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Notation
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N (s | m, v) Gaussian distribution of s with mean m and variance v
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NR (s | m, v) Rectified Gaussian distribution of s with parameters m and

v
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Chapter 1

Introduction

Image sequences are very interesting data to be considered from the unsuper-
vised learning perspective. From the practical point of view the learning of
a compact representation of an image sequence can be useful for the purpose
of data compression or extraction of features. The features that can be con-
sidered to be of interest in the context of image sequences are for example
description of movement, presence of a certain kind of object etc.

One characteristic of image sequences is that the relations between consecutive
frames are important. Usually the redundancy in two adjacent frames is great,
at least on a higher level of abstraction. However, elements such as noise
and small camera movements can make the pixel level correlations negligible.
Hence, a hierarchical model, where the level of abstraction increases upwards
in the hierarchy, could have potential to capture more relevant things from
image sequences.

In modelling images and image sequences there are several different possibilities
when it comes to choosing the actual data that is fed to the learning algorithm.
For some methods the raw pixel data is of too high dimensionality to be used
directly. Instead some fixed feature extraction procedure that reduces the
dimensionality has to be applied beforehand. In this work, the data is taken
to be the raw pixel representation of the image sequence.

1.1 Aim of the thesis

Variance is a concept in statistics. It describes the deviation of a probability
distribution from its mean value. It is known, that several phenomena in
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natural signals can be explained by a Gaussian process whose scale, i.e. the
variance, is varied [45].

The aim of this thesis is to study the modelling of variances in image se-
quences. The basic question is whether variance modelling has some benefits
over conventional modelling of means.

Modelling of variances, without any reference to image sequences, is an inter-
esting topic in its own right. Ordinary estimation methods, based on maxi-
mizing the likelihood function or posterior density function, can have serious
difficulties with models that have free variance parameters, resulting in over-
learning or even severe numerical problems. The learning approach taken in
this thesis is the variational Bayes, which has proven to be a very robust
method for learning many kinds of difficult models including nonlinear factor
analysis and nonlinear state-space models.

1.2 Contributions

The work is mainly based on the framework considered in papers of Valpola et
al. [55, 47] where a variational Bayesian learning approach based on combining
simple blocks have been introduced and applied to some complex problems.
The block library has been extended by the author with derivations and im-
plementations of some new blocks. The new blocks are rectified Gaussian
variable, mixture of Gaussians variable, discrete variable with Dirichlet and
Markov priors, and Dirichlet variable. The learning algorithms, initialization
schemes and such and the actual work of constructing the models and doing
the simulations were also done by the author.

1.3 Structure

The structure of this thesis is the following.

In Chapter 2, the background of Bayesian inference is covered. The fundamen-
tal theory of probabilities and its justification are reviewed and some practical
points of constructing probabilistic models are considered. Before introduc-
ing the variational Bayesian learning, a brief overview of standard estimation
methods is given.

The central part of the thesis is Chapter 3 where both variance modelling and
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image sequence models are considered first separately and then in conjunction.
Some of the earlier work on both subjects is reviewed and then some general
motivation of the methods and models of this thesis are given.

Bayes Blocks, the theoretical framework and the software library used in this
thesis, is the subject of Chapter 4. There the key principles and practical
issued are discussed.

The concrete model serving as an example of modelling variances in image
sequences is constructed step by step in Chapter 5. The experimental results
guide the development which ends in a rather complex model. The learning
algorithms, which have proven to be essential and continue do so, are also
considered.

There are two appendices. The first, Appendix A, contains a summary of
the probability distributions needed in this thesis. The derivations of the cost
functions and update rules for the new blocks are given in Appendix B.



Chapter 2

Bayesian Inference

Bayesian inference is a methodology based on Bayesian probability theory.
Although Bayes’ rule, the most essential part of Bayesian inference, has been
known for several centuries, the firm theoretical ground was developed only
in the 1940s. Practical usage of Bayesian methods has gained more popular-
ity recently due to better computational resources and development of better
approximating methods making Bayesian inference tractable even in very com-
plex problems.

2.1 Bayesian probability theory

The entire Bayesian probability theory can be derived from a set of simple
intuitive axioms concerning rational and consistent reasoning. These axioms
were introduced by Cox [9, 10].

One characteristic of Bayesian probability theory is that all probabilities are
conditional or subjective. Hence the probability of a proposition A, p(A),
without reference to any context, is not meaningful. Only with a given prior
information I, is the probability p(A | I) reasonable.

The fundamental rules of probability theory derivable from Cox’s axioms are
the product rule and the sum rule. Given three propositions A,B, I the prod-
uct rule states that

p(AB | I) = p(A | BI)p(B | I)

where AB means the logical and of propositions A and B. The sum rule says

8



2.2. Constructing probabilistic models 9

that
p(A | I) + p(¬A | I) = 1

where ¬A is the logical negation of proposition A. These rules extend straight-
forwardly to continuous variables. From the product rule one can derive the
most import tool of Bayesian inference, the Bayes’ rule:

p(A | BI) =
p(B | AI)p(A | I)

p(B | I)
(2.1)

If we have n propositions, A1, A2, . . . , An, which are exclusive and exhaustive
meaning that p(AiAj | I) = 0, ∀i 6= j and

∑n
i=1 p(Ai | I) = 1, we can apply

another important tool, the marginalization principle:

p(B | I) =
n

∑

i=1

p(B | Ai I)p(Ai | I) (2.2)

Now, considering the proposition B as the data that we observe, and the
probabilities p(B | Ai, I) as the model for the data, we can immediately see
the significance of (2.1) and (2.2). Using them, we can turn our prior beliefs,
p(Ai | I), to posterior probabilities p(Ai | B, I) where the information that we
got from the data B has been included.

Apart from Cox’s book [10], a good account on fundamental issues of Bayesian
inference can be found in [31]. More practically oriented approach on applying
Bayesian theory can be found in [14, 6].

2.2 Constructing probabilistic models

To make inferences in the Bayesian framework about some parameters θ based
on observations X, we need a model for the data, p(X | θ, I), and a prior for
the parameters, p(θ | I). Then we can obtain the posterior distribution of the
parameters by an application of Bayes’ theorem. In the following subsections
the construction of models and choosing of priors are considered.

2.2.1 Hierarchical models

Complex models are usually constructed hierarchically specifying the model as
a product of many simpler models. Consider a model where the data depends
only on a subset of variables θ, say θ1, and these variables in turn depend on
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another subset of variables, say θ2. We can continue this construction until
finally the pdf of variables θn depends only on the model I. Then the joint
distribution p(X,θ | I), needed in the computation of the posterior probability
distribution of θ, factors into n + 1 terms. Denoting θ−k = θ \ ⋃k

i=1 θi

p(X,θ | I) = p(X | θ, I)p(θ | I)

= p(X | θ1, I)p(θ1 | θ−1, I)p(θ−1 | I)

= p(X | θ1, I)p(θ1 | θ2, I)p(θ2 | θ−2, I)p(θ−2 | I)

...

= p(X | θ1, I)p(θ1 | θ2, I)p(θ2 | θ3, I) · · · p(θn−1 | θn, I)p(θn | I)

It will be seen in Section 2.4 that this factoring of the joint pdf plays a major
role in connection with variational Bayesian learning.

2.2.2 Conjugate priors

In conjunction with hierarchical models, it is typical to use conjugate priors
[14]. Looking at the Bayes rule,

p(θ | x, I) ∝ p(x | θ, I)p(θ | I) (2.3)

it can be seen that the posterior is essentially the product of the likelihood
function and the prior of θ. When this product, i.e. the posterior of θ, has the
same functional form as the prior, it said that prior is conjugate to the likeli-
hood. For example the likelihood function of the mean parameter of a normal
distribution has the normal distribution as its conjugate prior. Consider the
following example

p(x | θ, I) = N
(

x | θ, σ2
x

)

p(θ | I) = N
(

θ | µθ, σ
2
θ

)

Here the posterior is p(θ | x, I) = N (θ | µ, σ2), with

σ2 =
(

1/σ2
x + 1/σ2

θ

)−1
and µ = σ2

(

x/σ2
x + µθ/σ

2
θ

)

(2.4)

The result is obtained by directly expanding the product in Eq. (2.3) and
combining the quadratic forms inside the exponentials. Conjugate priors play
a major role also in variational learning, see Appendix B for several examples.
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2.3 Standard methods for posterior inference

Computing density values from the unnormalized posterior distribution is easy.
What is difficult, is summarizing the posterior. As an example we can consider
the problem of finding the predictive distribution of a new observation x given
the observed data X. This is done by integrating over the posterior distribution

p(x | X, I) =

∫

p(x,θ | X, I) dθ =

∫

p(x | θ, I)p(θ | X, I) dθ (2.5)

Calculating this integral is intractable in all but the simplest cases. In fact
we don’t usually even have the evidence term p(X | I) which is required for
the evaluation of p(θ | X, I). The thing that we learn from (2.5) is that most
emphasis is put on the values of θ which are in the region of high probability
mass. Hence, if the distribution p(θ | X, I) is approximated in one way or
another, by replacing it with a single point for example, the approximation
must be such, that it concentrates on the areas of high probability mass.

In the following subsections, the standard methods for posterior inference are
reviewed.

2.3.1 Methods based on point estimates

A point estimate is, as the name implies, one point from the posterior dis-
tribution (or from the likelihood) function which should preferably be a good
summary of the whole distribution. The methods belonging to this category
include maximum likelihood, maximum a posterior and Laplace’s method.

ML

The maximum likelihood estimation aims at finding a point θ which maxi-
mizes the likelihood function p(X | θ, I). Instead of maximizing the likelihood
itself, the usual approach is to find the maximum of the logarithmic likelihood
log p(X | θ, I). If the likelihood has a factorial form, as it usually does, taking
the logarithm splits it into a sum of simple terms.

MAP

The maximum a posterior estimation is essentially the same as ML estimation
with the exception that prior pdf, p(θ | I), is now also included. If we have only
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very vague prior information about θ, meaning that the prior pdf is essentially
a constant in the region of interest, the MAP and ML yield the same results.

Laplace

Laplace’s method is based on the idea of fitting a simple distribution to the
mode of the posterior pdf. If we perform a second order Taylor series expansion
of the log posterior at the mode, it turns out that the optimal approximat-
ing distribution is a Gaussian, with the mode as its mean and the variance
computed from the second derivative of the posterior.1 The variance can then
be interpreted as the inaccuracy of the point estimate. Also the normalizing
constant of the true posterior can be approximated by using the normalizing
constant of the Gaussian approximation [40].

Remarks about point estimation

Although successful in many simple models, point estimates can be trouble-
some in more complex models. This is due to the fact that high probabil-
ity density doesn’t necessarily imply high probability mass. The distribution
p(x, y | I) in Figure 2.1 serves as a schematic illustration. There there are two
spikes, a narrow and a wide one. The narrow one is somewhat higher than
the wide one and hence point estimation method would yield an estimate from
that spike. However, the wider spike (or more appropriately bump) contains
approximately ten times more probability mass than the narrow one. Hence, if
we were to draw samples from that distribution only one tenth of them would
be from the narrow one, although our point estimation method prefers it.

This problem is considered in Section 3.1.1 in a concrete situation where it
arises when one is trying to jointly model both means and variances.

2.3.2 Sampling methods

A way to approximate an integral of the form

〈f(θ)〉 =

∫

f(θ)p(θ | X, I) dθ

1The mode is the MAP-solution.
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Figure 2.1: The probability distribution p(x, y | I) containing two peaks.

is to generate independent samples, θ1,θ2, . . . ,θN , from the distribution p(θ |
X, I) and to compute the average

〈f(θ)〉 ≈ 1

N

N
∑

i=1

f(θi)

We would often like to compute these kinds of integrals to summarize our
posterior distribution. Hence, the problem of generating independent samples
from a complex distribution is a very relevant problem to estimation.

