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ABSTRACT

Variational Bayesian learning is an approximation to
the exact Bayesian learning where the true posterior is
approximated with a simpler distribution. In this pa-
per we present an on-line variant of variational Bayesian
learning. The method is based on collecting likelihood
information as the training samples are processed one
at a time and decaying the old likelihood information.
The decay or forgetting is very important since other-
wise the system would get stuck to the first reasonable
solution it finds. The method is tested with a simple
linear independent component analysis (ICA) problem
but it can easily be applied to other more difficult prob-
lems.

1. INTRODUCTION

Variational Bayesian learning is an approximation to
exact Bayesian learning. It is based on approximating
the posterior distribution with another simpler distri-
bution. The approximation makes the learning prob-
lem tractable while preserving many of the benefits of
Bayesian learning such as resistance to over-fitting.

A variational method called ensemble learning has
gained popularity during recent years. It has been suc-
cessfully applied to various linear independent compo-
nent analysis (ICA) problems [2, 10, 3, 14, 17] as well as
nonlinear ICA [11] and nonlinear and switching state-
space models [20, 6], to name a few examples. The
benefits of ensemble learning include easy comparison
of different models that can be used e.g. for determining
the correct number of sources in an ICA problem, and
easy incorporation of prior knowledge such as positiv-
ity constraints. In [22] a complete framework based on
variational Bayesian learning for building many kinds
of models is presented.

The previous algorithms using variational Bayesian
learning operate in batch mode, i.e. they use the whole
data set as a one large block. This can be a serious
limitation as storing a large data set requires a lot of

memory. It may also be desirable to be able to pro-
cess the data in parallel with its collection which is
difficult with batch algorithms. One way to deal with
these problems is to use an on-line algorithm that pro-
cesses the data one sample at a time. Unfortunately
the straightforward Bayesian on-line learning method
of taking the posterior after previous sample as a prior
for the new sample suffers from the same problems as
exact Bayesian learning in general and is computation-
ally intractable. A simple approximation method of
using the variational approximation to the posterior
at each step would not work very well as the approx-
imation is valid only locally and the learning would
therefore get stuck to the first decent solution.

In this paper, we present a novel method for per-
forming variational Bayesian learning in on-line mode.1

Our method is based on maintaining a decaying history
of the previous samples processed by the model. This
way the updates are based on a longer history although
the algorithm processes the samples one at a time. The
decay ensures that the system has a chance to forget
old solutions in favour of new better ones. The method
is also efficient because the whole history can be com-
pressed into a few aggregate statistics thus allowing the
desired space savings. The method has been developed
as an extension to the building block framework [22]
and can thus easily be used for many different models,
such as the ones presented in [19, 21]. Additionally the
method could be applied to other previous models such
as [2, 10, 3, 14, 17, 11, 20].

The paper is organised as follows. First we in-
troduce the basic batch form of variational Bayesian
learning. In Section 3, possible approaches to on-line
Bayesian learning are discussed. Our algorithm is pre-
sented in Section 4. The results of a simple ICA exper-
iment are presented in Section 5.

1While revising the paper we became aware that essentially
the same method has been proposed earlier in [18].



2. VARIATIONAL BAYESIAN LEARNING

Denote by θ = {θi|i} the set of model parameters and
by S = {si(t)|t, i} the set of source values that we wish
to estimate from a given data set X = {xi(t)|t, i}. Here
the values of X at a given time instant depend only on
the corresponding values of S whereas they all depend
on θ in the similar manner. To make the derivations
easier we assume that there are no temporal depen-
dencies within S. In Bayesian estimation methods, it
is assumed that there is some prior information on θ

and S available. This is represented in the form of prior
distribution p(θ,S) of θ and S. After learning, all the
information of the parameters is contained in the pos-
terior probability density p(θ,S|X) of the parameters
given the data X. It can be computed from the Bayes’
rule

p(θ,S|X) =
p(X|θ,S)p(θ,S)

p(X)
. (1)

Here p(X|θ,S) is the likelihood of the parameters θ

and S, and p(X) is a normalizing constant which can
be evaluated if necessary by integrating the numerator
p(X|θ,S)p(θ,S) over all the possible values of θ and
S.

Because integration over parameter space that is
needed to evaluate the normalising constant and to use
the posterior otherwise is difficult, using the exact pos-
terior is typically intractable, and some approximations
are needed. The key idea of variational methods is to
approximate the exact posterior distribution p(θ,S|X)
by another distribution q(θ,S) that is computationally
easier to handle [9]. The approximating distribution is
usually chosen to be a product of several independent
distributions, one for each parameter or a set of similar
parameters. We use a particular variational method
known as ensemble learning that has recently become
very popular [8, 13, 12]. An example of a variational
technique other than ensemble learning can be found
in [7].

