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ABSTRACT

A popular strategy for dealing with large parameter
estimation problems is to split the problem into man-
ageable subproblems and solve them cyclically one by
one until convergence. We address a well-known prob-
lem with this strategy, namely slow convergence under
low noise. We propose using so called pattern searches
which consist of a parameter-wise update phase fol-
lowed by a line search. The search direction of the line
search is computed by combining the individual up-
dates of all subproblems. The approach can be used to
accelerate learning of several methods proposed in the
literature without the need for large algorithmic mod-
ifications such as evaluation of global gradients. The
proposed modification is shown to reduce the conver-
gence time in a realistic independent component anal-
ysis (ICA) problem by more than 85 %.

1. INTRODUCTION

Many existing learning methods use a simple cyclic
scheme for updating the parameters: they take one
parameter or a group of parameters at a time and op-
timize it while the others are fixed to their present val-
ues. When the process is repeated for different sets
of parameters, the values eventually converge to an
optimum. In particular, this strategy is utilized in
the variational Bayesian techniques which decouple the
difficult problem of describing the posterior probabil-
ity density of the model parameters into many smaller
tractable problems [1, 2, 3, 4, 5, 6, 7, 8, 9]. Theo-
retical justification for the method as an optimization
algorithm and some different applications can be found
in [10].

It is well known that in the case of low noise, the
posterior dependences are stronger and consequently
the cyclic update procedure is slow. It is difficult to
optimize the values of dependent variables one at a
time since each value can only be changed very little if
the other parameters stay constant.

As an example, let us consider a simple linear model
x = As, where x denotes the observation vector, s

the source vector and A the mixing matrix. This is
the generative model for instance in linear indepen-
dent component analysis (ICA) [11]. ICA estimation
means looking for a suitable rotation for the mixing
matrix A such that the components of s would become
as independent as possible. In this problem, the mixing
matrix A and the source vectors s are intimately tied.
Rotating one needs to be compensated by a suitable
rotation of the other. If the mixing matrix and the
sources are updated separately, a very large number
of steps may be required to find the correct rotation
as both parameters can only be changed very little at
each step.

The effect of noise level to the set of feasible so-
lutions of a simplified one-dimensional version of this
linear model is illustrated in Fig. 1. At moderate noise
levels (upper subfigure) the maximum of the posterior
distribution is shallow and the basic cyclic iteration
scheme converges quickly. When the noise level de-
creases (lower subfigure), the feasible region becomes
much narrower and convergence of cyclic iteration slows
down considerably.

The pattern search method we propose is a simple
extension to the standard update strategy and requires
no problem-specific modifications. Contrary to other
popular optimization methods such as the conjugate
gradient method, the pattern search method does not
need the derivatives of the cost function. The algo-
rithm is presented in detail in Section 2. In Section 3,
the method is used to speed up two experiments us-
ing variational Bayesian learning. The paper concludes
with discussion and suggestions for future work in Sec-
tion 4.

2. THE ALGORITHM

We propose speeding up convergence of cyclic update
schemes by applying the the idea of pattern searches
introduced by Hooke and Jeeves in [12]. The pattern
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Figure 1: Contour plots of the posterior distribution
of the parameters of a linear model x = as + n under
different noise levels. In the upper subfigure the noise
level is relatively high (σ2

n = 10−1) and the posterior is
relatively flat. In the lower subfigure the noise level is
lower (σ2

n = 10−3) and the posterior is much narrower.

search consists of two phases. In the first, exploratory
phase, the objective function is optimized in each co-
ordinate direction separately as usual. This phase is
called the phase of parameter-wise updates. The up-
dates performed in the parameter-wise update phase
are then combined to form a diagonal direction for the
line search.

Pattern search methods have mostly been aban-
doned in standard optimization literature in favour
of conjugate gradient and other more advanced meth-
ods. Using such methods with the variational approach
would, however, require significant changes to the exist-
ing algorithms and would not utilise the ability to solve
independent subproblems easily. The pattern search
approach takes advantage of the existing methodol-
ogy for performing the parameter-wise updates and re-
quires only minor changes as illustrated by the algo-
rithm optimize pattern below. It is especially notewor-
thy that the pattern search approach does not need the

derivatives of the cost function.

