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Abstract — Blind extraction of independent sources

from their nonlinear mixtures is generally a very dif-

ficult problem. This is because both the nonlinear

mapping and the underlying sources are unknown,

and must be learned in an unsupervised manner

from the data. We use multilayer perceptrons as

nonlinear generative models for the data, and ap-

ply Bayesian ensemble learning for optimizing the

model. In this paper, we successfully apply this ap-

proach to real-world speech data.

1 Introduction

It is fair to say that independent component anal-
ysis (ICA) and the closely related blind source sep-
aration (BSS) are now well understood problems
when the observed data consists of linear instanta-
neous mixtures. Many well-performing algorithms
have been introduced and analyzed for this case [3].
During the last years, several authors have tried to
generalize linear ICA and BSS for nonlinear mod-
els; see [3, 4] for further information and references.
A particular problem which makes nonlinear ICA
much more difficult compared with the linear case
is that the problem is highly non-unique without
some suitable regularizing constraints [4, 3].

In this paper, the nonlinear mapping from the
unknown sources to the observations is modeled
with the familiar multi-layer perceptron (MLP)
network [2]. However, the learning procedure is
quite different from standard backpropagation, and
is based on unsupervised ensemble learning. There
the necessary regularization for nonlinear ICA is
obtained by integrating over a full distribution for
the model and sources instead of choosing only
single values. This approach provides meaningful
sources and nonlinear mapping, as shown by the
experiments.

A similar generative model has been applied to
the linear ICA/BSS problem in [1]. Our work uses a
nonlinear data model, and applies a fully Bayesian
treatment to the hyperparameters of the network
or graphical model, too.
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2 Ensemble learning

A flexible model family, such as MLP networks,
provides infinitely many possible explanations of
different complexity for the observed data. In
Bayesian learning all the possible explanations are
taken into account and weighted according to their
posterior probabilities. This approach optimally
solves the tradeoff between under- and overfitting.
All the relevant information needed in choosing
an appropriate model is contained in the poste-
rior probability density functions (pdfs) of different
model structures.

In practice, exact treatment of the posterior pdfs
of the models is impossible. Therefore, some suit-
able approximation method must be used. Ensem-
ble learning [7, 6], which is a special case variational
learning, is a recently developed method for para-
metric approximation of posterior pdfs where the
search takes into account the probability mass of
the models. Therefore, it does not suffer from over-
fitting. The basic idea in ensemble learning is to
minimize the misfit between the posterior pdf and
its parametric approximation.

Let us denote by X = {x(t)|t} the set of avail-
able data (mixture) vectors, by S = {s(t)|t} the
respective source vectors, and by θ all the un-
known parameters of the data model. Further-
more, P (S,θ|X) denotes the exact posterior pdf
and Q(S,θ|X) its parametric approximation. The
misfit is measured with the Kullback-Leibler (KL)
divergence CKL between P and Q, defined by the
cost function

CKL =

∫

Q(S,θ|X) log
Q(S,θ|X)

P (S,θ|X)
dθdS (1)

The Kullback-Leibler divergence measures the dif-
ference in the probability mass between the den-
sities P and Q. Its minimum value 0 is achieved
when the two densities are the same.

3 Model structure

We use MLP networks which have the universal ap-
proximation property for smooth continuous map-
pings [2]. They are well suited for modeling both
strongly and mildly nonlinear mappings.

The data model used in this work is as follows.
Let x(t) denote the observed data vector at time



t, and s(t) the vector of source signals (latent vari-
ables) at time t. The matrices B and A contain
the weights of the output and the hidden layer of
the network, respectively, and a is the bias vector
of the hidden layer. The vector of nonlinear acti-
vation functions is denoted by f(·), and n(t) is the
Gaussian noise vector corrupting the observations.
Using these notations, the data model is

x(t) = B [f (As(t) + a)] + n(t). (2)

We have used as the activation function the
sigmoidal tanh nonlinearity, which is a typical
choice in MLP networks. Other continuous acti-
vation functions are possible, too. The sources (la-
tent variables) are assumed to be independent and
Gaussian. We have used a mixture of Gaussians
model for the sources in [5]. Then it is possible
to approximate sufficiently well any non-Gaussian
source distribution. However, modeling the sources
as mixtures of Gaussians provided a small improve-
ment only in the results while complicating the
learning process considerably, and hence the sim-
pler Gaussian model was adopted in this paper.