In ensemble learning the optimal approximating dis-
tribution is found by minimizing the Kullback-Leibler
divergence between the approximate and true poste-
rior. After some considerations [12, 13], this leads to
the cost function

C =

〈

log
q(θ,S)

p(X,θ,S)

〉

q(θ,S)

= 〈log q(θ,S)〉q(θ,S) − 〈log p(X,θ,S)〉q(θ,S) .

(2)

Here 〈·〉q denotes the expectation over distribution q.
From now on all such expectations are taken over q(θ,S)
unless mentioned otherwise. With typical factorial ap-
proximation q(θ,S) =

∏

i q(θi)
∏

t,i q(si(t)) and i.i.d.

noise, this simplifies into

C =
∑

i

〈log q(θi)〉 − 〈log p(θ)〉

+
∑

t,i

(

〈log q(si(t))〉 − 〈log p(si(t)|θ)〉
)

−
∑

t,i

〈log p(xi(t)|θ,S)〉 .

(3)

The cost function in Eq. (2) has the convenient
property that

C = D(q(θ,S)||p(θ,S|X)) − log p(X) ≥ − log p(X),
(4)

where D(q||p) denotes the Kullback-Leibler divergence
between distributions q and p. This way the cost C
yields a lower bound to the model evidence, an impor-
tant quantity in model comparison.

3. POSSIBLE APPROACHES TO

BAYESIAN ON-LINE LEARNING

As noted at the beginning of Sec. 2, Bayesian learning
is based on the idea of using Bayes rule to update the
prior distribution p(θ,S) to posterior p(θ,S|X). The
same principle can be used iteratively to update the
distribution taking into account the information given
by each individual sample.

Let us denote by X1:T = {xi(t)|t = 1, . . . , T ; i}
the set of observations on time interval from 1 to T
similarly for S1:T . Let also Xt = Xt:t and similarly
St = St:t. For simplicity we assume that p(Xt|θ,S) =
p(Xt|θ,St), i.e. the observations Xt only depend on
the source values St at the same time instant. The iter-
ative Bayesian learning can now be represented by us-
ing the Bayes rule to derive the new posterior distribu-
tion p(θ,S1:T+1|X1:T+1) from the old p(θ,S1:T |X1:T )
as

p(θ,S1:T+1|X1:T+1) =

p(XT+1|θ,ST+1)p(θ,S1:T |X1:T )

p(XT+1|X1:T )
. (5)

Unfortunately this approach suffers from the same
problems as the exact Bayesian learning in general.
Even representing the posterior depending explicitly
on all the data can be very difficult if it is for instance
a mixture density of exponentially growing number of
components.

The approaches and approximations used to avoid
the problems of exact Bayesian on-line learning are the
same as in general Bayesian learning. Stochastic ap-
proximation approaches to on-line learning include se-
quential Monte Carlo methods and particle filtering [4].



In this paper we concentrate on variational approxima-
tion instead of the stochastic approximations.

The simplest variational approximation would be
to simply use the standard factorial approximation at
each step so that the posterior from the previous step
becomes the new prior and so on. This approach would,
however, lead to problems as the approximation is valid
only locally and information of possible good solutions
further away is lost. The factorial approximation is
especially susceptible as all the correlations between
variables are lost. In ICA this would effectively fix the
rotation of the sources to the initial value or very close
to it.

One way to partially deal with the problem is to
approximate the posterior at each step with the full
multivariate Gaussian distribution as in [16]. This will
preserve some of the correlations but in large models
the computational cost of estimating the full covariance
is high. Moreover, even the Gaussian approximation
with a full covariance matrix will be invalid outside the
neighborhood of the current solution. The approach
may also lose information of the prior that does not fit
the Gaussian approximation.

4. ON-LINE VARIATIONAL LEARNING

Our approach is basically the same as the one pre-
sented by Ghahramani in [5] except that it incorpo-
rates forgetting of old samples. The prior is, however,
not forgotten, only the likelihood information of the
old data. The forgetting makes learning with even rel-
atively small fixed data set practical as the same sam-
ples can be used again. With the basic approach, the
same samples can only be used once.

4.1. The cost function

The on-line version of variational Bayesian learning is
based on collecting the likelihood information gradu-
ally as the samples are processed one at a time. This
approach works if the expectations 〈log p(xi(t)|θ,St)〉
of the log-likelihood and 〈log p(St|θ)〉 of the prior of the
sources over the approximate posterior q(θ,St) can be
expressed in form

〈log p(xi(t)|θ,St)〉 =

n
∑

k=1

αk(xi(t),St)fk(θ) (6)

〈log p(St|θ)〉 =

m
∑

l=1

βl(St)gl(θ), (7)

where αk, k = 1, . . . , n and βl, l = 1, . . . ,m are con-
stants depending on the observation xi(t) and sources
St while fk(θ), k = 1, . . . , n and gl(θ), l = 1, . . . , n are

fixed functions of θ, i.e. they do not depend on the
observations xi(t) and the source values St.