Assume we are optimizing the function C : Rn → R
and let d1, . . . ,dn be the standard basis of Rn. One
iteration of the parameter-wise updates can be imple-
mented as follows.

function optimize parameter-wise(C, z1):
z2 ← z1

for i = 1, . . . , n:
λ← argminλ C(z2 + λdi)
z2 ← z2 + λdi

return z2

In practice the parameter-wise updates are not per-
formed using a general optimization algorithm. In vari-
ational approach the problem is split into smaller sub-
problems that can be solved more easily and that can
be utilized here. The updates can also be done for a
larger group of parameters at a time rather than for
just one parameter.

The complete pattern search scheme is a straight-
forward extension to this standard algorithm:

function optimize pattern(C, z1):
z2 ← optimize parameter-wise(C, z1)
∆z← z2 − z1

λ← argminλ C(z1 + λ ·∆z)
z3 ← z1 + λ ·∆z

return z3

z1

z2

z3

∆z

Parameter-wise updates

Line search

Figure 2: Illustration of the pattern search algorithm.

The algorithm is illustrated in Fig. 2. The figure shows
how the direction of the line search is obtained as the
difference vector ∆z = z2−z1 of the value of the param-
eters z2 after the parameter-wise update round and the
corresponding value z1 before the updates. Parameters
such as variances that have a positivity constraint are
treated on logarithmic scale for the purposes of eval-
uating the difference and later when extrapolating for
the iterates z1 + λ ·∆z. This leads to formulas

∆σ := log σ2 − log σ1 = log
σ2

σ1

(1)



and

σ3 = σ1 + λ ·∆σ := exp(log σ1 + λ ·∆σ) (2)

that are used for such parameters.
The figure also shows that although the optimiza-

tions in optimize pattern appear to be similar to those
in optimize parameter-wise, there is a big difference: the
line search is made in arbitrary direction instead of
standard coordinate directions. In many cases such as
ours, the parameter-wise optimizations, i.e. the ones in
coordinate directions, can be easily carried out analyt-
ically whereas arbitrary line searches are global oper-
ations and thus potentially computationally more de-
manding. The extra work is nevertheless worthwhile as
the value of λ can easily be more than 100 and thus a
single line search can save at least that many ordinary
rounds of optimization.

2.1. Line searches

The line search in optimize pattern can be implemented
by any standard algorithm. As the other parts of the
algorithm do not use derivatives of the cost function, it
is reasonable to choose a derivative free line search algo-
rithm. Good general candidates for such algorithms are
the golden section method and the method of quadratic
fit [13, 14].

The golden section method gives decent worst case
performance but usually loses to the competitors in
more realistic situations. In our examples the cost
function appeared roughly quadratic along the line
search direction and thus a simple implementation of
the method of quadratic fit with golden section method
as a fall back for the most difficult cases was used. In
practice the best method would probably be some kind
of a combination of the two basic methods [13].

2.2. Implementation details

In standard Hooke–Jeeves algorithm there is only one
cyclic optimization step between two line searches [14].
This turned out to be suboptimal for our purposes as
the benefits of the line searches in increased step length
were rather small and the resulting algorithm was even
slower than the standard update scheme in some cases.

Letting the iteration stabilize by doing several
parameter-wise optimization phases before the next
line search seemed to work much better. In the experi-
ments we used ten parameter-wise optimization rounds
between two consecutive line search steps. We also
tried to interpolate the search direction over several
parameter-wise optimization rounds but this did not
improve the results.

There are quite a few details in the pattern search
method that could be tuned to improve the perfor-
mance even further. We have not done so as we wish to
demonstrate that even as such, the method can provide
significant speedups for learning.

3. EXPERIMENTS

We demonstrate the pattern search algorithm with two
experiments using variational Bayesian learning. The
approximation we use here is also known as ensemble
learning [1, 15]. Its key idea is to approximate the exact
posterior distribution p(θ|X) by another distribution
q(θ) that is computationally easier to handle. The ap-
proximating distribution is usually chosen to be a prod-
uct of several independent distributions, one for each
parameter or a set of similar parameters. The optimal
approximating distribution is found by minimizing the
Kullback-Leibler divergence between the approximate
and true posterior.

In the examples considered here, the approximate
posterior is a product of independent Gaussian distri-
butions and is thus characterized by the means and
variances of these distributions. To ensure validity of
the values of the variances, they are treated on loga-
rithmic scale.