For the actual generation of the samples, there exists numerous ways. Ele-
mentary distributions such as uniform and Gaussian are easily sampled but
arbitrary distributions require special means. Most popular approaches are
the Markov chain Monte Carlo (MCMC) methods, originally due to Metropo-
lis [41] and Hastings [16]. Using these methods one generates a chain of samples
starting from some random point. The next sample candidate is chosen ac-
cording to a jumping distribution. The candidate is selected or rejected based
on the true (unnormalized) posterior in a way that favors samples from the
area of high probability density. It can be shown, that with rather general
assumptions, the distribution of the samples will eventually converge to the
true posterior.
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One of the problems with MCMC methods is that there is no fool proof way to
know whether the sequence has converged or not. It may require a vast amount
of samples before it happens. Hence MCMC methods and sampling methods
in general are not suitable for very large models containing even millions of
parameters to be estimated.

Another problem of sampling is related to symmetries in models. Considering
the ICA model [26], x = As, we see that by changing the signs of A and s
we should have an equally good solution. Now, if our sampling method has
worked and produced samples from both of these solutions the mean is zero
for both A and s.

2.4 Variational learning

The key idea in variational Bayesian learning is to approximate the true pos-
terior, p(θ | X, I), with another distribution, q(θ), having simpler functional
form. One of the variants of variational learning, ensemble learning, was in-
troduced in [18]. It can be seen as a special case of variational free energy
minimization of Feynman and Bogoliubov [12]. In ensemble learning, the mis-
fit between the approximating pdf and the true posterior pdf is measured using
Kullback-Leibler divergence

CKL = D (q(θ) ‖p(θ | X, I)) =

〈

log
q(θ)

p(θ | X, I)

〉

q(θ)

(2.6)

By defining the actual cost function to be used in the learning as

C = CKL − log p(X | I) =

〈

log
q(θ)

p(θ,X | I)

〉

q(θ)

(2.7)

we get rid of the intractable evidence term p(X | I), which is a constant w.r.t
q(θ) anyway. The KL divergence is always non-negative, which enables us to
compute a lower bound for the evidence term based on cost function:

C = CKL − log p(X | I) ≥ − log p(X | I) =⇒ p(X | I) ≥ exp(−C)

Hence, by minimizing the cost function, we maximize a lower bound for the
evidence.

Looking at the definition of the cost function, one might wonder how tractable
it is after all. The tractability comes from the form of the approximating
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distribution q(θ) which is usually assumed to be a product of the form

q(θ) =
N
∏

i=1

q(θi) (2.8)

In other words, we are assuming that the subsets of variables {θi}N
i=1 are

posteriorly independent. The most extreme case of this, is the assumption
that all the variables are posteriorly independent of each other. In conjunction
with a suitably factorial model p(θ,X | I), the cost function splits to a set
of separate terms which can be optimized one at a time using a cyclic update
scheme. The straightforward approach is to just update each variable in its
turn. But it is possible to greatly accelerate the learning by observing the
individual updates and doing line search in that direction in the parameter
space [20, 23].

We can further narrow the set of admissible approximating distributions by
constraining the form of the factors q(θi) to be for example Gaussians. When a
restriction like this is applied, we are searching a fixed form solution. Without
any restriction for the form of the factors the solution is said to be free form.
These two different alternatives are considered in the following two subsections.
For accounts on ensemble learning in general, see e.g. [38, 36].

The variational learning has several good aspects. Firstly, it is sensitive to
probability mass instead of probability density. Therefore most problems that
arise when using point estimation are avoided in the variational framework.
Secondly, the method is not considerably computationally more demanding
than point estimation and it is certainly much more efficient than sampling and
hence applicable to problems of rather large cardinality. Accordingly ensem-
ble learning has been successfully applied to large variety of different models,
including linear ICA models [1, 34, 2, 42, 46], nonlinear ICA [35], nonlinear
dynamic state-space models [53], switching state-space models [15] and multi-
layer networks [3] among others.

Variational learning has also some drawbacks. As any complex learning method,
it is susceptible to local minima. The update is usually done for the distribu-
tions of a small subset of variables at time keeping the distributions of the other
variables fixed. Hence it is guaranteed that the cost function decreases at every
step, and if the cost function for the given model and data is bounded below
(it doesn’t unfortunately have to be), the learning converges at some stable
point. In complex models it is almost certain that it is a non-global minimum
— whether it is a good or a bad one, is mostly up to the learning algorithm.
In addition to local minima, sometimes even the global optimum represents
a solution that is not appropriate. For example Ilin and Valpola [30] showed
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that when a fully factorial approximating distribution is used in learning an
ICA model, the cost function favors PCA type solutions.

2.4.1 Fixed form solutions

Although usually the free form solution is easy to derive, the form of it might
not be desirable. One example of this is the posterior of a variance parameter
of a Gaussian variable. Parameterizing the variance on the log scale means
that likelihood function of the variance is of the form

exp
{

1
2
v − C exp(v)

}

where C is a positive constant. Combining this with a Gaussian prior for v
yields a posterior which is not of any convenient form. It can still be rather well
approximated with a Gaussian so we restrict the form of the approximation
q(v) to be Gaussian.

2.4.2 Free form solutions

As opposed to fixed form solutions, now the posterior factors, q(θi), in (2.8),
are not assumed to have any fixed form such as Gaussian. Instead they are
optimized to fit the real posterior using variational methods, whence the name
variational Bayesian learning.

Calculus of variations

The optimization problems to be solved in the variational framework are of
the form:











minimize C(q) =

∫

f(q(θ),θ)dθ

subject to

∫

q(θ)dθ = 1 and q(θ) ≥ 0∀θ

Taking the equality constraint,
∫

q(θ)dθ = 1, into account leads to the follow-
ing Lagrangian

L(q, λ) =

∫

[f(q(θ),θ) + λq(θ)]dθ − λ

We can neglect the inequality constraint and find the optimum in the larger
set. If the optimum of the larger set falls to the admissible set, it is of course
the optimum of the admissible set too.
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The stable points and concurrently the solution to the problem can be found
by setting the Fréchet differential [37], δL(q, λ; h), to zero ∀h.2

For L the Fréchet differential is

δL(q, λ; h) =

{

d

dα
L(q + αh, λ)

}

α=0

=

{

d

dα

[∫

[f(q(θ) + αh(θ),θ) + λ(q(θ) + αh(θ))]dθ − λ

]}

α=0

=

∫ {

d

dα
[f(q(θ) + αh(θ),θ) + λ(q(θ) + αh(θ)]

}

α=0

dθ

=

∫

{

[fq(q(θ) + αh(θ),θ)h(θ) + λh(θ)]
}

α=0
dθ

=

∫

[fq(q(θ),θ)h(θ) + λh(θ)]dθ

=

∫

[fq(q(θ),θ) + λ]h(θ)dθ

where fq denotes the derivative w.r.t. the first variable of f i.e. fq = D1f .
From the requirement that δL(q, λ; h) should be zero for all h it follows that

fq(q(θ),θ) + λ ≡ 0 (2.9)

Gibbs inequality

Gibbs inequality is an assertion about Kullback-Leibler divergence. It states
that for any distributions p and q the KL-divergence D (p ‖q ) ≥ 0 and the
equality is obtained if and only if p = q. This provides a powerful way for
deriving update rules.

Application

As a demonstration we solve a problem using both the solution derived using
variational arguments (Eq. 2.9) and the Gibbs inequality. The solutions are
the same, of course.

The model to be considered is shown graphically in Figure 2.2. The exact
model equations do not matter at this point. When concerned about updating

2Here h is a function belonging to the same vector space as the function q.
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θ

θp

θs

θc

Figure 2.2: The example model.
We are considering the updating of
the variable θ which is conditioned
on θp. The variable θc is condi-
tioned on the variables θs and θ.

the variable θ in the model, the relevant part of the cost function (2.7) is

Cθ =

〈

log
q(θ)

p(θc | θ, θs)p(θ | θp)

〉

q(θ,θc,θs,θp)

(2.10)

Let us assume a factorial posterior approximation such that

q(θ, θc, θs, θp) = q(θ)q(θc, θs, θp)

While we are updating q(θ), the distribution over other variables, in this case
q(θc, θs, θp), is kept fixed. We can manipulate (2.10)

Cθ =
〈

log q(θ) − 〈log[p(θc | θ, θs)p(θ | θp)]〉q(θc,θs,θp)

〉

q(θ)

=

〈

log
q(θ)

exp
〈

log[p(θc | θ, θs)p(θ | θp)]
〉

q(θc,θs,θp)

〉

q(θ)

= D (q ‖h)

where it is denoted

h(θ) = exp
〈

log[p(θc | θ, θs)p(θ | θp)]
〉

q(θc,θs,θp)

Now, proceeding with the variational approach we see that

D (q ‖h) =

∫

q(θ) log
q(θ)

h(θ)
dθ

where f(q(θ), θ) of (2.9) can be identified as

f(q(θ), θ) = q(θ) log
q(θ)

h(θ)

Now substituting f to (2.9) we get

log
q(θ)

h(θ)
+ q(θ)

h(θ)

q(θ)

1

h(θ)
+ λ ≡ 0 =⇒ log

q(θ)

h(θ)
+ 1 + λ ≡ 0

=⇒ log q(θ) ≡ −λ − 1 + log h(θ) =⇒ q(θ) = exp(−λ − 1)h(θ)
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The value of the Lagrange coefficient doesn’t matter, it just scales the distri-
bution properly. Hence, the solution is

q(θ) ∝ h(θ)

On the other hand, we could have directly invoked Gibbs’ inequality for D (q ‖h)
and obtained exactly the same result.



Chapter 3

Variance Modelling in Image
Sequences

3.1 Modelling variances

The modelling of variances can be understood to mean several things. One
common problem is to estimate some single variance parameter which controls
the noise level of the data. The more interesting case, and the one relevant
to this thesis, is when the variance is allowed to vary over the time course.
For example, if we assume a generative model for the observations, there is
usually a time independent parameter that controls the amount of noise. This
assumption of constant noise level might be wrong, however. It might be the
case that there is more noise at certain instances of time than at others. One
very good example, where the variance itself is of interest, is financial data.
The economist even have their own term for the variance, volatility, which in
essence describes how stable the stock price, or another similar quantity, is.

Estimation of variances, when done jointly with estimation of means, can be
difficult. In the next sections, an example problem is considered and it is tried
to be solved using first standard methods and then applying a variational
method which is used later on in this thesis.

3.1.1 The basic problem

The basic problem with standard estimation methods when it comes to vari-
ances, is overlearning. Those methods usually give overconfident results about

20
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noise levels or at worst, fail completely. This problem is demonstrated below.

Let us consider the simple example of estimating a one dimensional simplified
factor analysis model summarized by the following set of equations

p(x | s, v, I) = N (x | s, exp(−v)) (3.1)

p(s | I) = N (s | 0, 1) (3.2)

p(v | I) = N
(

v | 0, σ2
v

)

(3.3)

The two parameters to be estimated here are the signal s and the noise (neg-
ative) log-variance v.