As an example a Gaussian variable x(t) ∼ N(a ·
s(t), σ2) with a linear model for mean and a factorial
posterior approximation q(s(t), a, σ2) = q(s(t))q(a, σ2),
has such a decomposition that can be written as

〈

log p(x(t)|a, s(t), σ2)
〉

= −
1

2

〈

log(2πσ2)
〉

−
1

2

〈

s(t)2
〉

〈

a2

σ2

〉

−
1

2
x(t)2

〈

1

σ2

〉

+x(t) 〈s(t)〉
〈 a

σ2

〉

.

(8)

The essentially same decomposition works even if σ2

has a more complicated model or is time-dependent.
Assuming the expectation of the likelihood term has

a decomposition of the form shown in Eq. (6), the term
of the cost function arising from the likelihood (the last
term in Eq. (3)) can be written as

−
∑

t,i

〈log p(xi(t)|θ,St)〉

= −
n

∑

k=1

fk(θ)
∑

t,i

αk(xi(t),St). (9)

The latter part of the second term involving p(St|θ)
can be similarly written as

−
∑

t

〈log p(St|θ)〉 = −

n
∑

l=1

gl(θ)
∑

t

βl(St). (10)

Adding a new observation is now very easy as it
only affects the innermost sums on Eqs. (9) and (10) to
which new terms corresponding to the new observation
and the new sources must be added.

4.2. Learning procedure

The basic outline of the learning procedure in an on-
line ICA algorithm is as follows. The data is processed
one sample at a time so that only the source values cor-
responding to the current sample are updated. After
moving on to the next sample, the old source values
are no longer changed. The mixing matrix and pos-
sible other time-independent parameters are of course
updated throughout the whole learning process.

The standard ensemble learning proceeds by min-
imising the cost function with respect to different vari-
ables or sets of variables so that the others are kept
fixed while one is updated. All the variables are up-
dated cyclically. The algorithm bears close resemblance
to the EM algorithm which can actually be seen as a
minimisation of very similar cost function as the one



in Eq. (2) [15]. Because of this many authors call the
variational procedure described here variational EM al-
gorithm.

In order to take into account the on-line nature of
our approach, we must divert slightly from the stan-
dard alternating updates of the EM algorithm. Con-
trary to standard EM, a typical model used in varia-
tional Bayesian learning has more than two indepen-
dent groups of variables that are updated separately.
This allows many new update strategies as there are
many possible orders in which the variables can be up-
dated.

In our method we update the time-independent pa-
rameters, i.e. the mixing matrix, noise distribution and
similar parameters only once for each processed sample
whereas the sources and other time-dependent param-
eters are updated several times. This is done because
there are several groups of time-dependent parameters
and it is not possible to find the optimal values for all
of them in a single step. It is clear that the bad initial
values of the sources do not give much relevant infor-
mation that could be utilised in updating the mixing
matrix so the mixing matrix is only updated after the
current source values have more or less converged.

4.3. Forgetting

A typical posterior approximation used in variational
Bayesian learning ignores dependencies between differ-
ent variables. This restricts its validity to the imme-
diate neighborhood of the current operating point. In
a typical ICA example, the posterior approximation
does not show that rotating the mixing matrix and the
sources in a corresponding way mostly preserves the
solution. From the approximation, it typically seems
that changing the mixing matrix by a relatively large
amount is always a bad idea and changing the sources
correspondingly only makes things worse.

In on-line learning for ICA, only the sources corre-
sponding to the current time index are updated at a
time while the past sources always remain the same.
These past values effectively fix the rotation to a given
value with no room for change. Introducing forgetting
to the method helps avoid this problem as the sources
corresponding to the old rotation are gradually forgot-
ten and the learning can proceed to find a better one.

The forgetting is implemented by decaying the like-
lihood terms that correspond to observations from the
past. Thus p(Xt0 |θ,St0) is replaced at time step t > t0
by p(Xt0 |θ,St0)

d(t,t0), where 0 < d(t, t0) ≤ 1. The pri-
ors for old observations p(St0 |θ) are handled similarly.
The value d(t, t0) = 1 corresponds to unchanged likeli-
hood whereas d(t, t0) = 0 corresponds to a totally flat
distribution with no information content at all. This

approach is somewhat similar to the deterministic an-
nealing used in [6] except that in our case it works
backwards, starting from the annealed state (low tem-
perature) and then gradually increasing the tempera-
ture to forget the exact value.