The parameters of the network are: (1) the
weight matrices A and B and the vector of bi-
ases a; (2) the parameters of the distributions of
the noise, source signals and column vectors of
the weight matrices; (3) hyperparameters used for
defining the distributions of the biases and the pa-
rameters in the group (2). All the parameterized
distributions are assumed to be Gaussian. This
does not limit severely the generality of the ap-
proach, but makes computational implementation
simpler and much more efficient. The hierarchical
description of the distributions of the parameters
of the model used here is a standard procedure in
probabilistic Bayesian modeling. Its strength lies in
that knowledge about equivalent status of different
parameters can be easily incorporated. For exam-
ple all the variances of the noise components have
a similar status in the model. This is reflected by
the fact that their distributions are assumed to be
governed by common hyperparameters.

4 Learning procedure

Usually MLP networks learn the nonlinear input-
output mapping in a supervised manner using
known input-output pairs, for which the mean-
square mapping error is minimized using the back-
propagation algorithm [2]. In our case, the inputs
are the unknown source signals s(t), and only the
outputs of the MLP network, namely the observed
data vectors x(t), are known. Hence, unsupervised
learning must be applied. Due to space limitations,

we give an overall description of the proposed unsu-
pervised learning procedure in this paper. A more
detailed account of the method and discussion of
potentially appearing problems can be found in [5].

The practical learning procedure used in all the
experiments was the same. First, linear PCA (prin-
cipal component analysis) is applied to find sen-
sible initial values for the posterior means of the
sources. Even though PCA is a linear method, it
yields clearly better initial values than a random
choice. The posterior variances of the sources are
initialized to small values. Good initial values are
important for the method because the network can
effectively prune away unused parts. Initially the
weights of the network have random values, and
the network has quite a bad representation for the
data. If the sources were adapted from random
values, too, the network would consider many of
the sources useless for the representation and prune
them away. This would lead to a local minimum
from which the network might not recover.

Therefore the sources were fixed at the values
given by linear PCA for the first 50 sweeps through
the entire data set. This allows the network to find
a meaningful mapping from sources to the observa-
tions, thereby justifying using the sources for the
representation. For the same reason, the param-
eters controlling the distributions of the sources,
weights, noise and the hyperparameters are not
adapted during the first 100 sweeps. They are
adapted only after the network has found sensible
values for the variables whose distributions these
parameters control.

After this, the learning continued by using the
nonlinear model where the sources have Gaussian
distributions. This is called nonlinear factor analy-
sis model in [5]. After this phase, the found sources
were rotated using an efficient linear ICA algo-
rithm called FastICA [3]. As mentioned earlier, the
learning could have then continued using now the
mixture-of-Gaussians model for the sources. In [5],
that representation is called nonlinear independent
factor analysis.

5 Computation of the cost function

In this section, we consider in more detail the
Kullback-Leibler cost function CKL defined earlier
in Eq. (1). For approximating and then minimiz-
ing it, we need two things: the exact formulation of
the posterior density P (S,θ|X) and its parametric
approximation Q(S,θ|X).

According to the Bayes’ rule, the posterior pdf of



the unknown variables S and θ is

P (S,θ|X) =
P (X|S,θ)P (S|θ)P (θ)

P (X)
(3)

The term P (X|S,θ) is obtained from the equa-
tion (2). Let us denote the mean of the ith noise
component ni(t) by µi and the corresponding vari-
ance by by σ2

i . The distribution P (xi(t)|s(t),θ)
is thus Gaussian with mean bT

i f(As + a) + µi

and variance σ2

i . Here bT
i denotes the ith row

vector of B. As usually, the noise components
ni(t) are assumed to be independent, and therefore
P (X|S,θ) =

∏

t,i P (xi(t)|s(t),θ).
The terms P (S|θ) and P (θ) in (3) are also prod-

ucts of simple Gaussian distributions, and they are
obtained directly from the definition of the model
structure [5]. The term P (X) does not depend on
the model parameters and can be neglected.

The approximation Q(S,θ|X) must be simple
for mathematical tractability and computational
efficiency. First, we assume that the source sig-
nals S are independent of the other parameters
θ, so that Q(S,θ|X) decouples into Q(S,θ|X) =
Q(S|X)Q(θ|X). For the parameters θ, a Gaussian
density with a diagonal covariance matrix is used.
This implies that the approximation is a product of
independent distributions: Q(θ|X) =

∏

i Qi(θi|X).
The parameters of each Gaussian component den-
sity Qi(θi|X) are its mean θ̄i and variance θ̃i. The
pdf Q(S|X) is similar.