As a first approach let us ignore the priors and just try maximizing the likeli-
hood, p(x | s, v, I). Writing it explicitly out, we get

p(x | s, v, I) =
1

√

2π exp(−v)
exp

{

− 1

2 exp(−v)
(x − s)2

}

∝ exp
{

−1
2
(x − s)2 exp(v) + 1

2
v
}

Now setting s := x this simplifies to exp(1
2
v) which approaches infinity as we

let v → ∞. From these results given by ML estimation we conclude that
the noise variance is zero and the observation is generated by replicating the
source, no matter what the value of the observed variable x is. This is clearly a
really bad case of overlearning given that we had only one observation to make
these conclusions from. Another problem here is that, if we had written a
numerical optimization algorithm for this estimation procedure, it would have
crashed due to the infinite v.

As a second attempt we can include our prior probability distributions to our
estimation. The joint unnormalized posterior of s and v is readily obtained by
an application of Bayes theorem

p(s, v | x, I) ∝ p(x | s, v, I)p(s | I)p(v | I)

= N (x | s, exp(−v))N (s | 0, 1)N
(

v | 0, σ2
v

)

∝ exp
{

−1
2
(x − s)2 exp(v) + 1

2
v − 1

2
s2 − v2/2σ2

v

}

(3.4)

Having observed x = 1 and chosen the variance for the prior of v to be σ2
v = 52,

we can plot the contours of this function as in Figure 3.1. Looking at the figure,
it is clear that the optimum s is very near 1. Substituting s := 1 = x to Eq.
(3.4) we are left with the expression exp{1

2
v−v2/2σ2

v}, which is optimized with
v = σ2

v/2. With σ2
v = 25 it follows that the MAP solution for v is v∗ = 12.5.

This results is certainly better than the one obtained with ML, but it is still
rather overconfident. It is also clear that the point (s∗, v∗) = (1, 121

2
) is not a

very good summary of the whole distribution as there is very little probability
mass in the neighborhood of that point.
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Figure 3.1: The joint posterior probability distribution p(s, v | x, I).

3.1.2 The variational approach

It was demonstrated in the previous section that point estimation does not
give satisfactory results (if any at all) when jointly estimating both means and
variances. The basic problem is that high probability density does not imply
high probability mass. Hence a method that is sensitive to probability mass
could be hoped to produce better results.

Let us still consider the model specified by Equations (3.1), (3.2) and (3.3)
and let us try to estimate the parameters using variational Bayesian learning.
First we have to choose the form of our approximating posterior distribution
q. We can start with a factorial approximation q(s, v) = q(s)q(v) where the
form of the factors is not restricted. The relevant part of the cost function
(2.7) can be written as

∫

q(s, v) log
q(v)

p(x | s, v, I)p(v | I)
ds dv

=

∫

q(v) log
q(v)

p(v | I)

∫

q(s)(− log p(x | s, v, I)) ds dv (3.5)
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The expectation of − log p(x | s, v, I) over q(s) can be evaluated to yield

∫

q(s)(− log p(x | s, v, I)) ds = −
∫

q(s)[1
2
v − 1

2
exp(v)(s − x)2] ds + C

= −1
2
v + exp(v)

∫

q(s)(s − x)2 ds + C

= −1
2
v + exp(v)

[

(〈s〉 − x)2 + Var{s}
]

+ C

Defining
h(v) = exp

{

1
2
v − exp(v)

[

(〈s〉 − x)2 + Var{s}
]}

we see that Eq. (3.5) yields
∫

q(v) log
q(v)

h(v) p(v | I)
dv = D (q(v) ‖h(v) p(v | I))

Now, by Gibbs inequality, the cost function is optimized by setting q(v) ∝
h(v)p(v | I). Unfortunately the optimal free form unnormalized q(v) is of such
an inconvenient form that we cannot compute any expectations over it or even
normalize it for that matter. In this case the only viable solution is to use a
fixed form approximation of some convenient form. Looking at the Figure 3.2,
it can be seen that Gaussian fixed form solution is an acceptable compromise.
The more concentrated the prior for v is, the closer the fixed form solution will
be to the free form one.

By fixing the form q(v) to be Gaussian, q(v) = N (v | v̄, ṽ), the variational
minimization problem of Eq. (3.5) is converted into an optimization problem
of two real variables, the mean v̄ and the variance ṽ of q(v). Although the cost
function can be written in closed form in the terms of v̄ and ṽ, the optimal
values cannot be solved analytically. However a fast algorithm for numerical
optimization, based on Newtons method and fixed point iteration, has been
derived by Valpola [50, 51].

Using this approach we can finally solve the example problem. The optimal
approximating distribution is

q(s, v) = q(s)q(v) = N (s | 0.80, 0.20)N (v | 0.41, 1.90)

In Figure 3.3, this approximating posterior is plotted over the true one.

3.1.3 The variance neuron

It might seem that the example model of the previous sections and the vari-
ational solution to it have very little relevance to real world problems, where
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Figure 3.2: The free form approximating posterior probability distribution and
the corresponding Gaussian fixed form solution.

we would like to have a much more complex model for the variance. Indeed,
if we were to build a different model directly for the variance we would have
to tune our learning algorithm appropriately. However, this can actually be
circumvented by the introduction of so called variance neuron [51]. It is a
time dependent Gaussian variable, u(t), controlling the variance of another
time dependent Gaussian variable ξ(t)

p(ξ(t) | µξ(t), u(t), I) = N
(

ξ(t) | µξ(t), exp
[

−u(t)
])

(3.6)

Now, instead of directly constructing a model for the variance of ξ(t) we can
build the model on top of the variance neuron u(t). This in effect changes the
problem of estimation of variance into estimation of mean. We still need to
estimate u(t) but that problem is exactly the same as the problem of estimating
v in the example model of Section 3.1.1.

3.1.4 Other approaches

Variance modelling has been mostly of interest in the field of financial time
series modelling where the estimation of volatility is an important application.
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Figure 3.3: The true and approximating posterior distribution.

To give a hands-on feeling of volatility, typical financial time series are shown
in Figure 3.4(a). The series are a set of daily stock price values in Helsinki
Stock Exchange during years 2000 and 2001. The Figure 3.4(b) shows the
corresponding log-returns. There the fluctuations of volatility (variance) are
quite clearly visible.

The most widely discussed model is the autoregressive heteroscedasticity (ARCH)
model, introduced in [11] and its extension, the Generalized ARCH (GARCH)
model [7]. One simplified version of these models is the following. Using our
notation, the model equations are

p(x(t) | u(t), I1) = N (x(t) | 0, u(t))

u(t + 1) = αx2(t) + βu(t)

which state that the variance at any given instance of time depends on the
past variances and on the squares of observations. Here the estimation of u(t),
α and β can be done recursively using an equivalent approach as in Kalman
filters. A survey of ARCH models can be found in [8].

Other more recent methods are the stochastic volatility (SV) models. A good
example is the model considered in [33]. In our notation again, the model is
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(a) (b)

Figure 3.4: Daily stock prices of a set of securities (from Helsinki Stock Ex-
change) and the corresponding log-returns.

summarized by the following equations

p(x(t) | β, u(t), I2) = N
(

x(t) | 0, exp
[

u(t)/2
])

p(u(t + 1) | u(t), µ, φ, σ2
u, I2) = N

(

u(t + 1) | µ + φ(u(t) − µ), σ2
u

)

where the observed variable x(t) is the mean corrected return on holding an
asset at time t. The model is learnt using a MCMC method based on Gibbs
sampler.

3.2 Statistical image sequence models

Let us first examine the form of an image sequence dataset. An image sequence
can be expressed as function of three variables f(i, j, t). Here i and j denote
discrete spatial coordinates, i corresponding to the columns from 1 to N and j
to the rows from 1 to M . The time index t is also discrete, running from 1 to
T . As usual, for notational and practical convenience, the individual frames
are arranged into vectors x(t) of size N ×M . The exact arrangement of pixels
in the vector does not make any difference. One possibility is to scan the
pixels of a frame row-wise starting from the upper left corner such that the
correspondence between f and x is xjM+i(t) = f(i, j, t).

The statistical models that have been of most interest have been the linear
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ones. This is due to the fact that their learning is usually relatively easy
and the interpretation of results is straightforward. A linear model for image
sequences can be formulated in several ways. We can either take an approach
where we see the image sequence as an input to a linear system as in

y(t) = Wx(t) (3.7)

Another approach is to see the image sequence as a product of some generative
process. This can be formulated as

x(t) = As(t) (3.8)

These two different approaches are equivalent only when A and W are of full
rank. In that case the one can be derived from the other simply by matrix
inversion, A = W−1.

In both of the above models, the factors s(t) or the outputs y(t) have one
to one correspondence with the data x(t) without any reference to the order
of the frames. This means that we could permute the frames of the image
sequence and still obtain exactly the same results. If the time dependencies
are not taken into account, we will certainly miss something, since there exist
strong correlations between consecutive frames in any natural image sequence.
In (3.7) one can take time dependencies into account by replacing the matrix
W with a three-dimensional tensor that operates on a set of frames at any
given instance of time. This leads to a spatio-temporal model for the outputs
y(t). In (3.8) one possibility is to add dynamics to the sources s(t) by making
the model of s(t) depend on the past values s(t − τ) in some way.

There have been several different criteria for learning such models as the ones in
Equations (3.7) and (3.8). These include independence [4], sparseness [44] and
temporal coherence [25]. The central result of all these methods has been that
the obtained basis is rather sparse and the individual vectors resemble Gabor
filters [13]. For the researchers in the field of computational neuroscience these
have been interesting findings. This is so due to the fact that the simple cells
in the mammal visual cortex have activation patterns also similar to Gabor
filters, as was first shown by Hubel and Wiesel [24] by experiments with cats.

Nonlinear methods for image sequences include methods such as the slow fea-
ture analysis [5, 57]. There the key hypothesis is that the most interesting
features are relatively slowly changing in time. Hence, slowness is used as the
criterion for learning. A bit similar approach to the one taken in this thesis,
has been used by Hyvärinen et al. They have used the correlations of energies
to find independent subspaces of simple cells [27] and to form a topographic or-
dering for the sources [28]. In [29] Hyvärinen et al. combined several different
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criteria of learning. Those were temporal coherence, sparseness and topogra-
phy. They estimated the variances of the simple cells of their generative model
and showed that those have both spatial and temporal structure which can be
seen in the time-location plane as spatio-temporal ’bubbles.’

3.3 Modelling variances in image sequences

The central goal of this thesis is to make use of variance in image sequence
modelling. In this section this is motivated.

A typical linear generative model for an image sequence, such as the one in
Eq. (3.8), will usually yield a sparse basis for the frames. The respective
sources correspond to a certain area in the frame and in the case of Gabor fil-
ter type of basis also to some specific orientation and frequency. These simple
features are not very interesting by themselves, but it can be postulated that
by constructing a model over these features, we could obtain more interesting
representation for the data. In Figure 3.5 there are typical signals that arise in
image sequence modelling. With visual inspection, it is clear that something
interesting is happening starting approximately from time index 125 and con-
tinuing until almost to time index 150. These activation patterns are a result

Figure 3.5: Typical sources
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Figure 3.6: Energies of the typical sources

of an object moving in the image and activating the sources one at a time. To
capture the movement, we could add dynamics to our model, meaning that the
sources would be dependent on the their past values. In the later chapters, it
is experimentally shown that this kind of approach fails. The reason should be
quite evident, since although the eye captures the “correlations” between the
sources, there actually exists none due to their different phases. If there were
a way to capture the overall activity of a signal instead of its exact amplitude
at any given moment, we could probably be more lucky. A quite often used
approach is to model the energies of the signals i.e. use s2(t) instead of s(t).
Performing this transform for the sources results in the signals in Figure 3.6.
Now the correlation between different signals is a bit stronger but we still do
not have a very good description of the activity.