Let us assume that for all t, d(t, t) = 1. The decay of
the likelihood affects the cost function in the last term
of Eq. (3). Considering Eq. (9), the term becomes

−
T

∑

t=1

∑

i

〈

log p(xi(t)|θ,S)d(T,t)
〉

= −

T
∑

t=1

d(T, t)
∑

i

〈log p(xi(t)|θ,S)〉

= −

n
∑

k=1

fk(θ)

T
∑

t=1

d(T, t)
∑

i

αk(xi(t),St). (11)

The corresponding modification to Eq. (10) yields

−

T
∑

t=1

〈

log p(St|θ)d(T,t)
〉

= −

n
∑

l=1

gl(θ)

T
∑

t=1

d(T, t)βl(St). (12)

In order to keep the computations simple, we re-
quire that there exists a sequence of numbers ci, i =
1, 2, . . . such that

d(T, t) =

T
∏

i=t+1

ci. (13)

Denoting the innermost sum from Eq. (12) by k(T, l) =
∑T

t=1 d(T, t)βl(St), there is now a simple update rule

k(T + 1, l) = cT+1k(T, l) + βl(ST+1), (14)

i.e. the old value of the sum is multiplied by the decay
constant cT+1 and a new term corresponding to the
current observation is added. The sum in Eq. (11) is
handled similarly.

4.4. Practical issues of forgetting

Choosing the details of the forgetting procedure is very
important for good results and performance. With too
fast forgetting the results will be bad as very little data
is used. Too little forgetting will hinder performance
and may even stop learning to a suboptimal solution.

As noted in Eq. (13), the forgetting procedure is
completely specified by the decay constant sequence
ci, i = 1, 2, . . .. In order to study the properties of the



forgetting, it is more convenient to use instead a related
quantity of effective memory length

L(t) =

t−1
∑

i=1

d(t, i). (15)

The effective memory length measures the effective sam-
ple size that is seen by the learning algorithm. Speci-
fying the effective memory lengths also uniquely deter-
mines the decay constants as ct = L(t)/ (L(t − 1) + 1).
In our experiments we have used the memory length
Lramp(t) = min(t, Llimit).

5. EXPERIMENTS

In this section we present the results a simple prelimi-
nary experiment of on-line learning with a linear ICA
model. The model had sources with time-varying vari-
ance (variance neurons) that defined a super-Gaussian
source distribution [22, 19]. The same approach could
relatively easily be used for more complicated models
such as the ones presented in [19, 21].

In the experiment we compared on-line learning with
and without forgetting. The data set used in the ex-
periment was artificially created by mixing 4 super-
Gaussian sources to 10 mixtures with some additive
noise. The sources were generated from Gaussian ran-
dom samples be applying the hyperbolic sine function
to the values. The artificial data set was the only rea-
sonable choice for the experiment because of the huge
amount of data needed. The model was initialised to a
solution of batch ICA algorithm with a small fraction
of the data set.

The results of the experiment are presented in Fig. 1.
The results are reported according to the rejection in-
dex suggested by Amari et al. [1]. They show that with-
out forgetting the learning gets stuck rather quickly
and there is practically no improvement in the separa-
tion. The result of the version with forgetting improves
steadily until convergence. The final result is compara-
ble to the result of a batch algorithm on a data set of
same size as the effective memory length of 500 samples
of the on-line algorithm.

6. DISCUSSION

Many practical unsupervised learning problems require
a large amount of memory to store the full data set and
parameters of the model when batch algorithms are
used. On-line learning helps by requiring only one data
sample and corresponding sources to be available at a
time. The lower memory requirement often comes with
a price of more iterations and computation time needed
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Fig. 1. Performance of on-line learning with and with-
out forgetting with respect to number of samples.

for the same result a batch algorithm would attain,
if such an algorithm is applicable to the problem. In
situations where the processing must be done in parallel
with data collection the on-line approach is the only
viable choice. It also provides a natural way to handle
non-stationary problems.

The one-sample-at-a-time approach presented here
is one extreme on a scale whose other end would be
traditional batch learning. It gives the largest memory
savings but also largest difficulties. For most practi-
cal learning problems, a suitable compromise of using
many smaller batches would probably yield better over-
all result than either extreme.

As demonstrated by the experiment, some form of
forgetting is necessary for the on-line approach to work.
The optimal approach would be to use exact Bayesian
inference to update the posterior of the parameters
as new samples are observed but unfortunately this
is computationally intractable. Our method provides
one computationally tractable method of handling the
problem, but further study is needed on the practical
details.

It should be stressed that the experiment reported
in this paper is only a very preliminary one. The same
method can easily be applied to various variational lin-
ear ICA methods [2, 10, 3, 14, 17] as well as nonlinear
and other extensions [22, 19, 21, 11, 20].
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