for the different
models.

jective and controlled manner. A random selection of 100
synthetic composite spectra produced from the stellar popula-
tion evolutionary synthesis model of Jimenez [18] is utilised.
Each of the these may contain the superposition of two stellar
population spectra with varying parameters (age, metallicity
and proportion). The wavelength coverage as well as the
binning of these spectra is identical to those described for
the real data. The mixing proportions depend on the masses
of the component stellar populations in a physically realistic
manner. There are no missing entries or measurement errors in
this data set, making it suitable for an controlled assessment.

We consider an inference task where half of the flux values
at a random selection of wavelength bins are held out as a
test set and used for evaluation purpose only. Missing values
are artificially created at random in the test set. The RFA and
DRFA models are trained on the same training set and asked to
predict the artificially created missing entries in the previously
unseen test set. The prediction can be obtained simply from
the posterior mean of q(xnt). The number of factors has been
K = 3, determined from the evidence bound, for both models
in this experiment. The SNR between the predictions and the
true values, when varying the percentage of missing values
in the test set, are shown in Figure 6. Clearly, as expected,
DRFA outperforms RFA in this prediction task, especially
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when the amount of missing values gets large. The reason for
this is that DRFA includes the modelling of the correlations
between fluxes at neighbouring wavelength bins. Evidently
this information turns out to be useful in the prediction task
considered.

V. DISCUSSION

We presented a method for nonnegative factor analysis,
based on variational Bayesian learning. The proposed solution
gets round of the shortcomings of approaches that impose
a positively supported prior directly on the latent space. We
derived analytical expressions for performing inference in this
model, using a factorial free-form approximation for the fac-
tors. We demonstrated the proposed model in an astrophysical
data analysis application, where approaches that induce sparse
representations are inappropriate. The presented approach is
applicable in any situation where flexible latent densities over
the positive domain are required.

We note that the methodology developed and employed
here can straightforwardly be extended e.g. to include multiple

rectification. Also, Gaussian mixture priors for the argument of
this function could be employed in place of the single Gaussian
utilised here, in order to further enhance flexibility.
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