To model the variances of the sources, we can take the variational approach
with the usage of variance neurons. The exact model equations are given later
on. Now we are mainly interested in taking a quick peek of what kind of results
are obtainable with variance modelling. Figure 3.7 shows the log-variances of
the corresponding sources of Figure 3.5. The variance provides exactly the kind
of feature we were hoping for in the sense that it describes the activity of the
sources and does it in a much more invariant way than the energy approach.
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Figure 3.7: Log-variances of the typical sources



Chapter 4

Bayes Blocks

Bayes Blocks is a framework developed by Valpola et al. [55, 47]. Its theoret-
ical foundation is in variational Bayesian learning. The software library [52]
implementing the framework provides continuous and discrete variables and
computational nodes. By combining them, one can construct a rich variety
of diverse models. This chapter discusses the theoretical background and the
available blocks of the library. Also some practical issues concerning learning
of models built using the library are discussed.

4.1 Key principles

To illustrate what kind of computations are taking place in Bayes Blocks frame-
work, let us consider a simple model where there are only Gaussian variables
connected directly to each other. Let us formulate the model as follows

p(x | s, vx) = N (x | s, exp[−vx])

p(s | ms, vs) = N (s | ms, exp[−vs])

These equations can be seen as a part of a larger model. To be able to do
inference using variational Bayesian learning we need to choose a simpler dis-
tribution for the approximation of the true posterior. Let us assume a fully
factorial posterior approximation

q(x, vx, s,ms, vs) = q(x)q(vx)q(s)q(ms)q(vs)

This is the kind of assumption that is made throughout the Bayes Blocks
framework. Now we are interested in what type of computations are required

31
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to update the variable s, or more precisely its posterior approximation q(s),
given that the distributions of the rest of the variables are assumed fixed.

Writing down the cost function relevant to updating the variable s

Cs =

〈

log
q(s)

p(x | s, vx)p(s | ms, vs)

〉

q(x,vx,s,ms,vs)

=
〈

log q(s) − 〈log p(x | s, vx)〉q(x,vx) − 〈log p(s | ms, vs)〉q(ms,vs)

〉

q(s)
(4.1)

The expectations over log p(s | ms, vs) and log p(x | s, vx) in (4.1) can be
evaluated to yield simpler expressions.

〈log p(s | ms, vs)〉 = 〈logN (s | ms, exp−vs)〉
=

〈

−1
2
(exp vs)(s − ms)

2
〉

+ C

= −1
2
〈exp vs〉

〈

s2 − 2sms + m2
s

〉

+ C

= −1
2
〈exp vs〉 (s2 − 2s 〈ms〉 + 〈ms〉2) + C ′

= −1
2
〈exp vs〉 (s − 〈ms〉)2 + C ′

= log exp
(

−1
2
〈exp vs〉 (s − 〈ms〉)2

)

+ C ′

= logN
(

s | 〈ms〉 , 〈exp vs〉−1) + C ′′ (4.2)

Similarly
〈log p(x | s, vx)〉 = logN

(

〈x〉 | s, 〈exp vx〉−1) + C (4.3)

Substituting the terms (4.2) and (4.3) back to (4.1) we get

Cs =

〈

log
q(s)

N
(

〈x〉 | s, 〈exp vx〉−1)N
(

s | 〈ms〉 , 〈exp vs〉−1)

〉

q(s)

+ C

The product of the two normal distributions is proportional to another normal
distribution. Hence the optimal approximation is a normal distribution q(s) =
N (s | s̄, s̃), with parameters

s̃ = (〈exp vx〉 + 〈exp vs〉)−1 and

s̄ = s̃(〈exp vx〉 〈x〉 + 〈exp vs〉 〈ms〉).

We see that the update of the distribution of s can be done by propagating
certain expected values from its parents, child and co-parent. This is illustrated
in Figure 4.1. Actually the propagation is done in such a way that the variable
s needs to communicate only with its most immediate neighbors i.e. with ms,
vs and x. When s is updated, it asks expectations from its parents ms and vs.



4.1. Key principles 33

From x it asks a gradient, which is, as its name implies, a gradient computed
from the cost function w.r.t. the expectations 〈·〉 and 〈exp ·〉. However, the
gradients are not used in any ordinary manner such as in back propagation
in MLP. The propagation of gradients is just a clever trick to make x encode
both 〈x〉 and 〈exp vx〉 so that s need not to communicate with vx.

ms vs

s

x

vx

〈ms〉 〈exp vs〉

〈x〉, 〈exp vx〉〈exp vx〉

Figure 4.1: Updating the variable s. The solid lines show the actual logical
dependencies and dashed lines show the propagation of the required expected
values to update q(s).

Here we considered only Gaussian variables, but also the other nodes of the
Bayes Blocks library have been designed so that the update of the variables can
be done similarly using only local information obtainable from the immediate
neighbors of the variable. This has the positive effect that the computational
complexity of any given model is linear w.r.t. the amount of variables in the
model given that the number of connections from any variable is fixed. The
local update rules come at the price that we have to use maximally facto-
rial approximating posterior distribution. This means that we neglect all the
posterior dependencies, which can result to ill behavior of our models in some
cases. For example, Ilin and Valpola [30] showed that in ICA the fully factorial
approximation can result in favoring a more PCA type of solution than would
be appropriate.
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4.2 Available blocks

The following list summarizes the blocks of the library which are relevant to
this thesis.

Gaussian variable A variable s with Gaussian cpf parametrized with its
mean m and negative log-variance v such that

p(s | m, v) = N (s | m, exp[−v])

The variance is parametrized this way for several technical reasons.

Rectified Gaussian variable A variable s with rectified Gaussian cpf

p(s | m, v) = NR (s | m, exp[−v])

This is a Gaussian whose tail in the negative axis has been rectified and
the right tail scaled appropriately.

Mixture of Gaussians (MoG) variable A variable s whose cpf is controlled
by a discrete variable λ which selects one of the K different Gaussian
distributions:

p(s | {m}K
i=1, {v}K

i=1, λ = k) = N (s | mk, exp[−vk])

Discrete variable A variable λ which has a discrete distribution over integers
1 . . . K. The cpf of the discrete variable can either be static

p(λ(t) = i | c) = ci

or it can depend on the previous value as in Markov chains

p(λ(t) = i | λ(t − 1) = j,C) = cij

Here the parents c (or the parents cj in Markov prior) can be constant
or Dirichlet variables. The main usage of the discrete variable is to serve
as a parent to the MoG variable.

Dirichlet variable A variable c with Dirichlet prior

p(c | u) = D (c | u)

It can be used as the parent of a discrete variable or to provide the
weights of the transition probability matrix when the discrete variable
has Markov prior.
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Summation node A computational node that computes the sum of its two
parents.

Product node A computational node that computes the product of its two
parents. Can be used to construct linear mappings in conjunction with
the summation node.

The cost function and the update rules for the Gaussian variable (both when
acting as a mean or as a variance parent) in connection with computational
nodes can be found from e.g. [47]. For the other variables listed above, the
update rules and cost functions are derived in Appendix B. There also exists
a bunch of other nodes, some of which were not used in this work, and some
which only have relevance when one is concretely implementing a model using
the library.

The block framework has been successfully used for several models. It has been
applied to hierarchical nonlinear factor analysis [54] and variance modelling [50,
51]. It can be relatively easily used in on-line fashion [21]. Also handling of
missing and partially observed values is possible [49, 48].

4.3 Learning

The variational Bayesian learning provides a cost function which can be ana-
lytically evaluated for the blocks. This can be minimized by minimizing the
contribution of one variable at a time. By doing this, it is clear that the cost
has to decrease at every step. Cost function being (usually) bounded from
below with some constant, the iteration finally ends at some stationary point.
However, this is all that can be guaranteed. Whether the stationary point is
even near any good solution, is totally up to the learning algorithm. By learn-
ing algorithm it is meant the initializations, gradual building of the model,
pruning of some parameters etc. Another problem is that although we were
to reach a good stationary point finally, it might take so many iterations that
we couldn’t possibly wait for the simulation to reach that point. These phe-
nomena are illustrated below with linear positive ICA applied to separation of
images.

The data consists of ten mixtures of tree original images. Ignoring the details
of the model, we can compare the learning with different initializations. We
try three approaches: non-negative PCA [43], ordinary PCA [32] followed by
taking the absolute values (remember that we are doing positive ICA) and
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random initialization. The first one of these, the non-negative PCA, should
give an initialization that is very near the actual sources and there should not
be much to learn.

The model is able to reconstruct the sources very well with all these initializa-
tions. The only difference is the amount of iterations that is needed. Figure
4.2 shows the cost function as the function of the number of iteration for the
different methods.
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Figure 4.2: Cost function values

As expected, the Non-negative PCA initialization makes the model converge
almost immediately. With the other two methods, the right subspace is found
in a couple of hundred iterations, but finding the correct rotations takes ap-
proximately 900 iterations for the model with random initializations and 1400
iterations for the model with standard PCA initializations. It is worth noting
that the cost function of the PCA initialized model doesn’t change much from
iteration 200 to iteration 800. One might stop the simulation in the belief that
it has converged although there’s still a long way to the optimum.



Chapter 5

Experiments

In this chapter, a chain of experiments with image sequence models is reported.
We start with an ordinary linear model and continue to build a higher level
model on that. The development ends at a model, which is aimed to be able
to extract motion features from image sequence data.

5.1 The first layer model

Remembering the notation from Section 3.2, we will construct a linear model
for the frames of the image sequence x(t) such that

x(t) = As(t) + nx(t) (5.1)

where nx(t) denotes Gaussian noise. The source model will be non-Gaussian
with possible dynamics or positivity constraint.

First we write the equivalent of (5.1) in probabilistic notation

p(x(t) | A, s(t),vx) = N (x(t) | As(t), exp[−vx]) (5.2)

There’s a choice to be made which is related to the scale of the different parts of
the model. We can either fix the scale of the weights aij in the linear mapping
A and allow the scale of the source vary or vice versa. We choose to fix the
scale of the mixing matrix by fixing the prior variance for the weights to be
equal to one

p(A) =
∏

i,j

N (aij | 0, 1) (5.3)

37
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We do not have much knowledge about the observation noise variance. It is of
course dependent on the amount of sources used. The more sources, the better
we can reconstruct the data and the less there is to be accounted as noise. At
some point, when all the significant correlations have been modelled in data
by the sources, increasing the number of the sources does not help any more.
We can express this ignorance by using a hierarchical prior which is essentially
uninformative

p(vx | mvx, vvx) =
∏

i

N (vxi | mvx, exp[−vvx])

p(mvx) = N
(

mvx | 0, e7
)

p(vvx) = N
(

vvx | 0, e7
)

The sources can have several different models. The most obvious one is the
Gaussian model

p(s(t) | vs) = N (s(t) | 0, exp[−vs]) (5.4)

Using Gaussian sources will yield PCA type solutions. However, we would like
to find a more ICA type solution and therefore want our sources to be non-
Gaussian. In addition to that, we are interested in modelling the variances of
the sources, so the natural approach is to change the static variance parameters
vs in (5.4) to variance neurons u(t):

p(s(t) | u(t)) = N (s(t) | 0, exp[−u(t)]) (5.5)

Consecutive frames in an image sequence usually have strong temporal corre-
lations so we can expect our sources also to have such quality. Consequently,
we can add simple dynamics to our sources by making the mean of sources at
a moment t to depend straightforwardly on the previous values at the moment
of time t − 1

p(s(t) | s(t − 1),u(t)) = N (s(t) | s(t − 1), exp[−u(t)]) (5.6)

Now the variance u(t) has a bit different interpretation. It characterizes the
innovation process, in effect telling us something about the changes of the
signal amplitude rather than about the signal amplitude itself.