3.1. One-dimensional toy example

Let us consider a very simple linear model x = as+ n

with one-dimensional data x, one-dimensional latent
variable s and additive noise n. Though seemingly
very trivial, this example shows many of the important
problems encountered in more difficult generalizations
and it is easy to visualize.

Let us assume that there is a single observation
x = 1 and we are trying to fit the given linear model
x = as+n. The variables a and s have Gaussian priors
with zero mean and unit variance. Let us use vari-
ational Bayesian learning to solve the problem by as-
suming a and s to be independent. It turns out that the
optimal approximate posterior distributions of a and s

are Gaussian. Ignoring the variances of the Gaussians,
the cost function of posterior means of a and s is very
similar to the posterior distributions shown in Fig. 1.
For a moderate noise variance of σ2

n = 10−1 in the
upper subfigure, it is pretty well-behaved and easy to
optimize. When the noise variance decreases, the min-
imal valley of the cost function becomes narrower and
more sharply curved. With noise variance σ2

n = 10−3

in the lower subfigure, the optimization problem is al-
ready much more difficult.

The progress of the optimization procedures as a
function of time is illustrated in Fig. 3. The cyclic
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Figure 3: Cost function values attained by different al-
gorithms for the toy example with respect to time un-
der various noise levels. The solid lines represent opti-
mization using pattern searches and dashed lines stan-
dard cyclic updates. The noise variance is decreased
by factor of 10 in consecutive simulations. The time
scale in the figures is logarithmic and thus a constant
difference is in fact difference by a constant factor.

iteration performs very badly in this case, requiring
more than a minute to solve the problem with least
noise whereas the pattern search algorithm can find
the optimum in less than a second. For low noise lev-
els, the length of the steps taken by the iteration is
directly proportional to the noise variance. Thus halv-
ing the noise level (standard deviation) quadruples the
time needed for the algorithm to converge. The pat-
tern search method does much better and slows down
considerably less when the noise level decreases.

3.2. Real ICA example

The method was also tested with a more realistic
noisy ICA model. The data set used was an eight-
dimensional artificial mixture of four source signals. A
varying amount of Gaussian noise was added to the
data. The number of data points used was 200. The
model was a simple linear model with Gaussian mixture
priors for the sources. The actual simulations were run
using the building block library presented in [8]. Prac-
tically all the parameters were estimated directly from
the data by the algorithm.

The results of the methods are shown in Fig. 4.
The standard update algorithm behaves in a very sim-
ilar manner as in the simple one-dimensional example.
Finding the correct rotation for the sources takes a long
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Figure 4: Cost function values attained by different al-
gorithms for the real ICA example with respect to time
under two different noise levels. The solid lines repre-
sent optimization using pattern searches and dashed
lines standard cyclic updates. The noise variance is
decreased by factor of 10 in the different simulations.
The time scale in the figures is logarithmic and thus a
constant difference is in fact difference by a constant
factor.

time and the time seems to increase inversely propor-
tionally to the variance of the noise added to the data.
The pattern search method is again significantly faster,
typically reaching the same value of cost function in
around 10–20 % of the time needed by the standard
method.

4. DISCUSSION

The pattern search algorithm is a straightforward ex-
tension of the standard cyclic update scheme but it
speeds up the convergence significantly. It is easy to
implement and utilizes the ability to solve the indepen-
dent optimization problems easily. All the operations
required scale linearly with respect to the number of
parameters in the problem. It could be applied directly
to many practical algorithms such as [3, 7, 8, 9].

In optimization literature pattern search methods
have, however, mostly been abandoned for more ad-
vanced ones like conjugate gradient optimization. The
conjugate gradient method is very different from the
standard procedure in variational approach as it re-
quires derivatives of the cost function and does not take
advantage of the ability to solve the independent sub-
problems easily. It has nevertheless been used success-
fully for speeding up the EM algorithm in [16]. It would



be interesting to see if the same method would work for
other algorithms such as variational Bayesian learning
as well, and how it would compare with the pattern
search approach. Nevertheless, the conjugate gradient
method requires significant algorithmic modifications
and thus does not directly compete with the pattern
search approach, which attains major improvement in
convergence speed with only minor modifications to the
standard algorithm.
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