Both the posterior density P (S,θ|X) and its
approximation Q(S,θ|X) are products of sim-
ple Gaussian terms, which simplifies the cost
function (1) considerably: it splits into expec-
tations of many simple terms. The terms of
the form EQ{logQi(θi|X)} are negative entropies
of Gaussians, having the exact values −(1 +
log 2πθ̃i)/2. The most difficult terms are of the
form −EQ{logP (xi(t)|s(t),θ)}. They are approx-
imated by applying second order Taylor series ex-
pansions of the nonlinear activation functions as
explained in [5]. The remaining terms are expecta-
tions of simple Gaussian terms which can be com-
puted as in [6].

The cost function CKL is a function of the poste-
rior means θ̄i and variances θ̃i of the source signals
and the parameters of the network. This is because
instead of finding a point estimate, the joint poste-
rior pdf of the sources and parameters is estimated
in ensemble learning. The variances give informa-
tion about the reliability of the estimates.

Let us denote the two parts of the cost function
(1) arising from the denominator and numerator
of the logarithm respectively by Cp = −EQ{logP}

and Cq = EQ{logQ}. The variances θ̃i are obtained

by differentiating (1) with respect to θ̃i [5]:

∂CKL

∂θ̃i

=
∂Cp

∂θ̃i

+
∂Cq

∂θ̃i

=
∂Cp

∂θ̃i

−
1

2θ̃i

(4)

Equating this to zero yields a fixed-point iteration
for updating the variances:

θ̃i =

[

2
∂Cp

∂θ̃i

]−1

(5)

The means θ̄i can be estimated from the approxi-
mate Newton iteration [5]

θ̄i ← θ̄i −
∂Cp

∂θ̄i

[

∂2Cp

∂θ̄i
2

]−1

≈ θ̄i −
∂Cp

∂θ̄i

θ̃i (6)

6 Experimental results

In all our experiments, the total number of sweeps
was 7500, where one sweep means going through all
the observations once. A nonlinear factor analysis
representation using plain Gaussians as model dis-
tributions for the sources was estimated first, and
the final results were then obtained by applying lin-
ear ICA to the results.

The data set consisted of spectrograms of 24 indi-
vidual words of Finnish speech, spoken by 20 differ-
ent speakers. The spectrum was modified to mimic
the reception abilities of the human ear. This is a
standard preprocessing procedure for speech recog-
nition. The preprocessed data consisted of 2547 30
dimensional spectrogram vectors.
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Figure 1: The remaining energy of the speech data
as a function of the number of extracted compo-
nents using linear and nonlinear factor analysis.

For studying the dimensionality of the data, lin-
ear factor analysis was applied to the data. The
results are shown in Fig. 1. The figure shows also



the results with nonlinear factor analysis. All the
results were obtained by using an MLP network
with 30 hidden neurons. The data are clearly non-
linear, because nonlinear factor analysis is able to
explain it equally well with fewer components than
linear factor analysis. The difference is especially
clear when the number of components is relatively
small.

Figure 2: A short fragment of the data used in the
speech modeling experiment. The first subfigure
shows the original data, the second shows the re-
construction from 8 nonlinear components and the
last shows the reconstruction from 8 linear compo-
nents.

Figure 3: Extracted sources corresponding to the
data fragment in Fig. 2.

A small segment of the original data and its re-
constructions with eight nonlinear and linear com-
ponents are shown in Fig. 2. The reconstructed
spectrograms are somewhat smoother than the
original one. Still, all the discriminative features

of the original spectrum are well preserved in the
nonlinear reconstruction. The linear reconstruction
is not as good, especially at the beginning. The ex-
tracted nonlinear sources are shown in Fig. 3.

The sources found by the algorithm could be used
as features for a speech recognition system. Since
the essential contents of the data can be represented
with fewer components than with linear methods,
nonlinear ICA should provide better performance
for feature extraction. The proposed method ig-
nores all temporal information in the data, but it
could easily be extended to take that into account.
This would probably lead to better results with the
speech data.

7 Conclusions

We have presented a fully Bayesian approach based
on ensemble learning for solving the difficult nonlin-
ear blind source separation problem. The MLP net-
work used suits well for modeling both mildly and
strongly nonlinear mappings. The presented unsu-
pervised ensemble learning method tries to find the
sources and the mapping that have most probably
generated the observed data. We believe that this
provides an appropriate regularization for the non-
linear source separation problem. The results with
real-world speech data are encouraging. The pro-
posed approach allows nonlinear source separation
for larger-scale problems than previously proposed
nonlinear ICA or BSS approaches [3] which typi-
cally suffer from a high computational load, and it
can be easily extended in various directions.
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