The model built so far is graphically summarized in Figure 5.1. Now we
are ready to take a look at some experimental results obtainable using this
model. The data used was a real gray scale video sequence with 16×16 spatial
dimensions and 4000 samples. The most interesting part of the current model is
the linear mapping A. Its column vectors ai correspond to the different sources
si(t). Consequently the behavior of any given source si(t) is characterized
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A

u(t) s(t)

x(t)

Figure 5.1: The first layer model.
Observations x(t) are generated
from the sources s(t) through a lin-
ear mapping A. The variance of
the sources is controlled by variance
neurons u(t).

completely by the corresponding basis vector ai. These are shown in Figure
5.2. The basis is relatively sparse in the sense that most of the features are
localized to a certain relatively small area of the patch. One thing to be noted
is that there exists one component whose weights are constant throughout the
patch. This is called the dc-component. We could remove it from the dataset
altogether by removing the sample mean, but instead we choose to handle it
in our model. However, we do not want to estimate the weights corresponding
to the dc-component, since we know they will have essentially constant values
overall the patch. Instead, we define a constant vector c = [1 1 . . . 1]T , of same
dimension as x, which is modulated by the scalar dc-component sdc(t). This
changes (5.2) to

p(x(t) | A, s(t), sdc(t),vx) = N (x(t) | As(t) + sdc(t) c, exp[−vx])

In principle, gray scale images are measurements of light intensity and hence
image sequence data is naturally positive, black pixels corresponding to zero in-
tensity. Accordingly, we might consider a positive model. This can be achieved
by using rectified Gaussian priors both for the sources and for the linear map-
ping, changing (5.3) and (5.5) to

p(A) =
∏

i,j

NR (aij | 0, 1) and

p(s(t) | u(t)) = NR (s(t) | 0, exp[−u(t)])

The basis changes quite a lot when using this positive model, as can be seen in
Figure 5.3. The features of the ordinary model do overlap quite a lot, whereas
the basis vectors of the positive model are almost completely disjoint. This is
of course what should be expected because now there is no way to compensate
the effect of one feature by subtracting another feature from it.
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Figure 5.2: Ordinary basis

Figure 5.3: Positive basis
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5.2 Restriction to localized sparse codes

As was suspected, the basis of the first layer model in the previous section
became relatively sparse. We can make this sparsity work for us in several ways.
Let us consider a model where there are three sources and four observation. If
we have a full linear mapping, the connections from the sources to observations
correspond to those in Figure 5.4(a). In a full linear mapping, the number of

s1 s2 s3

x1 x2 x3 x4

(a) Dense coding

s1 s2 s3

x1 x2 x3 x4

(b) Sparse coding

Figure 5.4: Dense vs. sparse coding

weights is of course the number of columns (sources) times the number of
rows (observations). In this thesis typical values for these might be 64 and 256
respectively summing up to total of 16384 weights. It goes without saying that
the learning will be quite slow. And as it turned out, most of the weights will
be near zero anyway, corresponding to the situation in Figure 5.4(b), meaning
that we have done a lot of redundant computations.

The cost function of variational Bayesian learning allows us to compare differ-
ent models. For example, we can remove some weights from the linear mapping
and see if the cost decreases. If it does decrease, it means that the weights
were useless. This is called pruning. By pruning we can get rid of unnecessary
parts of the model, but one has to be careful at which stage of learning one
uses pruning. On one hand, if it is done too early, some parts of the model
that might become useful can be removed. On the other hand, if it is done too
late, the redundant parts of the model might interfere with the other parts,
and again a suboptimal solution is found.

Instead of using a full basis and pruning it at some point of the learning, we
can restrict our linear mapping to be suitably sparse from the very beginning.
While we do this, we can also add some structure to it to make the interpreta-
tion of results easier and the construction of the upper layer model simpler. For
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(a) Connection mask (b) Overlap pattern

Figure 5.5: Mask and overlap

example, we can organize the spatially neighboring features near each other.
Figure 5.5(a) shows a connection matrix where such an approach has been
taken. However, we want to be careful not to make the basis too sparse such
that there is no overlap in the features. The overlap pattern of the connec-
tion matrix in Figure 5.5(a) is shown in Figure 5.5(b). In that example every
pixel has at most six sources connected to it and on average approximately 3.8
sources.

A sparse basis that has been estimated from an image sequence of dimensions
16 × 16 × 1200 is shown in Figure 5.6. There the number of sources is 64 and
they are organized in a grid of spatially neighboring features.

5.3 Adding dynamics

With the first layer model we can find features similar to those in Figure 5.6.
The sources s(t) of the model do not give us very high level information about
the image sequence. It is by combining these simple features that we try to
extract some useful representations of the data.

Let us for a while consider the example image sequence of Figure 5.7. There
an ice hockey player skates horizontally through our field of vision. We are
interested in the activation pattern of the sources that this sequence produces.
The basis A in this case is similar to that in Figure 5.6. We can inspect a
subset of sources whose basis vectors correspond to the features of the second
row in the figure. The values of these sources are plotted in Figure 5.8(a).



5.3. Adding dynamics 43

Figure 5.6: A sparse basis.
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Figure 5.7: A sequence of 42 frames from a video. The first frame is in the top
left corner and time flows row-vice. The frames are 16× 16 pixels in size. The
sequence is taken from a video of an ice hockey game. Here a player enters the
frame from the right side end exits from the left side.
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(a) Sources (b) Variances

Figure 5.8: Sources and their variances

Qualitatively they seem to have very similar behavior. It seems that the other
signals are in their basic nature delayed copies of the bottom most signal. This
of course is natural given the data and the basis vectors. Signals like these
suggest the modelling of their dynamics. If the rest of the signals are copies
of the bottom most signal, then there should be some way to express this in
our model. A simple linear dynamics characterized by the linear mapping B
can be added to the model by changing Equation (5.6) to

p(s(t) | B, s(t − 1),u(t)) = N (s(t) | Bs(t − 1), exp[−u(t)]) (5.7)

Keeping in mind the discussion of Section 3.3 this approach can be suspected
to fail. Although it was said that the signals seem qualitatively similar, quan-
titatively they are not. Figure 5.8(b) shows the variances that correspond to
the sources. There wee see much better behaving signals which could actually
have some kind of dynamic dependencies. As an comparative approach we
keep the Equation (5.6) as it was, but instead add a linear dynamics for the
variance neurons u(t)

p(u(t) | B,u(t − 1),vu) = N (u(t) | Bu(t − 1), exp[−vu]) (5.8)

These two different attempts to add dynamics to our model, recapitulated
by Equations (5.7) and (5.8) are graphically illustrated in Figure 5.9. Using
the whole image sequence, part of which the frames of Figure 5.7 were, we
can test our hypothesis about the performance of the two different models.
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Now the interesting part of the model is the linear mapping B describing the
dynamical relations between different sources / variance neurons. A column
vector bj tells us the extent to which the signal j can predict the other signals.
It can be expected that at least the diagonal elements bjj of B will have some
positive values. Figures 5.10 and 5.11 show the column vectors of the dynamics
mapping for both of the cases considered. We can see that when the dynamics
is in the sources, no significant dynamic relations are found between different
sources. The only strongly positive elements are the diagonal ones, which was
expected, as the sources are temporally coherent.

The situation is rather different in the case where the dynamics is used in the
variance neurons. There exists strong dependencies with spatially neighbor-
ing sources. This is intuitively satisfying since the objects in an usual image
sequence tend to move continuously from one point to another hence exciting
neighboring features at consecutive instances of time.

A

B

u(t) s(t)

x(t)

z−1

(a) Dynamics in sources

A

B

u(t) s(t)

x(t)

z−1

(b) Dynamics in variance
neurons

Figure 5.9: The model structure after having added linear dynamics either to
sources (a) or to variance neurons (b).

5.4 What can linear dynamics model?

The addition of linear dynamics to our model, especially when it was used
in the variance neurons, was beneficial. It revealed some interesting relations
between different sources. It should of course be clear that if we are to find
interesting features from an image sequence, the system doing the extraction
has to have some kind of memory. Otherwise it only sees a collection of in-
dependent frames which have no relation to each other and which could be
randomly permuted without any effect for that matter.
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Figure 5.10: The column vectors of the linear mapping B when the dynamics
is in the sources.

Figure 5.11: The column vectors of the linear mapping B when the dynamics
is in the variance neurons.
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There are many ways to make our model to have a memory. One way would
be to allow our sources s(t) to have connections not only to the current ob-
servations x(t) but also to some set of past observations x(t− τ), τ = 1 . . . K.
Another possibility is to add dynamics to the sources, as was done in the
previous section.

It is a well known fact that linear systems can be divided in a half a dozen
categories based on the eigenvalues of the linear mapping. Consequently the
number of phenomena linear dynamics can describe is relatively limited. Keep-
ing our focus on image sequences, we can study this matter in a bit simplified
setting.

Assume that we have a model with four sources and a basis consisting of
features spanning the frame horizontally from left to right as in Figure 5.12.
Now, if we have an object in the image sequence moving over the frame from

Figure 5.12: A set of features spanning the frame from left to right.

left to right in such a speed that it happens to excite the sources one at a time,
then the variance of the first source predicts quite perfectly the variance of the
second source and so on. Thus the situation is relatively well described by the
dynamics mapping

B =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









(5.9)

Similarly if we have an object moving from left to right over the frame, then
dynamic relation goes the other way around and is perfectly well described by
the mapping

B =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









(5.10)

With a different set of features, A, and some linear mapping B relating them
to each other, we can describe any kind of elementary movement such as the
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left to right or right to left above. However, if we for example have an object
that moves over the frame to both directions, it is no longer perfectly caught
by linear dynamics. Since we have a statistical model, we will still get some
estimate of the dynamics, possibly a combination of (5.9) and (5.10), such as
that in Figure 5.11. There we have nonzero values for all the neighbouring
features, although it is certain that there is no such motion where all the
neighboring sources at once would predict the given source. It is just the
combination of all such elementary movements that produce that result.

5.5 Switching dynamics

It would be useful to be able to segment the different elementary movements
described by the dynamics by some means. This would mean that we should
have several different linear mappings which would take charge when data
supporting their predictions would appear. Such a model can be formulated
using mixture of Gaussians (MoG) variables controlled by a shared discrete
variable.

Now, our linear mapping is no longer time-independent but varies over the
time course. Assume that we have K different dynamics mappings B1 . . .BK

from which the active one is selected by a discrete variable λ(t):

p(B(t) | {Bi}K
i=1, λ(t) = k) = N (B(t) | Bk, exp[−vB])

Now Bi only specify the mean for B(t). If the variance exp[−vB] is large, B(t)
can have arbitrary values. We can limit this kind of behavior by making the
prior of vB favor big values, which means that the variance of B(t) is small.
We want B(t) effectively to work as a switch between the different Bi. This
resembles the ideology which is used in HNFA for the hidden neurons [54].

The cpfs for the different means Bi of B(t) are

p(Bi | B̄, B̃) = N
(

Bi | B̄i, B̃i

)

Here the B̄i are chosen to represent some prototypical movements such as (5.9)
and (5.10). To allow deviation from these prototypes the variances in B̃i are
set to equal one.

The states of the discrete variable have probabilities c = [c1 . . . cK ]. The
probability vector c has a Dirichlet prior

p(λ(t) = k | c) = ck

p(c) = D (c | u)
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λ(t)

u(t) s(t)

x(t)

· · ·

z−1

Figure 5.13: The static dynamics
mapping B has been changed to
a time-dependent one B(t) which
effectively reflects the values of
B1 . . .BK . The discrete variable
λ(t) controls which one of these is
active at any given moment.

To keep the big picture in mind, we can again graphically summarize our model
structure. See Figure 5.13. To test the proposed model structure we use a
simple dataset containing bars moving first from right to left, then staying
put, and then moving from left to right. Part of that dataset is shown in
Figure 5.14. The number of possible dynamics is set to three, and the priors
for the B1 . . .B3 are chosen to reflect the dataset. There are some technical
issues concerning the learning of the current model. These are dealt with in
detail in the next section. Now we can first test our model by initializing the
discrete variable to the correct values and see if the model works with them.
A part of the initial values are shown in Figure 5.15(a) and the values after
learning are shown in Figure 5.15(b). The learnt values are similar in spirit to
the initial and correct values, but the state of the discrete variable seems to
change inappropriately every now and then. The reason for this is probably
that there is not constantly enough evidence to choose the correct value for
the discrete variable. When there is a lack of evidence, the system should be
able to use past information to make the decision about the correct state. This
suggests that we should make the cpf of λ(t) dependent on the past values.

Figure 5.14: A part from the bars dataset. The sequence shown here contains
bars moving from right to left.
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5.6 Adding Markov prior for the discrete vari-

able

We can improve the model of our discrete variable by making it dependent on
its value at the previous time instance

p(λ(t) = i | λ(t − 1) = j,C) = cij

Here C is the transition probability matrix whose element cij gives us the
probability that the next state will be i given that we are in state j. The
column vectors {cj}K

j=1 of the matrix C have to sum up to one. For them, we
can use Dirichlet priors

p(cj | uj) = D (cj | uj) ∀j = 1, . . . , K

Let us try how this modification to our model affects the state change problem.
We use the same bars dataset as before and initialize the discrete variable to
the correct values. Looking at the values of the discrete variable after learning,
Figure 5.16, we see that there are no inappropriate state changes. The mean
of the transition probability matrix is

〈C〉 =





0.9950 0.0099 0.0025
0.0025 0.9848 0.0050
0.0025 0.0053 0.9926





The probabilities for staying in the same state are very near to one. Now the
model has the belief that changing the dynamics is rarely appropriate, so it
doesn’t switch the state unless there is a really good reason to do so.

5.7 The final model

Up to this point, in this chapter, only the model equations have been given.
Nothing has been said about how the model is actually learnt. The basic
learning approach has of course been already discussed in Chapter 4. This
means that we have local update rules for all the variables and we update
them cyclically. However, as it was discussed in Section 4.3 these local update
rules might get us only to a very poor stationary point and the solution might
be quite useless.

Now, having reached the topmost level of the model hierarchy, we can again
take a look at our model in Figure 5.17, and consider what kind of things we
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(a) Initial values (b) Learnt values

Figure 5.15: Initial values vs. values after learning.

Figure 5.16: Learnt values when the discrete has Markov prior.
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u(t) s(t)

x(t)

· · ·
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Figure 5.17: The final model struc-
ture. Starting from the bottom: we
have a linear sparse model for the ob-
servations x(t). The variances u(t) of
the sources s(t) have switching linear
dynamics B(t) which is controlled by
the discrete variable λ(t). The dis-
crete variable has Markov prior with
the transition probabilities specified by
the matrix C.

need in addition to the local update rules to get our model to learn useful
things. First of all, we need an initialization scheme for the sources. When
a full linear mapping is used, the customary thing to do is to compute PCA
sources from the data and use that as the starting point for learning. Now
that the basis A is initially sparse, it does not make sense to compute PCA.
Instead the instantaneous spatial average from the connection matrix area for
all the sources is computed. To make this notion more clear, let us define the
set of indicator variables {wij}ij such that wij = 1 if there is a connection
from the source j to the observation i, and zero otherwise. Accordingly, the
initialization for the source sj can be computed as

sj(t) =

∑

i wijxi(t)
∑

i wij

This initialization is a good starting point for learning, better than the PCA
initialization at least.

Another critical point in the learning algorithm is the initialization of the dis-
crete variable λ(t). Without reasonable initializations, usually only one of the
K linear mappings is used, which effectively means that the switching dynam-
ics is pruned away altogether. In some cases this might be appropriate, the
switching dynamics does not affect significantly enough to the representation
of the data, that keeping it in the model would be worthwhile. In other cases, it
is intuitively (and experimentally as it is shown later) clear that using several
different dynamics mappings should really make the description of the data
better.

In the following, an initialization scheme is developed for the discrete variable
λ(t). It is based on estimating B(t) and then fitting prototypical dynamics
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candidates to it. If the discrete variable in the model has strange values, also
B(t) will be weird and hence we cannot base the estimation of λ(t) on it.
Instead, we go down to the variance neurons u(t) and use them to construct
an estimate for B(t). Denote

U(t) =











u1(t) u1(t + 1) . . . u1(t + L − 1)
u2(t) u2(t + 1) . . . u2(t + L − 1)

...
...

. . .
...

un(t) un(t + 1) . . . un(t + L − 1)











where L is the length of the window. Assuming that the dynamical relations
in u(t) can be characterized with some linear mapping B, the identity U(t) =
BU(t− 1) holds. With known values for U(t), the dynamics can be estimated
for each time instance t using the minimum mean square error solution

B(t) = U(t)UT (t − 1)
(

U(t − 1)UT (t − 1)
)−1

Now, if we have some candidates Ck, k = 1, . . . , K for the possible dynamics,
we estimate the distribution of λ(t) by fitting these candidates to the estimated
B(t) and seeing which one is most appropriate at any given moment of time.
The candidate mappings can be for example prototypes of movement from left
to right, top to bottom etc.

Selecting a time window of right size L is critical. With L being too small the
estimates for the discrete variable will be essentially noise. Choosing too big a
L, on the other hand, can make shorter lasting states of dynamics disappear.
Figure 5.18 shows an example of q(λ(t)) estimated with different values for L.

Using a heuristic initialization does not make sense unless there is some reliable
way to compare the different initializations. The cost function in variational
learning provides us with a tool to choose from different initializations. For
example, when trying to choose the most suitable value of L, it turns out that
the cost attains its minimum at a point which gives the best initial values in
the sense that it corresponds to the true underlying motion. In Figure 5.19
the costs obtained after 5000 iterations with different initialization parameters
L are plotted.

Now, having constructed a model and considered an appropriate learning al-
gorithm for it, we can try applying it on a more realistic data. The data to
be considered is generated from a static image of a forest scenery by sliding
a 16 × 16 size window over it. To some extent, this corresponds to a camera
movement in a video. The whole dataset consists of 1200 frames. Part of
it is shown in Figure 5.20. There, also some context outside the actual data
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L = 5 L = 20

L = 50 L = 200

Figure 5.18: Estimates for the distribution q(λ(t)). The image sequence used
as the data contained alternating camera movement from left to right and
from right to left on a static scene. The initialization with L = 50 is nearest
to truth. With L = 20 the initialization becomes noisier and with L = 5 it
is completely useless. With L = 200 some of the shorter lasting motions are
missed completely.
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Figure 5.19: Cost per sample as a function of the initialization parameter L.

is shown to make it more clear what is happening. The real data is inside
the white rectangle. To emphasize what the model actually sees, the same
sequence of the real data is shown in Figure 5.21.

The priors for the five different dynamics mappings represented prototypical
movement vertically and horizontally. One of these prototypes was the identity
mapping for the situation where there is no motion. The initialization scheme
for the discrete variable was similar to that described earlier. Again, careful
tuning of the parameters of the initialization procedure was required to get
reasonable results.

Let us finally look some parts of our model after learning. In Figure 5.22
there is a set of horizontally and vertically aligned sources and their respective
variances (or more exactly the variances of their innovation processes). The
top figures correspond to the horizontally aligned features. There we clearly
see how the excitement of sources happens one after another when the tree
goes through the frame. It is worth noting that there is not such behavior
all the time. Looking at the discrete variable in Figure 5.23, however, we see
that its state fairly well describes what is actually happening. This is due to
the Markov prior which allows the model to predict the next value based on
the earlier information whenever there is a lack of real evidence from the data.
The left to right motion changes to top to bottom motion exactly at time
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Figure 5.20: A subset of frames from the image sequence of a natural scene.
Again, time flows row-wise starting from the top left corner. The white box
shows the part of the frame that is actually used as the data. The direction of
the motion changes in the middle of the sequence.
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Figure 5.21: The same data as in Figure 5.20 but now without the context.
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index 800 (the 40th frame in figures 5.20 and 5.21). The state of the discrete
variable changes only after some twenty samples, near time index 820. This
is understandable by looking at Figure 5.22(d) which shows the variances of a
set of vertically aligned sources. There is not much happening until the index
820.

Finally, a brief summary of the development is appropriate. There are three
fundamental points in the model that are now emphasized. Firstly, natural
signals, such as image sequences, are well characterized by varying variance. In
basic ICA this is seen as components, which are uncorrelated but by no means
independent. As there are still some dependencies between those components,

(a) (b)

(c) (d)

Figure 5.22: A set of horizontally aligned sources (a) and their variances (b)
and a set of vertically aligned sources (c) and their variances (d).
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Figure 5.23: The distribution of the discrete variable. The third state cor-
respond to horizontal right to left motion and the fourth to vertical top to
bottom movement.

the question is whether modelling those could give us more information of
the data. This was the motivation for concentrating on the variances of the
sources instead of the sources themselves. Secondly, the variance neurons
attached to the sources still do not give us very high level information. They
just represent the activity of the sources, albeit in a conveniently invariant
way. These simple features have to be somehow cleverly combined to obtain
more abstract representations.

One of the models that was tried before the experiments reported in this thesis,
contained a first layer similar to that of the model introduced here. There
the dynamics of the variance neurons was not modelled, but instead another
linear layer was used on top of those giving birth to another set of sources, so
called variance sources (for details, see [51]). Although the variance sources
could model the regularities in the variance neurons, the model contained no
memory. This makes it impossible for example to model motion in image
sequences. One can convince oneself of this by the fact that the reordering of
the frames does not affect the results in any way. This gives rise to the third
point: image sequence models without memory are necessarily poorer in their
representation capability than models that do have memory.



Chapter 6

Discussion

In this thesis, the modelling of variances in image sequences was studied. The
goal was to examine whether modelling of variances could be useful and if so,
to what kind of specific model structure could this approach be applied.

It turned out that the variance of a source in the image sequence model could
provide a better feature than the source itself. By better it is meant that
building a model on top of the variance can be more fruitful, at least in some
cases, than on top of the corresponding source.

The concrete model that was constructed in Chapter 5 was aimed to be able to
extract features relating to different kind of movements in an image sequence.
It was demonstrated by experiments with artificial data, that in principle the
model can represent quite well the underlying movement of the objects and
that it can do so in an invariant way. However, learning the model proved to
be quite difficult.

The first and most obvious problem is the difficulty of local minima of the cost
function. Although our cost function would support a certain model, the local
update rules are usually not enough to get us there or even near any good
solution. In this thesis, this problem was tried to be solved by introducing
a heuristic and model specific initialization scheme. Then the cost function
was used to select the best initialization meaning that the variational method
was mainly used for model selection, not to learning, at least in the top of
the model structure. Going through a large space of initializations might be
feasible in smaller problems, but large problems, such as the ones dealing with
real image sequences, cannot be solved in this manner.

One way to tackle the problem would be to develop a more global optimization
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approach. Although such a method cannot most probably be analytically
derived for the model that was considered, it could be possible to use some
kind of stochastic algorithm, which is less sensitive to local minima. Such a
method could for example be simulated annealing [17]. It could be used to
learn the discrete variable. After every update suggested by the simulated
annealing algorithm, the local update rules could be applied a couple of times
to get also the other parts of the model adjusted. By doing this sufficiently long
in a relatively high pseudo temperature1 we might find some good solution.

In addition to the local minima problem, there might be even some more fun-
damental problems concerning variational Bayesian learning and probabilistic
hierarchical modelling in general. A phenomenon which has been encountered
several times by the author while using variational Bayesian learning is au-
tomatic and sometimes counterintuitive pruning of some parts of the model.
There have been some early studies by MacKay [39] where this problem is
examined in an experimental setting. In the abstract of that paper MacKay
writes

Approximate inference by variational free energy minimization has
maximum likelihood and maximum a posteriori methods as spe-
cial cases, so we might hope that it can only work better than
these standard methods. However, cases have been found in which
degrees of freedom are pruned, perhaps inappropriately.

Overlearning is a serious problem in point estimation. Variational Bayesian
learning solves that problem but could it be possible that in some cases it
suffers from underlearning? Perhaps this is a subject that could be further
studied.

One interpretation that has been offered to understanding the variational
Bayesian learning is the coding interpretation [22]. There, learning is seen
as minimization of the description length of the data, meaning that we are
trying to find a model that explains the data as compactly as possible. This
interpretation can give insight to several phenomena in learning. In this light,
we can consider the kind of a very hierarchical model as the one constructed
in Chapter 5, where there are several layers of variables on top of each other.
Although by using the upper layer variables, we can code the lower layer vari-
ables better, the upper layer variables introduce an additional cost, because
we also need to code them. Hence, it might be difficult to learn a very hierar-
chical model, if the lower level model already codes the data efficiently. This

1The higher the pseudo temperature in simulated annealing, the bigger steps upwards
along the cost function are allowed, meaning that escaping from local minima is easier.
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leads one to wonder whether the compact presentations are the ones we want
when doing for example feature extraction. Perhaps less efficient models, in
the sense of coding, can provide more useful features.
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Appendix A

Probability distributions

This appendix describes the probability distributions that are needed in the
models of this thesis.

A.1 Gaussian

The Gaussian (or central, or normal) distribution is the most used distribution
in statistics. The functional form of it is

N (s | m, v) =
1√
2πv

exp
{

− 1

2v
(s − m)2

}

where m is the mean and v the variance of the distribution. A detailed account
on the ubiquitous use and equally ubiquitous success of the normal distribution
is given in [31].

A.2 Rectified Gaussian

A rectified Gaussian distribution is a Gaussian distribution which is con-
strained to be positive. By defining the step function

u(s) =

{

0 if s < 0,

1 if s ≥ 0

the rectified Gaussian distribution can be expressed as

NR (s | m, v) =
2

erfc(−m/
√

2v)
N (s | m, v) u(s) (A.1)
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where erfc is the complement of erf:

erfc(x) =
2√
π

∫ ∞

x

exp(−t2) dt

Naturally, the parameters m and v are no longer the mean and variance of the
distribution. The expectation have a bit more complex expressions and they
are derived in Section B.1.

A.3 Mixture of Gaussians

As its name implies, the mixture of Gaussians (MoG) distribution is a com-
posite of several Gaussian distributions. Concretely, this can be formulated by
introducing a categorical variable λ ∈ {1, . . . , K} which selects one of the K
Gaussian components {N (s | mi, vi)}K

i=1

p(s | {mi}K
i=1, {vi}K

i=1, λ = k) = N (s | mk, vk)

This does not make (much) sense in this scalar case, but more so in the situ-
ation where s and λ are time-dependent

p(s(t) | m, v, λ(t) = kt) = N (s(t) | mkt
, vkt

)

A.4 Dirichlet

The Dirichlet distribution is defined on the set {c ∈ R
K | ∑n

i=1 ci = 1 and ci ≥
0 ∀i} as

D (c | u) =
1

Z(u)

n
∏

i=1

cui−1
i

where uis are the so called prior observation counts and Z is a normalization
constant

Z(u) =

∏n
i=1 Γ(ui)

Γ(
∑n

i=1 ui)



Appendix B

Derivations

This appendix contains the necessary derivations of cost functions and update
rules for the new blocks in the Bayes Blocks library.

B.1 Rectified Gaussian Variable

Expectations

In this section expressions for the mean and the mean square of a rectified
Gaussian distribution NR (s | s̄, s̃) are derived.

The mean:

〈s〉 = 〈s − s̄ + s̄〉 = s̄ +

∫ ∞

−∞
(s − s̄)NR (s | s̄, s̃) ds

= s̄ +

√
2√

πs̃ erfc(−s̄/
√

2s̃)

∫ ∞

0

(s − s̄) exp
(

− 1
2s̃

(s − s̄)2
)

ds (B.1)

The integral in (B.1) can be evaluated by performing a change of variable
z = (s − s̄)/

√
2s̃

∫ ∞

0

(s − s̄) exp
(

− 1
2s̃

(s − s̄)2
)

ds

= 2s̃

∫ ∞

−s̄/
√

2s̃

z exp(−z2)dz = s̃ exp
(

−(s̄/
√

2s̃)2
)

(B.2)
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By substituting (B.2) back to (B.1) we get

〈s〉 = s̄ +

√

2s̃

π

1

exp
(

(s̄/
√

2s̃)2
)

erfc
(

−s̄/
√

2s̃
) (B.3)

The mean square:

〈

s2
〉

=

∫ ∞

−∞
s2NR (s | s̄, s̃) ds

=

√
2√

πs̃ erfc(−s̄/
√

2s̃)

∫ ∞

0

s2 exp
(

− 1
2s̃

(s − s̄)2
)

ds (B.4)

Again, doing the change of variable z = (s − s̄)/
√

2s̃

∫ ∞

0

s2 exp
(

− 1
2s̃

(s − s̄)2
)

ds =
√

2s̃

∫ ∞

−s̄/
√

2s̃

(
√

2s̃z + s̄
)2

exp(−z2)dz

= (2s̃)3/2

∫ ∞

−s̄/
√

2s̃

z2 exp(−z2)dz + 4s̃s̄

∫ ∞

−s̄/
√

2s̃

z exp(−z2)dz

+
√

2s̃s̄2

∫ ∞

−s̄/
√

2s̃

exp(−z2)dz. (B.5)

The second and the third integral can be directly evaluated and they yield
∫ ∞

−s̄/
√

2s̃

z exp(−z2)dz =
1

2
exp

(

−(s̄/
√

2s̃)2
)

, (B.6)

∫ ∞

−s̄/
√

2s̃

exp(−z2)dz =

√
π

2
erfc

(

−s̄/
√

2s̃
)

. (B.7)

The first integral can be integrated by parts

∫ ∞

−s̄/
√

2s̃

z2 exp(−z2)dz =

∫ ∞

−s̄/
√

2s̃

z
[

z exp(−z2)
]

dz

=

[

−1

2
z exp(−z2)

]∞

−s̄/
√

2s̃

+
1

2

∫ ∞

−s̄/
√

2s̃

exp(−z2)dz

= − s̄

2
√

2s̃
exp

(

−(s̄/
√

2s̃)2
)

+

√
π

4
erfc

(

−s̄/
√

2s̃
)

. (B.8)

Now, substituting the terms (B.6), (B.7) and (B.8) back to (B.5), substituting
the result to (B.4) and finally simplifying, we get

〈

s2
〉

= s̄2 + s̃ +

√

2s̃

π

s̄

exp
(

(s̄/
√

2s̃)2
)

erfc
(

−s̄/
√

2s̃
) . (B.9)
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When s̄/
√

2s̃ ≪ 0 we get into trouble using equations (B.3) and (B.9) due
to the numerical issues concerning the erfc function. The following lemma is
needed for the theorem that follows.

Lemma 1. The erfc function can be approximated as

erfc(x) =
exp(−x2)√

π

(

x−1 + O(x−3)
)

Proof. We can integrate the function exp(−t2) by parts by expressing it as
1
t
t exp(−t2)

∫ ∞

x

exp(−t2) dt =

∫ ∞

x

1

t
t exp(−t2) dt

= −1

2

[

1

t
exp(−t2)

]∞

x

− 1

2

∫ ∞

x

1

t2
exp(−t2) dt

=
1

2x
exp(−x2) − 1

2

∫ ∞

x

1

t3
t exp(−t2) dt

=
1

2x
exp(−x2) +

1

4

[

1

t3
exp(−t2)

]∞

x

+
3

4

∫ ∞

x

1

t4
t exp(−t2) dt

= exp(−x2)

(

1

2x
− 1

4x3
+ . . .

)

= exp(−x2)

(

1

2x
+ O(x−3)

)

The result follows by multiplying with 2/
√

π. ¤

Now we state and prove a theorem which asserts that the rectified Gaussian
distribution is well approximated with the exponential distribution in the case
when m/

√
v ≪ 0.

Theorem 1. The rectified Gaussian distribution NR (s | m, v) approaches the
exponential distribution E (s | −m/v) when m/

√
2v → −∞ such that

D
(

E (s | −m/v)
w

wNR (s | m, v)
)

−−−−−−−→
m/

√
2v→−∞

0

Proof. First we write out the KL-divergence

D
(

E (s | −m/v)
w

wNR (s | m, v)
)

=

∫ ∞

−∞
E (s | −m/v) log

E (s | −m/v)

NR (s | m, v)
ds

(B.10)
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Now, substituting the functional forms of the distributions to (B.10) yields

∫ ∞

0

−m

v
exp(ms/v) log

−m
v

exp(ms/v)
2

erfc(−m/
√

2v)
1√
2πv

exp(− 1
2v

(s − m)2)
ds

= log
{

− m√
2v

√
π erfc(−m/

√
2v) exp(m2/2v)

}

+

∫ ∞

0

−m

v
exp(ms/v)

s2

2v
ds

= log
{

− m√
2v

√
π erfc(−m/

√
2v) exp(m2/2v)

}

+
v

m2

The last term, v/m2, approaches zero when m2/v → ∞. We can examine the
asymptotic behaviour of the first term by invoking Lemma 1 and replacing the
erfc function with its approximation. This yields

− m√
2v

√
π erfc(−m/

√
2v) exp(m2/2v)

= − m√
2v

[

(

− m√
2v

)−1

+ O

(

(

− m√
2v

)−3
)]

= 1 + O

(

(

m√
2v

)−2
)

which approaches one when m/
√

2v → −∞ and hence the KL-divergence
approaches zero. ¤

Using the result of Theorem 1, we can avoid the difficulties related to erfc
function by calculating the expectations from the corresponding exponential
distribution.

Cost function

In this section the two parts of the variational Bayesian learning cost function,
Cs = Cs,p + Cs,q, are evaluated for a rectified Gaussian variable whose posterior
is approximated1 using another rectified Gaussian distribution. The first term

1actually no approximation is needed since the rectified prior is conjugate to Gaussian
likelihood
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is:

Cs,p = −〈log p(s | m, v)〉
= −

〈

logNR (s | m, exp(−v))
〉

= −〈log u(s)〉 − 〈logN (s | m, exp(−v))〉

−
〈

log
[

1
2
erfc

(

−m/
√

2 exp(−v)
)]−1

〉

= 1
2

{

〈exp v〉
[

(〈s〉 − 〈m〉)2 + Var{s} + Var{m}
]

− 〈v〉 + log 2π
}

− log 2 +
〈

log erfc
(

−m/
√

2 exp(−v)
)〉

(B.11)

The last term in (B.11) can be evaluated only in the case when m is a constant
equaling zero, i.e. q(m) = δ(m). If, for some reason, one wants to use non-
constant prior mean, an upper bound for the term can be used which is log 2.
In this case the two last terms can be dropped out and the remaining cost
function bounds the correct one from above. However, the update rule for the
mean m is in this case only approximate. The second term is:

Cs,q = 〈log q(s)〉

=

〈

log

√
2 exp(− 1

2s̃
(s − s̄)2)

√
πs̃ erfc

(

−s̄/
√

2s̃
)

〉

= − 1
2s̃

〈

(s − s̄)2
〉

+ log
√

2 − log
[√

πs̃ erfc
(

−s̄/
√

2s̃
)]

The term 〈(s − s̄)2〉 yields

〈

(s − s̄)2
〉

=
〈

s2 − 2ss̄ + s̄2
〉

=
〈

s2
〉

− 2s̄ 〈s〉 + s̄2

=
〈

s2
〉

− 〈s〉2 + 〈s〉2 − 2s̄ 〈s〉 + s̄2 = Var{s} + (〈s〉 − s̄)2

Now we can write Cs,q out:

Cs,q = − 1
2s̃

[Var{s} + (〈s〉 − s̄)2] + 1
2
log 2

πs̃
− log erfc

(

−s̄/
√

2s̃
)

Update rule

Let us denote the likelihood arising from the children of s simply as p(x | s) =
N (x | s, σ2

x). With a very similar derivation as in (4.2)

〈

logNR (s | ms, exp[−vs])
〉

= logNR
(

s | 〈ms〉 , 〈exp vs〉−1) + C
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Hence the relevant part of the cost function (2.10) is

Cs =

〈

log
q(s)

N (x | s, σ2
x)NR

(

s | 〈ms〉 , 〈exp vs〉−1)

〉

q(s)

It is clear from the definition of the rectified Gaussian distribution (Eq. A.1)
that it is a conjugate prior for the Gaussian likelihood. Consequently the
optimal posterior q(s) is also a rectified Gaussian distribution with parameters
computed similarly as in the Gaussian case.

B.2 Mixture of Gaussians variable

Expectations

If we use a factorial posterior approximation q(s, λ) = q(s)q(λ), q(s) is a Gaus-
sian and the expectations are directly the mean and the variance parameter of
the distribution. In the non-factorial case, we need to marginalize over λ

q(s) =
K

∑

i=1

q(s, λ = i) =
K

∑

i=1

q(s | λ = i)q(λ = i) =
K

∑

i=1

πi N (s | s̄i, s̃i)

where q(λ = i) is denoted as πi. Now the mean is

〈s〉 =

∫ ∞

−∞
s q(s) ds =

∫ ∞

−∞
s

K
∑

i=1

πi N (s | s̄i, s̃i) ds

=
K

∑

i=1

πi

∫ ∞

−∞
sN (s | s̄i, s̃i) ds =

K
∑

i=1

πis̄i

The mean square can be computed similarly

〈

s2
〉

=
K

∑

i=1

πi(s̃i + s̄2
i )
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Cost function

The part of the cost function affecting the mixture components is

Cs,p = −〈log p(s | m, v, λ)〉q(s,m,v,λ)

=
〈

−〈log p(s | m, v, λ)〉q(s|λ)q(m,v)

〉

q(λ)

=
K

∑

i=1

q(λ = i)
(

−〈log p(s | m, v, λ = i)〉
)

=
K

∑

i=1

q(λ = i)
(

−〈logN (s | mi, exp[−vi])〉
)

So the likelihood seen by the i:th component is a Gaussian weighted by the
probability q(λ = i).

Now, depending on the form of the approximating posterior distribution q(s, λ)
we get different equations for the other term of the cost function Cs,q.

Assuming a factorial q such that q(s, λ) = q(s)q(λ) the optimal posterior of s
is a Gaussian (shown to be true later on). Hence the other part of the cost
function in this case is

Cs,q = 〈log q(s)〉q(s) = 〈logN (s | s̄, s̃)〉q(s) = −1
2
log 2πes̃

On the other hand, assuming a non factorial q the optimal posterior is a
mixture of Gaussians and the cost function is

Cs,q =
K

∑

i=1

q(λ = i) 〈log q(s | λ = i)〉q(s|λ=i)

Update rule

Again, the update rule is dependent whether we assume a factorial q or not.

The factorial case

Now we assume that q(s, λ) = q(s)q(λ). The term of concern is

〈log p(s | m, v, λ)〉q(m,v,λ)
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If this has a convenient form in the sense that the exponential of it is conjugate
to Gaussian likelihood the updating will be easy. This indeed is true:

〈log p(s | m, v, λ)〉q(m,v,λ) =
〈

〈log p(s | m, v, λ)〉q(λ)

〉

q(m,v)

=
〈

K
∑

i=1

πi log p(s | m, v, λ = i)
〉

q(m,v)
=

K
∑

i=1

πi 〈log p(s | m, v, λ = i)〉q(m,v)

=
K

∑

i=1

πi

〈

logN
(

s | mi, e
−vi

)〉

=
K

∑

i=1

πi logN
(

s | 〈mi〉 , 〈evi〉−1) + C

=
K

∑

i=1

logN
(

s | 〈mi〉 , 〈evi〉−1)πi

+ C = log
K
∏

i=1

N
(

s | 〈mi〉 , 〈evi〉−1)πi

+ C

The product in the last equation is proportional to a Gaussian distribution
N (s | µs, σ

2
s), with parameter values

σ2
s =

(

K
∑

i=1

πi 〈exp vi〉
)−1

and µs = σ2
s

(

K
∑

i=1

πi 〈exp vi〉 〈mi〉
)

Assuming that the likelihood arising from the children is of the form p(x | s) =
N (x | s, σ2

x), the optimal posterior is easily obtained as q(s) = N (s | s̄, s̃),
with

s̃ = (1/σ2
x + 1/σ2

s)
−1 and µs = s̃(x/σ2

x + µs/σ
2
s)

The non-factorial case

When we do not neglect the posterior dependence between s and λ we get
slightly different update rules. First of all, we can write q(s, λ) = q(s | λ) q(λ).
Now, keeping q(λ) fixed

〈

log
q(s, λ)

p(x | s) p(s | m, v, λ)

〉

q(s,λ)

=

〈

log
q(s | λ)q(λ)

p(x | s) p(s | m, v, λ)

〉

q(s|λ)q(λ)

=

〈

log
q(s | λ)

p(x | s) p(s | m, v, λ)

〉

q(s|λ)q(λ)

+ C

=
K

∑

i=1

πi

〈

log
q(s | λ = i)

p(x | s) p(s | m, v, λ = i)

〉

q(s|λ=i)

+ C

which is of course minimized when

q(s | λ = i) ∝ p(x | s)p(s | m, v, λ = i) ∀i = 1, . . . , K

Now, again p(x | s) and p(s | m, v, λ = i) are Gaussians and hence the distri-
butions q(s | λ = i) are Gaussians too.
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B.3 Categorical variable

There are three different categorical variables. The one with constant prior,
the one with Dirichlet cpf and the one with Markov prior. In the following
the constant case is covered. The derivations for the other two possibilities are
very similar.

Cost function

The prior is p(λ = i) = ci, i = 1, . . . , K. Lets denote πi = q(λ = i). The terms
of the cost function are

Cλ,p = −〈log p(λ)〉q(λ) = −
K

∑

i=1

πi log ci, and

Cλ,q = 〈log q(λ)〉q(λ) =
K

∑

i=1

πi log πi.

Update rule

The posterior of λ is naturally a discrete distribution. The part of the cost
function to be optimized is

〈

log
q(s, λ)

p(x | s)p(s | λ)

〉

q(s,λ)

.

The prior p(λ) is not included here because it is constant.

Now, assuming q(s | λ) fixed ∀λ

〈

log
q(s, λ)

p(x | s)p(s | λ)

〉

q(s,λ)

=

〈

log
q(s, λ)

p(x | s)p(s | λ)

〉

q(s|λ)q(λ)

=
〈

〈log q(s | λ)〉q(s|λ) − 〈log p(x | s)〉q(s|λ) − 〈log p(s | λ)〉q(s|λ) + log q(λ)
〉

q(λ)

=
〈

C(λ) + log q(λ)
〉

q(λ)
=

〈

log
q(λ)

exp(−C(λ))

〉

q(λ)

.

Hence, q(λ) is optimized by setting q(λ) ∝ exp(−C(λ)), where

C(λ) = 〈log q(s | λ)〉q(s|λ) − 〈log p(x | s)〉q(s|λ) − 〈log p(s | λ)〉q(s|λ) . (B.12)
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It is worth noting that a categorical variable can be a parent to more than one
mixture nodes s1, . . . , sn if their posteriors are assumed to be conditionally
independent given λ

q(s1, . . . , sn, λ) = q(s1, . . . , sn | λ)q(λ) =
n

∏

i=1

q(si | λ)q(λ).

It is now easily seen that C(λ) in Eq. (B.12) becomes

C(λ) =
n

∑

i=1

[

〈log q(si | λ)〉q(si|λ) − 〈log p(xi | si)〉q(si|λ) − 〈log p(si | λ)〉q(si|λ)

]

.

As another note, when s and λ are assumed posteriorly independent, the only
relevant term in C(λ) is −〈log p(s | λ)〉q(s).

B.4 Dirichlet variable

Expectations

Denoting u0 =
∑K

i=1 ui, the mean and variance can be expressed as

〈ci〉 =
ui

u0

and Var{ci} =
ui(u0 − ui)

u2
0(u0 + 1)

The discrete variable, whose parent the Dirichlet variable is, also needs the
expectation over the logarithm of ci. This is

〈log ci〉 = ψ(ui) − ψ(u0)

where ψ(x) = d
dx

log Γ(x) is the digamma function. For more detailed account
on how this is derived, see e.g. [19].

Cost function

The posterior of c is also a Dirichlet distribution: q(c) = D (c | v). Let us
again denote

u0 =
K

∑

i=1

ui and v0 =
K

∑

i=1

vi
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The two terms of the cost function, Cp and Cq are rather similar

Cp = −〈log p(c)〉q(c) = log Z(u) −
K

∑

i=1

(ui − 1)(ψ(vi) − ψ(v0))

Cq = 〈log q(c)〉q(c) = − log Z(v) +
K

∑

i=1

(vi − 1)(ψ(vi) − ψ(v0))

Update rule

First, assume that the cpf of the discrete variable is p(λ = i | c) = ci Assuming
q(λ, c) = q(λ)q(c) we can write

〈

log
q(c)

p(λ | c)p(c)

〉

q(λ)q(c)

=
〈

log q(c) − 〈log p(λ | c)〉q(λ) − log p(c)
〉

q(c)

Computing the expectation over log p(λ | c)

〈log p(λ | c)〉q(λ) =
K

∑

i=1

πi log p(λ = i | c) =
K

∑

i=1

πi log ci

=
K

∑

i=1

log cπi

i = log
K
∏

i=1

cπi

i ∝ logD (c | π)

Substituting this back we get D (q(c) ‖D (c | π)D (c | u)) and hence the cost
function is optimized by setting q(c) ∝ D (c | π)D (c | u) which further sim-
plifies to q(c) = D (c | u + π). In the concrete case where λ is time dependent
we can compute similarly to obtain q(c) = D (c | u +

∑

t π(t)).

Another possibility for the cpf of the discrete variable is

p(λ(t) = i | λ(t − 1) = j,C) = cij

For each column cj of the transition probability matrix C, there is a Dirichlet
prior

p(cj) = D (cj | uj)

It can be shown, with a similar derivation as above, that the optimal q(cj) is

q(cj) = D
(

cj | [uij +
∑

tπi(t)πj(t − 1)]Ki=1

)


